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Abstract

A cohesive-zone analysis for crack propagation in a linear visco-elastic /
creeping material is presented. The concept of a viscous fracture length is de-
fined; this serves an analogous role to the elastic fracture length in determining
the conditions under which fracture is controlled by the continuum crack-tip
stress field. It is shown that there are two regimes for viscous crack growth.
The first regime occurs in the limit of small viscous fracture lengths, when the
crack-tip stress field has a region exhibiting the inverse square-root dependence
expected from classical linear fracture mechanics. In this regime, the crack
velocity is proportional to the fourth power of the stress-intensity factor. This
is consistent with an existing analytical model developed for crack growth in
linear polymers. The second regime occurs for large viscous fracture lengths,
where classical fracture mechanics is not appropriate. In this regime, the crack
velocity has a weaker dependence on the applied load, and can be modelled
accurately by the solution to the problem of a viscous beam on an elastic foun-
dation. At higher crack velocities, when the viscous fracture length exceeds the
elastic fracture length, the expected transition to elastic fracture occurs.
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1 Introduction

Modelling crack growth requires an understanding of which parameters control frac-

ture. For example, linear-elastic fracture mechanics (LEFM) is a continuum model

in which crack growth is controlled by an energy criterion; the fracture load depends

only on the modulus, E, the toughness, Γ, and a dimension describing the physical

size of the geometry, h (in addition to a non-dimensional description of the geom-

etry). Generally speaking, this approach works when there is any region near the

crack tip where the stresses can be described reasonably well by the continuum sin-

gular field. However, more generally, analysis of fracture requires the introduction of

an additional parameter. This additional parameter can often be expressed in terms

of a length associated with the fracture process. Sometimes, this length may enter

the problem directly as a length over which the continuum approach breaks down, or

as a critical crack-tip displacement for crack propagation. In cohesive-zone models of

fracture, it enters in a dimensional fashion through a cohesive strength σ̂, giving an

elastic fracture length defined by EΓ/σ̂2, which has a unit of length.

The original motivation for this study was to determine the fracture parameters

that control crack growth in a creeping solid. We addressed this by conducting a

cohesive-zone analysis with a linear visco-elastic material. This analysis shows that,

in contrast to when fracture is controlled by elasticity, there are no conditions under

which crack growth can be modelled in a viscous or creeping material without intro-

ducing a fracture length of some description. This is true even in regimes where the

crack-tip stresses exhibit a region that can be described by the continuum singular

field. This conclusion is consistent with the observations of Rice [1], and with the

comments of McCartney [2, 3] in response to the work of Christensen [4, 5, 6].
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Time-dependent crack growth has historically been studied in two distinct areas

of research: creep rupture of metals and ceramics, and fracture of polymers. Very

different frameworks have been developed in each of these two areas to describe what

is essentially the same problem of time-dependent crack growth. The different per-

spectives provided by the frameworks have resulted in what might appear to be con-

tradictory conclusions about whether time-dependence is a desirable attribute from a

fracture perspective or not. The creep-rupture literature tends to describe the prob-

lem in terms of how the time-dependent properties of a material result in sub-critical

cracking at low driving forces (an apparent weakening). Conversely, the polymers

literature often tends to describe the problem in terms of how the time-dependent

properties of a material result in an increased rate of energy dissipation (an appar-

ent toughening). This is, of course, merely a manifestation of the classic question of

whether one is more interested in the toughness or the strength of a material system.

Crack-growth models for creeping materials are often formulated in terms of the

nucleation and growth of damage in the form of cavities ahead of a crack tip [7, 8, 9].

If it is assumed that the damage is embedded within a crack-tip stress field appropri-

ate for a creeping solid, its growth can be linked to the deformation of the surrounding

material [10, 11, 12, 13]. In particular, crack advance occurs when the crack-tip region

has deformed sufficiently to accommodate a critical level of damage, which may, or

may not, be time-dependent. The associated analyses always require the introduc-

tion of a characteristic length beyond any continuum description of the geometry, to

ensure dimensional consistency. For example, in the model of Cocks and Ashby [10],

this length scale is the distance over which the damage is assumed to grow under the

influence of the crack-tip stress field.
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The results of models for the crack velocity in creeping materials depend on the

underlying assumptions about how the damage interacts with the stress field, and

how the stresses evolve at the crack tip. However, the different models share a com-

mon aspect in that the crack velocity depends on the crack-tip loading parameter

for creep, C∗, which is the time-dependent analogue of the J-integral [14, 15]. The

effect of creep / viscosity is to cause sub-critical crack growth until the cracks are

long enough for the elastic-fracture criterion to be met, when catastrophic failure can

occur. The implication of this perspective is that viscosity weakens a material, since

it provides a mechanism to accommodate the growth of damage to a critical value at

relatively low loads.

The mechanics of time-dependent fracture of polymers is essentially identical to

that of creep rupture. However, much of the literature often focuses on the concept of

a rate-dependent toughness [16, 17, 18], rather than on how the crack velocity varies

with loading parameter. The viscous energy dissipated at the crack tip is seen as

contributing to the toughness, and the size of the crack-tip viscous zone depends on

the crack velocity [19]. The implication of this perspective is that viscosity toughens a

material, since it provides a mechanism to dissipate additional energy at the crack tip.

An alternative approach used in the polymers literature introduces the concept

of finite tractions behind the crack tip, following the work of Dugdale [20] and

Barenblatt [21] for elastic materials. These models, such as those by Knauss[22]

and Schapery [23, 24, 25], that include the interaction between a fracture-process

zone and the continuum properties of the material are intellectually related to the

damage-models for creep discussed earlier (although the details of the physics, and
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the definition of a crack tip may differ). As a result, these models have similar forms

of prediction to the creep models, in that the crack velocity increases to some power

of a crack-tip loading parameter.

Cohesive-zone models of fracture represent one way to generalize these concepts

into a unified framework. As discussed in the first paragraph, they automatically

provide a suitable length scale to describe creep crack growth through the ratio of

the toughness to the cohesive strength. Numerical analyses of time-dependent frac-

ture using cohesive-zone elements have been developed for time-dependent [26] and

time-independent [27] cohesive-zone models. In this work, we explore crack growth

using a time-independent cohesive-zone model embedded in a visco-elastic material.

This is essentially identical to the assumptions made in the analysis by Rahulkumar

et al. [27] in their analysis of the peel test. These authors presented their results from

the polymers perspective in which the toughness is enhanced by viscous dissipation.

However, since we approached the problem from a creep-rupture perspective, our re-

sults give a different insight. (However, they are consistent with this earlier work, and

can be viewed from that perspective.) Furthermore, by using the simple geometry

of a moment-loaded double-cantilever beam, we have avoided a general complication

that the cohesive strength can also affect the conditions for the propagation of an

elastic crack. This permitted a clean relationship between the crack-growth rate and

the cohesive parameters to be developed.
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2 Beam Analysis

An analytical approximation for a cohesive-zone model with a linear traction-separation

law of a double-cantilever beam (DCB) subjected to an applied moment of M∞ (per

unit width) can be obtained from the solution for a beam (of unit width) on an elastic

foundation (Fig. 1). Owing to symmetry, and the resultant pure mode-I conditions,

only one arm is considered. It is assumed that the springs are linear elastic with a

spring constant k, so that they exert tractions along the beam of

Tn = −kv , (1)

where v is the displacement of the beam. Failure of the spring occurs when its

extension reaches a critical value, so that in terms of the usual parameters for a

cohesive zone, the spring constant can be expressed as

k = σ̂2/Γ , (2)

where σ̂ is the cohesive strength, Γ is the toughness (recognizing that there are two

halves to the DCB geometry).

2.1 Elastic analysis

If the beams are elastic, the problem and solution are well-known. The governing

equation is

Eh3

12

d4v

dz4
+
σ̂2

Γ
v = 0 . (3)

For which a solution is given by Barber [28] as

ṽ =
2β2

oM∞Γ

σ̂2h3
exp−βoz̃ (cos βoz̃ − sin βoz̃) . (4)
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In this equation, ṽ = v/h, z̃ = z/h, and

βo =

(
3kh

E

)1/4

=
4
√

3ζ̃−1/4 ,

where ζ = EΓ/σ̂2 is the elastic fracture length (for plane stress), and ζ̃ = ζ/h is the

corresponding elastic fracture-length scale [29].

The stresses ahead of the crack are given by σ(z̃) = −Tn(z̃). Therefore, using

Eqn. 1,

σ(z̃)

σ̂
=
khṽ(z̃)

σ̂
=
σ̂h

Γ
ṽ(z̃) . (5)

The condition for crack propagation can be found by equating the crack-tip stress,

σ(0) to σ̂, and substituting the resulting value of ṽ(0) = Γ/σ̂h into Eqn. 4:

M∞
Γh

=
1√
12

(
Eh

Γ

)1/2

. (6)

This is the well-known result that the fracture condition for a DCB loaded by a pure

moment depends only on the toughness, and is independent of the interfacial cohesive

law. (In contrast to the case where the DCB is loaded by a point load [30].)

2.2 Viscous analysis

Using the correspondence principle, this analysis can be repeated for a linear-viscous

beam. The deformation is related to the local bending moment, M(z) by

∂3v

∂z2∂t
= −12M(z)

ηh3
, (7)

where η is the uniaxial viscosity, and h is the thickness of the beam. The moment is

related to the tractions by

d2M(z)

dz2
= −Tn(z) = kv(z) (8)
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If the crack is propagating at a constant velocity of ȧ, so that there is steady-state,

a new non-dimensional co-ordinate can be defined as z̃ = (z − ȧt)/h. Using the non-

dimensional displacement, ṽ = v/h, Eqns. 7 and 8 can be combined to obtain the

steady-state governing equation for a linear-viscous DCB:

d5ṽ(z̃)

dz̃5
− 12kh2

ηȧ
ṽ = 0 . (9)

The solution to this equation is of the form

ṽ(z̃) = A expbz̃ , (10)

where

b = [± cos(π/5)± i sin(π/5)]λo, b = λo ,

and

λo =

(
12kh2

ηȧ

)1/5

=

(
12σ̂2h2

ηΓȧ

)1/5

.

However, only the two roots with a negative real component can contribute to the

physical solution, which can be written as

ṽ(z̃) = exp−λoz̃ cos(π/5) {B1 cos [λoz̃ sin(π/5)] +B2 sin [λoz̃ sin(π/5)]} . (11)

The two boundary conditions for this problem are (i) the moment at the crack tip is

always equal to the applied moment, so that M(0) = −M∞, and (ii) the shear force

at the crack tip is 0. Therefore,

d3ṽ

dz̃3

∣∣∣∣
z̃=0

=
12M∞
ηhȧ

d4ṽ

dz̃4

∣∣∣∣
z̃=0

= 0 . (12)
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With these boundary conditions, the solution to the steady-state crack-propagation

problem is

ṽ(z̃) =
M∞
λ3oηhȧ

exp−λoz̃ cos(π/5) {−12 cos [λoz̃ sin(π/5)] + 16.5 sin [λoz̃ sin(π/5)]} . (13)

As described above for the elastic case, the stresses ahead of the crack can be

found from the traction distribution, and are given by

σ(z̃)

σ̂
=
khṽ(z̃)

σ̂
=
σ̂h

Γ
ṽ(z̃) . (14)

The steady-state crack velocity can be found by noting that σ(0)/σ̂ = 1 at the crack

tip, and by substituting the resulting value of ṽ(0) = Γ/σ̂h into Eqn. 13:

ȧηΓ

σ̂2h2
= 12

(
M∞
σ̂h2

)2.5

. (15)

The term on the left-hand side is defined here as the viscous fracture-length scale,

ζ̃v = ζv/h. A dimensional argument can be used to show that this is the viscous

analogue of the elastic fracture-length scale, ζ̃, defined earlier.1

3 Cohesive-zone analysis

Numerical simulations were conducted using the commercial finite-element package

ABAQUS, with the cohesive-zone elements defined through a user-defined subrou-

tine [31]. This cohesive-zone model is a mixed-mode formulation; however, the sym-

metry conditions of the DCB geometry ensured that this particular study was pure

mode-I. The traction-separation law was chosen to be rate-independent, and of the

1A comparison between the elastic and viscous fracture lengths suggests that a definition of a
plane-stress visco-elastic fracture length would be given by ΓE(1 − exp−ȧη/Eh)/σ̂2h for a Maxwell
material.
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form given by Eqn. 1. (A steep linear decay occurred after the cohesive strength

had been reached; the work corresponding to this portion was 0.5 % of the work done

during the rising portion of the curve.) The cohesive zone was given a finite thickness,

d, corresponding to d/h = 6.7× 10−4.

The constitutive properties of the arms were defined through the ABAQUS sub-

routine CREEP as

ε̇ij =
(1 + ν)σ̇ij

E
− ν

E
σ̇kkδij +

3σ′ij
2η

, (16)

(using standard tensor notation), where η is the uniaxial viscosity, and σ′ij is the de-

viatoric stress. So, a Maxwell type of material was studied, representing creep, rather

than a standard-linear solid with a non-zero fully-relaxed modulus, representing a

polymer. In the numerical calculations that follow, ν was set to 0.49999.

The geometry for the finite-element calculations is shown in Fig. 2. The loading

couples were applied as a linear distribution of tractions to one end of each beam.

The other end of each beam was clamped far ahead of the crack. The calculations

were implicit, with the elements being first-order, coupled temperature-displacement,

plane-stress elements, with reduced integration points (CPS4RT). To ensure accurate

numerical results, the size, lo, of the smallest element at the tip of the crack needs

to be much smaller than the elastic fracture length [29]. In the present case, lo was

limited to be no larger than 10−4EΓ/σ̂2. At the lowest crack velocities, this resulted

in a mesh size that could be as high as ten times the viscous fracture length. How-

ever, a mesh-sensitivity analysis showed that, even in this range, the results were

mesh-insensitive within the limits of the error bars shown in the figures.
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The visco-elastic calculations were done by applying a constant moment. There

was an incubation period before the crack started growing. After a very short transi-

tion, the crack reached a steady-state velocity which was measured. The time incre-

ment for the calculations, ∆t, was set to satisfy the condition ȧ∆t/lo < 50. Within

this limit there was no significant sensitivity of the results to the time increment.

4 Results

4.1 Viscous crack velocity

A dimensional analysis for the problem of a crack growing at the interface between

two linear creeping beams shows that the steady-state crack velocity must be of the

form

ȧη

Γ
= f

(
Eh

Γ
,

Γ

σ̂h
,
M∞
Γh

)
. (17)

This function is plotted in Fig. 3, using results obtained from the cohesive-zone anal-

ysis. The asymptotic limit of rapid crack growth corresponding to elastic fracture,

can be seen in this figure at the value of applied moment given by Eqn. 6. At lower

levels of the applied moment, there is a viscous dominated regime, in which the first

term on the right-hand side of Eqn. 17 can be neglected. Dimensional considerations

show that this viscous regime is expected to occur when ȧη/Eh << 1, corresponding

to the viscous fracture length being much smaller than the elastic fracture length.

Figure 3 shows that there is a power-law relationship between the crack velocity

and applied moment in the viscous regime. However, the power law depends on

Γ/σ̂h, and only matches the value of 2.5 given by the analytical solution of Eqn. 15

for larger values of that parameter. This issue was investigated further by a detailed
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non-dimensional study of cohesive-zone results for the crack velocity in the viscous

regime. It was found empirically that, when non-dimensionalized as

ȧηΓ

σ̂2h2
= f

(
M∞
σ̂h2

)
, (18)

the crack velocity can be expressed as a function of a single non-dimensional group,

instead of the two non-dimensional groups predicted by Eqn. 17.

The master curve that arises from the normalization described above is shown

in Fig. 4. It will be seen that the analytical result from beam theory (Eqn. 15) is

valid when the viscous fracture-length scale is greater than unity. For smaller viscous

fracture-length scales, an empirical fit to the data suggests that

ȧηΓ

σ̂2h2
≈ 70

(
M∞
σ̂h2

)4

. (19)

The fact that there are two regimes of behavior, depending on the fracture-length

scale, is very reminiscent of what is seen with elastic fracture. In elastic fracture, small

fracture-length scales correspond to a regime of toughness-controlled fracture, with

the stress fields exhibiting a region over which the stresses follow an inverse square-

root dependence on the distance ahead of a crack tip. Conversely, large fracture-length

scales correspond to a regime of strength-controlled fracture, and the crack-tip stress

fields have no region over which there is an inverse square-root dependence. This gen-

eralization is complicated in the special case of a moment-loaded double-cantilever

beam, because the elastic fracture strength depends only on toughness; the cohesive

strength does not affect the conditions for fracture in a DCB loaded in this fashion.

However, as will be shown below, the general effect of fracture-length scales on crack-

tip stress fields can be demonstrated with this geometry.
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4.2 Crack-tip stresses

For any specified form of cohesive law, the normal stresses ahead of a crack in an

elastic double-cantilever-beam geometry can be expressed as2

σ

σ̂
= f

(
z

h
,
M∞
σ̂h2

,
EΓ

σ̂2h

)
. (20)

In the special case of a linear traction-separation law for the cohesive zone, this

reduces to [32]

σ/σ̂ = f
(
z̃, ζ̃
)
. (21)

In the limit of ζ̃ going to zero, the linear-elastic solution predicts that the stresses

scale with z̃−0.5 close to the crack tip. As ζ̃ increases, the region over which the

stresses follow an inverse-square-root relationship moves away from the crack tip and

decreases in size. Eventually, when ζ̃ is greater than about 0.4, there is no region

over which the stresses show any inverse-square-root dependency [33, 32]. This can

be seen in the results of Fig. 5, where the stress distributions from cohesive-zone anal-

yses for relatively small and large values of ζ̃ are compared to the LEFM stress field.

Superimposed on these plots are the corresponding stress distributions of Eqn. 5. It

will be seen from these plots that elastic-foundation analyses provide very accurate

results for stress distributions if the fracture-length scale is large. However, they do

not capture the singular fields appropriate for small fracture-length scales.

The normal stresses ahead of a crack in a viscous double-cantilever-beam geometry

can be expressed in a similar form to Eqn. 21; they depend only on z̃ and ζ̃v. These

stresses are shown in Fig. 6, and it can be seen that they have an analogous form to the

2A dimensional analysis suggests there should be four groups, but the use of the fracture-length
scale allows two of the groups to be combined.
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stresses ahead of a crack in an elastic geometry. The viscous-beam solution provides

a good description of the stresses ahead of a crack when the viscous fracture-length

scale is large, but does not do so for small values. The inverse square-root singular

field that is expected for a linear material when ζ̃v is small, is not captured by the

beam solution, but it is captured by the cohesive-zone model. Conversely, when ζ̃v is

large, beam theory does describe the stress field reasonably accurately, agreeing with

the cohesive-zone model.

5 Discussion

A summary of the three different regimes of visco-elastic creep-crack growth can be

seen in Fig. 7. In this particular geometry, the elastic fracture condition is given by

the LEFM solution of Eqn. 6, irrespective of the fracture-length scale. Therefore, if

M∞
σ̂h2

>
1√
12

(
EΓ

σ̂2h

)1/2

, (22)

there is no equilibrium solution, and the crack must propagate dynamically. As the

applied bending moment approaches this limiting value, the crack velocity increases

dramatically. If M∞/σ̂h
2 is significantly below this value, then the crack velocity is

given by either Eqn. 15 or Eqn. 19:

ȧηΓ

σ̂2h2
= 12

(
M∞
σ̂h2

)2.5

, if
ȧηΓ

σ̂2h2
> 1

ȧηΓ

σ̂2h2
≈ 70

(
M∞
σ̂h2

)4

, if
ȧηΓ

σ̂2h2
< 0.1 ,

with a transition between the two limits. Both behaviors will only be observed for

relatively tough materials. For example, Fig. 7 shows that brittle materials exhibit

only the second type of viscous crack growth when elastic fracture occurs at too low
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a value of the applied moment.

In small-scale damage-zone models of creep-rupture in linear materials, the crack

velocity is predicted to be proportional to K, the stress-intensity factor (where, K =
√
ηC∗). For example, the model of Cocks and Ashby [10] gives a crack velocity of

ηȧ

Γ
=

√
2

π

Kr
1/2
o

εcΓ
, (23)

where ro is the length of the damage zone, and εc is the critical strain for material at

the crack tip. For the geometry modeled in this paper, the stress-intensity factor is

given by

K2 = 12M2
o /h

3 . (24)

Therefore, when the viscous fracture-length scale is small and the stress field has a

region over which the stresses follow an inverse square-root dependence, the crack

velocity should depend on K. Under these conditions, one can use Eqns. 19 and 24

to show that

ηȧ

Γ
= 0.5

(
K2

Γσ̂

)2

. (25)

As expected for this limit, the geometrical parameters enter the description of the

problem only through the stress-intensity factor, and do not otherwise affect the crack

velocity.

Although both the small-scale damage model and the cohesive-zone model with a

small fracture-length scale emphasize how the geometrical parameters affect the crack

velocity only through the stress-intensity factor, the dependence on K is different for

the two models. One reason for this discrepancy may arise from how the character-

istic length for fracture is introduced in both models. In the creep-rupture model,

it is introduced as a material constant, ro. In the cohesive-zone model, the viscous
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fracture-length scale is a variable that depends on the crack velocity.

Schapery [23, 24, 25] developed an analytical model for crack growth in visco-

elastic materials. This analysis assumed a crack tip with a singular stress field, and

a small-scale region of non-linear and finite cohesive tractions behind it. This is

analogous to a perspective in which a damage zone ahead of a crack tip is viewed as a

bridging zone behind a crack tip, with the arbitrariness of such a distinction becoming

obvious in a cohesive-zone model [32]. Equation 56 in Ref. [24] can be expressed in

terms of the parameters used in this paper:

ηȧ

Γ
=

0.8π

3

(
K2

ΓσmI1

)2

. (26)

In this equation, the quantity σmI1 is identified as a second fracture parameter, with

σm being the maximum stress in the bridging zone behind the crack tip, and I1 being

a numerical constant that relates K and σm to the size of the non-linear zone behind

the crack tip.

If one assumes that σm is the analytical model can be identified with σ̂ in the

present linear-hardening cohesive-zone model, a comparison between Eqns. 25 and

26 shows that a value of I21 = 1.6π/3 would give an exact match between the two

solutions. I1 is related to the length of the non-linear zone behind the crack tip, α,

through [24]

α = (π/2) (K/σmI1)
2 . (27)

Therefore, using the value of I1 given above, this quantity α can be equated to the

viscous fracture-length scale as

α/h ≈ 1.3

√
ζ̃v . (28)
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There is no singular crack tip in a cohesive zone model, so making a rigorous con-

nection to α is not possible. However, it is of interest to note from Fig. 6(a) that the

distance from the crack tip over which the stresses can be described by an inverse-

square-root field is 0.03 ≤ z/h ≤ 0.06, compared to a value of α/h = 0.08, when

ζ̃v = 0.0034.

The polymers literature also presents alternative perspectives in which the crack

velocity is related to an effective toughness that includes a viscous dissipation term.

For example, the cohesive-zone analysis of Rahulkumar et al. [27] shows that the peak

dissipation (and maximum effective toughness) occurs at intermediate crack veloci-

ties. At high and low velocities, the crack-tip material is loaded in the unrelaxed

and relaxed elastic regimes, so there is limited viscous dissipation, and the effective

toughness tends to the intrinsic toughness, Γ. A similar calculation for the viscous

dissipation in the present model shows that the effective toughness increases without

limit as the crack speed decreases, as would be expected for a system in which the

fully-relaxed modulus is zero.

In the light of this discussion, one can appreciate how a standard-linear solid

might behave if approached from the vantage point of the present paper. Two elastic

fracture-length scales would be introduced: an unrelaxed fracture-length scale, ζu =

EuΓ/σ̂
2h. where Eu is the unrelaxed modulus, and a fully-relaxed fracture-length

scale, ζr = ErΓ/σ̂
2h. where Er is the fully relaxed modulus. From Eqn. 6, it can be

seen that there can be no crack propagation when

M∞
σ̂h2

<

√
ζr
12

. (29)

Above this value, the slower mode of viscous crack growth will be observed only
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if ζr < 0.45, and the faster mode of viscous crack growth will be observed only if

ζu > 1.6. A further exploration of this topic is beyond the scope of the present paper,

although the general notion that there is an upper and lower bound for elastic crack

growth is consistent with the results of Rahulkumar et al. [27].

6 Conclusions

A cohesive-zone analysis of linear visco-elastic crack growth for a double-cantilever-

beam geometry shows three distinct regimes of behavior. At low velocities, corre-

sponding to small viscous fracture lengths when the crack-tip stress field is controlled

by the stress-intensity factor, the crack velocity scales with K4. This regime has

the same characteristics as an earlier analytical model for K-field dominated crack

growth in polymers [23, 24]. At higher crack velocities, corresponding to higher vis-

cous fracture lengths, the stress field can be modeled as a viscous beam on an elastic

foundation. Under these conditions, there is no inverse square-root stress field, and

the crack velocity grows with a much lower dependence on the applied load. At very

high loads, there is a transition towards elastic fracture with a dramatic increases in

the crack velocity.

The results in this study have been presented for a simple geometry that exhibits

a steady state, and for which the elastic-fracture condition is independent of the

fracture-length scale. This ensures that the elastic fracture condition is uniquely de-

scribed by the toughness only. There will be an even richer behavior for visco-elastic

crack growth in more general geometries, for which the elastic-fracture condition de-

pends on the elastic fracture-length scale. It is further noted that a more general
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visco-elastic model, with a non-zero relaxed modulus, is expected to truncate the

viscous crack growth at low velocities, providing a threshold for crack growth.

The results in this paper have been presented from a perspective commonly used

in creep-rupture. From this perspective, viscosity serves to make a material weak,

causing sub-critical crack growth when the loads are lower than those required to

cause elastic fracture. However, it is noted that the results are consistent with a

common polymers perspective in which the apparent toughness increases as the crack

velocity decreases, owing to the increase in viscous dissipation. Rather than making

the material weak, viscosity can be seen to make the material tougher. Obviously,

this dichotomy in the two perspectives is a long-standing one, and the question of

whether one might prefer a tough but weak material or a strong but brittle material

depends on the application. However, the numerical crack-propagation model pre-

sented here, in which the crack velocity can be related to both the applied load and

the energy dissipation, serves as a nice illustration of the issue.

Finally, it is noted that the analysis presented in this paper follows an assump-

tion commonly used in both the creep-rupture and polymer-fracture literature, of

assuming that the rate-controlling time dependence arises from the bulk deformation

of the material, not from the fracture phenomena. The fracture processes have been

assumed to be rate-independent. Cohesive-zone models that incorporate rate depen-

dences for both the bulk deformation and the fracture process are certainly possible,

but beyond the scope of the present paper. One can however, get a sense of how

the rate dependence of either the toughness or the cohesive strength might affect the

crack velocity, by using the current results and making suitable assumptions about

how both parameters might change with crack velocity.
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Figure 1: Geometry of a DCB with elastic springs along the interface.
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(a)

(b)

Figure 2: (a) Double-cantilever beam geometry, with arms of thickness h, used for
the cohesive-zone analysis. The initial crack is of length ao/h = 10, and is loaded
by a distribution of forces that gives a pure moment M∞. Linear-hardening cohesive
elements with the traction-separation law shown in (b) were used along the entire
bonded interface.
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Figure 3: Non-dimensional crack velocity plotted as a function of applied moment.
As the magnitude of the applied moment approaches the value for elastic fracture,
the crack velocity increases without limit. At lower values of the applied moment,
the crack velocity depends only on the viscous properties of the DCB arms, not on
the elastic properties.

26



Figure 4: Non-dimensional crack velocity (viscous fracture-length scale) plotted as
a function of applied moment in the viscous regime, showing two regimes of behav-
ior. The transition between these two regimes of behavior occurs when the viscous
fracture-length scale is approximately equal to one. The data plotted in this figure
represent a range of different combinations of the two non-dimensional groups that
are not represented on the axes of the figure. While doing the calculations, the pa-
rameters were kept in a range that ensured viscous crack growth, with Eh/Γ being
between 2.5× 107 and 5× 1010, and Γ/σ̂h being between 10−5 and 5× 10−3.

27



(a)

(b)

Figure 5: Comparison between the stress distributions ahead of a crack in an elastic
double-cantilever beam, using the results from a cohesive-zone model and an elastic
foundation model. (a) A relatively small elastic fracture-length scale of ζ̃ = 0.01, and
(b) a relatively large elastic fracture-length scale of ζ̃ = 3.3. No other dimensionless
groups affect the stress distributions. The oscillations correspond to alternating re-
gions of tension and compression, as expected for a beam loaded by a pure moment
with no net force normal to the crack plane.
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Figure 6: Comparison between the stress distributions ahead of a crack in an viscous
double-cantilever beam, using the results from a cohesive-zone model and an elastic
foundation model. (a) A relatively small viscous fracture-length scale of ζ̃v = 0.0034,
and (b) a relatively large viscous fracture-length scale of ζ̃v = 7.6. For both of these
calculations, the elastic fracture-length scale was equal to 250, which is much larger
than the viscous fracture-length scales. Therefore, both sets of results are well within
the viscous limit. 29



Figure 7: A summary of the three different crack-growth regimes, showing elastic
fracture, crack growth at large viscous fracture lengths, and crack growth at small
viscous fracture lengths. The crack velocity increases significantly as the applied
moment approaches the critical moment for elastic fracture.
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