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Abstract

In this paper, the concepts of root rotations and phase angles in laminated
structures are reviewed, with particular reference to how the presence of a
shear force affects the fracture mechanics of an interface. It is shown that it
is possible to combine all the effects of shear into an effective root rotation,
rather than the usual approach of invoking root rotation as a correction to a
clamped Timoshenko beam. This simplifies the mechanics of the phenomenon,
as root rotation is a general concept for interface cracks, and is not unique
to shear loading. The root rotations enter into expressions for the energy-
release rate associated with shear, and give rise to the crack-tip phase angles
that provide a measure of how other modes of loading interact with shear
loading. Additionally, the present analysis identifies the concept of a root
displacement as an additional measure of the deformation at a crack tip. This
is required to provide consistency with compliance-based approaches to the
fracture mechanics of a double-cantilever beam, and allows one to make a direct
connection to classical elastic-foundation models of that geometry.
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1 Introduction

The complications associated with transverse shear forces applied to layered materi-

als have long been recognized, particularly with regard to the double-cantilever beam

(DCB) geometry [1, 2, 3]. Conversely, the fracture mechanics for loading by pure mo-

ments is very straight-forward: the energy-release rate, G, is dependent only on the

applied moments, the elastic properties of the arms, and the thickness of the arms.

The energy-release rate, along with the equivalent J-integral, and the corresponding

work done against the cohesive tractions at the crack-tip, Wo, are not dependent on

the nature of the cohesive law for the interface. Experimental approaches have been

developed to evaluate interfaces using this concept, with test configurations being

designed to ensure loading by pure moments [4, 5]. However, more commonly, inter-

facial properties are measured using a DCB loaded by transverse forces [6, 7], so that

the crack tip experiences both a moment and a shear force. This introduces the need

to consider how shear may affect the interface mechanics.

Historically, shear loading has generally been considered to have two distinct ef-

fects in a DCB geometry [1]. First, shear results in an additional contribution to the

compliance of the arms themselves. The complications associated with the analysis

of this effect have been described by Barber [8] as a problem of satisfying all the

conditions at a clamped boundary. Second, the arms of a DCB can rotate at the

crack tip, since they are not clamped rigidly. This crack-tip rotation is termed root

rotation. One contribution to root rotation arises even in perfectly bonded systems,1

because the elastic arms are compliant beyond the crack tip. A second contribution

1The term “perfect bonding” is used here to describe an interface having a traction-separation law
with an infinitely steep loading slope, corresponding to a cohesive length of zero [9]. Any compliance
associated with the traction-separation law results in a finite cohesive length [9].
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arises if the bonding along the interface results in additional compliance.

As an illustration of the effects of shear, consider the displacement of a point force

(per unit width), P∞, located at a distance ao from the crack tip in a symmetrical,

perfectly bonded, linear-elastic double-cantilever beam whose arms have a Young’s

modulus of E, shear modulus of G, and thickness of h (Fig. 1). The displacement of

the force on each arm is given by [1]

∆ =
4P∞a

3
o

Eh3
+
P∞ao
κsGh

+ aoϕ , (1)

where κs is the shear coefficient, which is often taken to be 5/6, and ϕ is the root

rotation. In this expression, the first term is the result assuming an Euler-Bernoulli

beam, the second term is the shear correction for a clamped Timoshenko beam, and

the third term represents the root-rotation correction.

Calculating the displacement from Eqn. 1 then becomes a matter of determining

ϕ as a function of geometry and loads. Once the displacement is known, the potential

energy of the arms can be determined, from which G can be calculated. Early work

used approximate assumptions to model the deformation at the crack tip. These gave

results that, while usefully accurate, were not rigorously correct. For example, Gillis

and Gilman [1] assumed a simple power-law (quadratic) dependence between ϕ and

the crack length. Mostovoy et al. [2] assumed that the effect of root rotation could

be modelled by changing the effective crack length. The notion of an effective crack

length was further refined [10], and forms the basis of current standards for DCB

tests [6, 11].2 More formally, magnitudes of the root rotations have been determined

2The ASTM standard for adhesive bonding [7] uses the basic results of Mostovoy et al. [2], with
their approximation that κ = 2/3 and ν = 1/3, but with no suggested modification for root-rotation
effects.
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numerically [12], and from approximate analytical analyses [13, 14]. The corrections

associated with root rotations have also been determined empirically for specific test

geometries [15, 16].

An alternative approach for calculating the effect of shear in laminated geometries

has been provided by Li et al. [17] for linear systems. In this approach, any general

loading is expressed as the superposition of four fundamental crack-tip geometries

shown in Fig. 2. These consist of crack-tip (a) axial forces and (b) bending moments

that were analyzed by Suo and Hutchinson [18], plus crack-tip (c) symmetrical and

(d) unsymmetrical transverse forces that were analyzed by Li et al. [17]. Each of

these four fundamental geometries gives a crack-length-independent expression for

the energy-release rate, and a corresponding phase angle. The phase angle, which is

defined more formally in a subsequent section, is the parameter that allows one to

combine the results for each fundamental geometry to solve any general problem [17].

In a very insightful paper, Andrews and Massabò [12] showed how to link this ap-

proach of energy-release rates and phase angles to the concept of root-rotations. They

showed how root-rotations contribute to the energy-release rates associated with the

two types of shear, and to the phase angles that allow these energy-release rates to

be combined with the other crack-tip solutions.

Generally, analyses of root-rotations for perfectly bonded systems have followed

Eqn. 1 in separating the effect of shear into two parts: (i) a shear correction to

the deformation of a clamped beam, following the Timoshenko analysis, and (ii) a

crack-tip rotation to correct for the first assumption of a clamped boundary. In this

present paper, we show that one can replace these two effects by a single, effective

rotation at the crack tip. This may be a simpler way of visualizing the mechanics, and
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simple-beam theory can be used to model the system since all the effects of shear are

included in the root rotation applied to the boundary condition for the beam analysis.

The approach proposed in this paper is illustrated by the schematic diagram of

Fig. 3. This figure shows how the centroidal axis of the section rotates at the tip of

an interface crack, coupling both the effects of shear and root rotation. The usual

approach of imposing a rotation on the clamped boundary of a Timoshenko beam

would result in a kink in the angle at the crack tip, whereas, the smooth slope as-

sumed here must also be accompanied by a root-displacement, uoA , which is discussed

in a subsequent section. This root displacement has one contribution from the sepa-

ration of the interface, δoA , and a second contribution from the elastic deformation of

the arms. It should be emphasized that the results we obtain from this combined ap-

proach are no different from those obtained by Andrews and Massabò [12]. Whether

one splits the effects of shear into two parts, or combines them, has no effect on any

of the solutions for phase angles or energy-release rates. It only affects the value of

what one defines as ‘root rotation’. However, assuming a clamped boundary, using

the Timoshenko analysis to account for shear effects in a clamped beam, and then

rotating the boundary to correct for the original assumption of a clamped boundary,

may seem to be arbitrarily complicated compared to the present approach.

It should be emphasized that neither the present approach, nor the approach based

on a clamped and rotated boundary, capture the full details of the displacement fields

along the length of the arms. Both merely capture the essential aspects required to

analyze the fracture mechanics. From this perspective, it does not matter whether

the gradient of the centroidal axis of the section is smooth in the region of the crack

tip, as in the present analysis, or whether there is a kink, as is implicit for a root-
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rotation correction to a Timoshenko beam. Nor do the details of the deformation

of the sections along the beam matter. Any additional information that might arise

from a full elasticity analysis has no influence on the fracture mechanics, and can be

neglected without loss of rigor.

There is, however, one concept that the present approach identifies, which is not

apparent from an analysis based on the rotation of a clamped beam. It can be seen

from the schematic diagram of Fig. 3 that the smooth slope of the centroidal axis

(rather than the implied kink of a corrected Timoshenko beam) indicates that there

must also be a root displacement, uoA , at the crack tip. As discussed in a later section

of the paper, this root displacement affects the compliance of a DCB, and is required

for consistency with a compliance-based analysis of the energy-release rate. Further-

more, such a root displacement needs to be included in analyses of the wedge test (a

DCB geometry loaded by insertion of a wedge into the crack mouth).

2 Analytical background

2.1 Interfacial fracture mechanics

In this paper we use results of interfacial mechanics recast from the perspective of a

cohesive-zone approach to fracture, involving normal and shear tractions across the

interface. Within this framework, concepts such as the energy-release rate, Go, and

the crack-tip phase angle, ψo can be expressed in terms of the work done against the

tractions at the crack tip. It should be noted that, from a cohesive-zone perspec-

tive, linear-elastic fracture mechanics (LEFM) can be viewed as a perfectly-bonded,

limiting condition, corresponding to a cohesive-length scale of zero [9], in which the
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interface has no thickness, and plots of the mode-I and mode-II tractions against dis-

placement are represented by delta functions with total areas equal to the correspond-

ing values of toughness. This formulation is consistent with the LEFM assumptions

of an infinite interfacial strength and an energy-based fracture criterion.

The value of the J-integral, Jext, taken along a contour connecting points on the

two traction-free surfaces of a crack is equal to the energy-release rate Go:

Jext = − ∂Π

∂ao
= Go , (2)

where ao is the length of the traction-free crack, and Π is the potential energy (per

unit width) of the elastic arms, excluding any work done against the cohesive tractions

ahead of the crack tip. The value of the J-integral taken on a local contour along the

two bonded portions of the interface, Jloc, is equal to Wo, which is the sum of the

work done against the normal and shear tractions at the crack tip, WIo and WIIo ,

respectively. More formally,

Jloc =Wo =WIo +WIIo =

∫ δno

0

σndδn +

∫ δso

0

τsdδs , (3)

where σn and τs are the normal and shear tractions, δn and δs are the relative normal

and shear displacements across the interface, and the subscript ‘o’ indicates the value

at the cohesive crack tip. By virtue of the path-independence of the J-integral, we

know that Jext = Jloc, so that Go =Wo. However, it should be noted that the energy-

release rate is a scalar quantity, whereas the work done against the crack-tip tractions

can be decomposed into the two orthogonal components of mode-I and mode-II.

The two orthogonal components of the work done against crack-tip tractions can

be used to define the crack-tip phase angle [9, 19, 20]:

ψo = tan−1
√

(WIIo/WIo) . (4)
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This definition provides a general expression of how energy is partitioned at the crack

tip, and its form has been chosen to make it immediately equivalent to the conven-

tional definition of a phase angle in LEFM, for which the two components of work done

against crack-tip tractions are proportional to the square of the stress-intensity fac-

tors. This definition of the phase angle has been shown to give the results predicted by

LEFM in cohesive-zone models with relatively small cohesive-length scales [9, 19, 20].

This definition also addresses the well-known conundrum of how to describe mixed-

mode conditions for bimaterial problems [19, 20].

Although the phase angle is commonly associated with its role in describing the

partition of energy at the crack tip, it has another important role in the superposition

of solutions for different loading conditions. If the system is linear (this includes

systems with linear traction-separation laws, or with small cohesive-length scales), the

work done against crack-tip tractions can be added according to the cosine law [17].3

For example, if one set of loads gives rise to crack-tip work, Wa
o , with a phase angle,

ψao , and a second set of loads gives rise to crack-tip work,Wb
o , with a phase angle, ψbo,

the work done against crack-tip tractions for the combined loading is given by

Wo =Wa
o +Wb

o + 2
√
Wa

oWb
o cos(ψao − ψbo) . (5)

Given the equivalency between Go and Wo, energy-release rates can be added in a

similar fashion:

Go = Gao + Gbo + 2
√
GaoGbo cos(ψao − ψbo) . (6)

3For a linear system, the work done against the tractions is proportional to the square of the
loads. Therefore, if the crack-tip work is split into orthogonal components, the square roots of these
components can be summed. Hence, the cosine law that is cited.
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2.2 Fracture of layered materials

The analyses in this paper are performed for bilayers in which the top beam (or layer)

has a modulus of ĒA and a thickness of hA, and the bottom beam (or layer) has a

modulus of ĒB and a thickness of hB. Without any loss of generality, the beams can

be assumed to be either isotropic or orthotropic. For an isotropic beam, Ē = E in

plane stress, and Ē = E/(1 − ν2) in plane strain, where ν is Poisson’s ratio. For

an orthotropic beam, Ē = E11 in plane stress, and Ē = E11/(1 − ν13ν31) in plane

strain [16], where the axis x1 is aligned with the direction of crack growth, the axis

x2 is perpendicular to the plane of the interface, and the axis x3 is the orthogonal

direction.

As discussed in Section 1, any general loading of a laminated structure can be

reduced to a set of four basic loads acting at the tip of an interface crack (Fig. 2): ax-

ial forces, moments, symmetrical shear forces and non-symmetrical shear forces [17].

Separate results have been established for the energy-release rate (crack-tip work)

and the phase angles for each of these four basic loads, and the results for general

loading can be obtained by superposition [17], as described above.

If an interface crack is loaded only by crack-tip moments (Fig. 2a), Mo, the energy-

release rate and, hence, the work done against the tractions at the crack-tip, is given

by [18]:

GMo =WM
o = g̃m

M2
o

ĒAh3A
, (7)

where

g̃m = 6
(

Σ̃H̃3 + 1
)
,

H̃ = hA/hB, and Σ̃ = ĒA/ĒB. Alternatively, this equation can be expressed in terms
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of the first Dundurs’ parameter, α̃, for isotropic materials: α̃ = (Σ̃− 1)/(Σ̃ + 1) [21],

instead of the modulus ratio, Σ̃. The corresponding phase angle is ψMo . The phase

angle also depends on H̃ and Σ̃, but it has an additional dependency on the second

Dundurs’ parameter [21], β̃, and on the cohesive law.

If an interface crack is loaded by axial forces (Fig. 2b), No, the energy-release rate

and, hence, the work done against the tractions at the crack-tip, is given by [18]:

GNo =WN
o = g̃n

N2
o

ĒAhA
, (8)

where,

g̃n =
[
0.5 + Σ̃H̃

(
1.5H̃2 + 3H̃ + 2

)]
.

The corresponding phase angle is ψNo , which depends on H̃, Σ̃, β̃, and the cohesive law.

The energy-release rate for a combined loading of moments and axial forces is

given by [22]

Go =Wo = g̃m
M2

o

ĒAh3A
+ g̃n

N2
o

ĒAhA
+ 6

(
1 + H̃

)
Σ̃H̃2MoNo

ĒAh2A
. (9)

As shown in Ref. [17], this can be re-expressed in the form of Eqn. 6 as

Go =Wo = GMo + GNo + 2
√
GMo GNo cos(ψMo − ψNo ) . (10)

where

cos(ψMo − ψNo ) =
3
(

1 + H̃
)

Σ̃H̃2

g̃mg̃n
. (11)

It should be noted that, while ψMo and ψNo both depend on β̃ and the cohesive law,

the difference between them does not.
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Equations 7, 8 and 11 are always valid for any geometry, modulus mismatch and

any form of cohesive law along the interface. The only requirements are that the

beams must be linear elastic, and that the bonded ligament must be sufficiently long

to ensure no interfacial displacements at the remote boundary far ahead of the co-

hesive crack tip. Furthermore, the actual values of the individual phase angles will

depend on the details of the cohesive tractions only if the cohesive-length scale is

relatively large, or if the normal and shear tractions across the interface are coupled

(for example, if β̃ 6= 0) [19, 20]. In particular, the crack-tip phase angle, ψMo , has

been computed for isotropic [18] and orthotropic [22] materials in the limit of a very

small cohesive-length scale (LEFM) and uncoupled tractions.4

If the system is linear, the energy-release rate and the crack-tip work for a layered

material loaded by a pair of symmetrical transverse shear forces, Vod , at the crack tip,

is of the form [17]

GVdo =WVd
o = g̃d

V 2
od

ĒAhA
, (12)

In contrast to Eqns. 7 and 8 this equation is correct only in the special case of a

linear system. Furthermore, unlike g̃m and g̃n that can be found rigorously from a

simple energy-balance or J-integral, g̃d, along with the corresponding phase angle,

ψVdo , needs to be calculated numerically. These two parameters are both functions

of α̃, H̃ and β̃ for isotropic materials, and have been determined in the LEFM limit

(with β = 0) [17]. They are functions of H̃ and the orthotropy ratios (λ̃ = Ē22/Ē11,

and ρ̃ =
√
Ē11Ē22/2G12 −

√
ν̄12ν̄21, where ν̄ = ν in plane stress and ν̄ = ν/(1 + ν) in

plane strain) for orthotropic materials [12], and can be deduced from the numerical

4Suo and Hutchinson [18] have also provided results for the phase angle with respect to an
arbitrary geometrical length, for β̃ 6= 0 and LEFM conditions. However, the relationship of this
quantity to the actual value of ψo depends on the details of the cohesive law [19, 20], even when the
cohesive-length scale is vanishingly small.
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results given in Ref. [12] for the LEFM limit.

2.3 Additional results for the DCB geometry

The analysis in this paper is presented for the general asymmetrical double-cantilever

beam (DCB) geometry shown in Fig. 4. The DCB is loaded by a general combination

of applied moments, M∞, and transverse forces, P∞, at a distance ao from the crack

tip. There are two very powerful results for this geometry that are independent of

the crack length, and are given by the values of the J-integral evaluated along a path

on the external boundaries. These two results are rigorous and completely general,

with no assumptions being made about the deformation of the beams or about the

from of the cohesive tractions. They rely only on the ligament ahead of the crack tip

being long enough to ensure that there are no displacements across the interface.

If the DCB is loaded only by applied forces, P∞, the energy-release rate and work

done against crack-tip tractions can be found from the J-integral as [23, 24, 25]

Jext = P∞ (ΘA + ΘB) = Go =Wo (13)

where ΘA and ΘB are the rotations at the loading points of the two arms, both being

defined as positive if they rotate the end of each beam away from the interface. This

sign convention is consistent with the positive directions of the moments, indicated

in Fig. 2, and is used for all rotations in this paper.

A related result is the value of the J-integral evaluated along a path on the external

boundaries of a DCB loaded simultaneously by a transverse force, P∞, and a moment,
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M∞. Following a similar analysis to those done in Ref. [26],

Jext =
6M2

∞
ĒAh3A

[
Σ̃H̃3 + 1

]
+ P∞ (ΘA + ΘB) = Go =Wo . (14)

The two rotations in this equation, ΘA and ΘB, are now dependent on both the ap-

plied moments and the applied transverse forces. It is important to appreciate that

Eqns. 7 and 13 cannot be simply added together, since the rotations are affected by

both P∞ and M∞. Furthermore, as with the previous equation, Eqn. 14 is a com-

pletely general and rigorous result that makes no assumption about the nature of

the elastic deformation of the beams nor of the cohesive law. It relies only on the

assumption of a sufficiently long ligament ahead of the crack to ensure vanishingly

small interfacial displacements at the boundary.

3 Root rotations in double-cantilever beams

3.1 General calculations

If a DCB is loaded by a general combination of applied moments, M∞, and trans-

verse forces, P∞, the work done against the tractions at the crack tip is given by the

J-integral of Eqn. 14. The angles, ΘA and ΘB, have three components: (i) a con-

tribution from beam bending in response to the applied moment, (ii) a contribution

from beam bending is response to the applied load, and (iii) the root-rotation at the

crack tip. Both the moment and the shear force acting at the crack tip contribute to

the root rotation.
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Using Euler-Bernoulli beam theory,5 the two angles are given by,

ΘA =
6P∞a

2
o

ĒAh3A
+

12M∞ao
ĒAh3A

+ θoA

ΘB =
6P∞a

2
o

ĒBh3B
+

12M∞ao
ĒBh3B

+ θoB , (15)

where θoA and θoB are the root rotations for the two arms. From the perspective of the

crack tip, the loading condition is represented by a combination of the fundamental

geometries shown in Fig. 2(b) and (c), with Mo = M∞ + P∞ao, and Vod = P∞.

Equation 15 and these two expressions allow Eqn. 14 to be written in terms of the

crack tip loads:

Wo = Vodθo +
6M2

o

EAh3A

[
Σ̃H̃3 + 1

]
, (16)

where θo = θoA + θoB depends on the geometry, modulus mismatch, and the details

of the cohesive law.

In the special case of M∞ = −P∞ao, there is a state of pure symmetrical shear at

the crack tip, with Mo = 0. Equation 16 then shows that the work done against the

tractions at the cohesive-crack tip is given by

WVd
o = Vodθ

Vd
o , (17)

where θVdo = θVdoA + θVdoB , and is the total root rotation associated with pure shear. This

is a completely general result, subject only to the assumption that the arms of the

DCB are linear elastic. It does not depend on the form of the cohesive law. In the

subsequent sections of this paper, we will present values of θVdo corresponding to some

special cases.

5As emphasized in Section 1, Timoshenko beam theory is not used, because the shear deformation
of the beam is wrapped into the root rotation.

14



If the system is linear,6 dimensional arguments can be used to show that the

root-rotation must be given by

θVdo = θ̃dVod/ĒAhA , (18)

where θ̃d is a constant that depends on the geometry, elastic properties and cohesive

law. When Eqn. 18 is substituted into Eqn. 17, one obtains

WVd
o = θ̃d

V 2
od

ĒAhA
, (19)

which is identical to Eqn. 12, with g̃d = θ̃d. This confirms the equivalency of the

approach proposed by Li et al. [17] and that proposed by Andrews and Massabò [12],

with the calculation of a single parameter being needed in both approaches.

In a linear system, the root rotation arising from the crack-tip moment, θMo , can be

separated from that arising from the crack-tip shear, θVdo , with the total root rotation

being given as

θo = θVdo + θMo . (20)

After substituting this equation into Eqn. 16, Eqns. 7 and 17 can be used to show

that

Wo =WVd
o +WM

o + Vodθ
M
o . (21)

By comparing this to the general expression (Eqn. 5) for adding different contributions

to the work done against crack-tip tractions, we can see that

cos(ψMo − ψVdo ) =
Vodθ

M
o

2
√
WVd

o WM
o

. (22)

6As stated earlier, a linear system is one for which the arms are linear, and the cohesive law is
either linear or has a very small cohesive-length scale.
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In other words, the root rotation induced by a moment plays a role in the relative

phase angle between moment-loaded cracks and shear-loaded cracks [12].

In a linear system, the root rotation induced by a crack-tip moment, Mo, must be

of the form:

θMo = θ̃mMo/ĒAh
2
A , (23)

where θ̃m is a constant that depends on the geometry, modulus mismatch across the

interface and the details of the cohesive law. Therefore, Eqn. 22 can be expressed as

cos
(
ψMo − ψVdo

)
= θ̃m

[
24θ̃d(Σ̃H̃

3 + 1)
]−1/2

. (24)

Again, this confirms the equivalency of the approach proposed by Li et al. [17] and

that proposed by Andrews and Massabò [12]. In both approaches, three numerical

parameters are needed to completely describe the fracture mechanics (including the

mode-mixedness of a particular geometry or combination of loads). One either needs

to compute g̃d and two phase angles [17], or two root rotations and one phase an-

gle [12].

3.2 LEFM values for root rotations

The results given in the previous section are generally valid for linear systems. In par-

ticular, the results are valid for both isotropic and orthotropic systems under LEFM

conditions (with small cohesive-length scales). The two root-rotation coefficients, θ̃d

and θ̃m, can be deduced for isotropic systems from the energy-release-rate and phase-

angle results of Li et al. [17]. In that paper, values for θ̃d = g̃d are given directly as

the numerical constants associated with the energy-release rate. The values of θ̃m can

be computed from Eqn. 24, using the values of ψMo and ψVdo also provided Ref. [17].
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These two coefficients are presented in Tables (1) and (2).

Andrews and Massabò [12] have shown that the coefficients are of the form

θ̃d = θ̃∗d(H̃, ρ̃)λ̃−1/2

θ̃m = θ̃∗m(H̃, ρ̃)λ̃−1/4 , (25)

for orthotropic systems. As noted earlier, the effects of shear in Ref. [12] are divided

into a contribution associated with shear deformation of a clamped cantilever beam,

plus a contribution in the form of a rotation that is associated with a correction to

the assumption of a clamped boundary. Inspection of Ref. [12], and a comparison

with the form of the root rotation given in the present paper, shows that θ̃∗d can be

computed using the equation

θ̃∗d =
[
b̃d + (1 + H̃)ρ̃κ−1s

]
, (26)

where b̃d is the difference between the two constants given in Table 1 of Ref. [12], and

κs = 5/6. The parameter θ̃∗m can be obtained directly from Ref. [12]. Summaries of

the two coefficients obtained from the results of that paper are given in Tables 3 and 4.

A comparison between the results of Tables 1 and 2, and those of Tables 3 and 4

show only minor discrepancies in the special cases where they can be directly com-

pared, and confirm the excellent agreement between the two sets of numerical calcu-

lations given in Refs. [12] and [17].

The results of this section can also be expressed in terms of energy-release rates

and phase angles, rather than as root rotations. The phase angles, ψMo and ψVdo , can

be obtained directly from Ref. [17] for isotropic materials, and are not reproduced
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here. Phase angles for orthotropic materials are independent of λ̃, and have only a

weak dependence on ρ̃ [22]. Detailed results for values of ψMo do not exist in the

literature, since the dependence on ρ̃ is so weak that they are assumed to be given

by the isotropic results [22]. Based on this assumption, Eqn. 24 and the appropriate

values of θ̃d and θ̃m are used to compute the values of ψVdo summarized in Table 5 for

orthotropic materials.

4 Symmetrical double-cantilever beams

For the special case of Σ̃ = H̃ = 1, ψMo = ψVdo = 0 (by symmetry). Equation. 6 can

then be used to show that

Wo =

(√
WM

o +

√
WVd

o

)2

, (27)

and Eqn. 24 gives θ̃m = 4
√

3θ̃d. Therefore, if only a transverse force of P∞ is applied

at a distance ao from the crack tip, so that Mo = P∞ao and Vod = P∞, Eqns. 7, 19

and 27 can be used to show that the work done against the crack-tip tractions is

Wo =
12P 2

∞
Ēh3

ao +

√
θ̃d
12
h

2

= Go . (28)

This result, with θ̃d = 5.44 (Table 1), is identical (within a numerical error corre-

sponding to the third significant figure) to the equation for the energy-release rate for

an isotropic, symmetrical DCB under LEFM conditions given in [17], and closely ap-

proximates other numerical results [15]. With θ̃d = 5.44λ̃−1/2 being substituted into

Eqn. 28, the general form for an orthotropic system with ρ̃ = 1 is obtained [12, 27].

In particular, it is noted that the quantity θ̃∗m/24 is identically equal to the empirical

correction factor Y (ρ) described in Ref. [16] for H̃ = 1.
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The form of Eqn. 28 lends itself to the commonly quoted concept that the ef-

fect of root-rotation can be expressed in terms of an effective increase in the crack

length [3, 25]. It can be seen from Eqn. 28 that this effective increase in crack length

is given by
√
θ̃d/12h. This approach is of practical use because it is not limited to

systems with small cohesive-length scales (the value of θ̃d, and the effective crack

length, increase with cohesive-length scale). However, it should be emphasized that

such a form manifests itself rigorously only in the special case of a symmetrical, linear

system.

Table 1 shows that the effective increase in crack length for an isotropic, linear-

elastic, symmetrical DCB is given by ae = 0.673h, rather than the commonly quoted

value of 0.64h. The latter result is derived from Kanninen’s elastic-foundation model [3],

and is discussed in more detail in Section 4.2. This concept of an effective crack length

can be adapted for orthotropic materials. For example, Williams [10] derives an ap-

proximate equation for the effective increase in the crack length using a combined

analytical and numerically-based empirical approach. Expressed in terms of the or-

thotropy ratios used in the present paper, Williams’ equation is given by [10]

ae/h =

√√√√2.36(ρ̃+ 0.3λ̃1/2)

11

{
3− 2

[
2.36(ρ̃+ 0.3λ̃1/2)

1 + 2.36(ρ̃+ 0.3λ̃1/2)

]}
λ̃−1/4 . (29)

The 0.3 terms in this result express the fact that the original derivation of the equa-

tion was limited to a plane-stress case with ν12 = 0.3.

A much simpler expression, without the limitation of an assumed value for ν12,

can be determined from the results given in this paper. It will be observed that the

data in Table 3 suggest a linear relationship between θ̃∗d and ρ̃: θ̃∗d = 3.101 + 2.343ρ̃,

for H̃ = 1 and 1 ≤ ρ̃ ≤ 5. From this it is straightforward to use Eqn. 28 to show that
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the increase in the effective crack length for a symmetrical DCB is given by

ae/h = (0.258 + 0.195ρ̃)1/2λ̃−1/4. (30)

A comparison between this equation and Eqn. 29 shows that the result from Ref. [10]

is generally accurate to within 5%, except for very small values of λ̃, when the discrep-

ancy is still less than 15%. An expression for the increase in effective crack length in

terms of ρ̃ can also be deduced from the empirical results of Suo and co-workers [16].

This result has a discrepancy of no more than 2% for ae at the largest values of ρ̃,

when compared with the present results, corresponding to a slight error in the value

of θ̃∗d for a symmetrical DCB that can be calculated from it.

4.1 Compliance of double-cantilever beams

Compliance methods are often used to deduce energy-release rates for DCB geome-

tries. The issues with this for large cohesive-length scales or bridging zones will be

discussed elsewhere [28]. However, here we discuss the compliance of a homogeneous

DCB with a small cohesive-length scale, so that the usual assumptions of LEFM are

met.

Consider a DCB, with arms of equal thickness h and modulus Ē, being opened by

an applied load P∞ at a distance ao from the cohesive crack tip. Assuming a linear

system, the total opening displacement at the point where the load is applied is given

by

∆∞ =
8P∞a

3
o

Ēh3
+ ao

(
θMo + θVdo

)
+ uMo + uVdo , (31)

where all the terms, except for the last two, have been defined earlier. These last two

terms, uMo and uVdo , can be thought of as the contributions to the root displacement
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from the crack-tip moments and shear forces. The root displacement is the increase

in separation between the two centroidal axes at the crack tip (see Fig. 3), and is an

analogue to the root rotation.

As with root rotation, the root-displacement is associated with deformation in

both the cohesive zone and the arms themselves. It should be noted that the concept

of elastic deformation of the arms normal to the interface was invoked by Kanninen’s

original elastic-foundation model for the DCB geometry [3]. Dimensional considera-

tions show that in a linear system, the crack tip-displacements can be written in the

general form

uMo = ũmMo/ĒAhA

uVdo = ũdVod/ĒA , (32)

where ũm and ũd are dimensionless constants.

Using Eqns. 18, 23, and 32, and recognizing that Mo = P∞ao and Vod = P∞ for

a point-loaded DCB, Eqn. 31 can be re-written as

∆∞ =
8P∞a

3
o

Ēh3
+
P∞ao
Ēh

(
θ̃m
ao
h

+ θ̃d

)
+
P∞
Ē

(
ũm

ao
h

+ ũd

)
. (33)

Since a linear system has been assumed, the energy-release rate is related to the rate

of change of compliance with crack length, and one can state that

Go = − ∂Π

∂ao
=
P 2
∞
2

∂(∆∞/P∞)

∂ao
=

12P 2
∞a

2
o

Ēh3

[
1 +

θ̃m
12

h

ao
+

h2

24a2o
(θ̃d + ũm)

]
. (34)

Remembering from Eqn. 24 that θ̃m = 4
√

3θ̃d for a symmetrical, linear DCB, one

can show that ũm = θ̃d is required to make Eqn. 34 identical to Eqn. 28. This result

could also have been deduced as a direct consequence of the Maxwell-Betti recipro-

cal theorem [29]. The shear root-displacement term, ũd, does not affect the fracture
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mechanics of the DCB geometry.

It should be emphasized that if one assumes there is only a root-rotation at the

crack tip, whether this is incorporated as a correction to a clamped Timoshenko beam

or not, and neglects the possibility of a root displacement, an inconsistency is intro-

duced between the compliance method and the J-integral method for computing the

energy-release rate. Only the root-displacement associated with the crack-tip moment

needs to be invoked to rationalize these two concepts. The root-displacement associ-

ated with the shear force does not have a role in the relationship between compliance

and energy-release rate for a DCB loaded by forces. However, it does have a role in

calculations for the wedge test, when the loading parameter is defined by ∆, not P∞.

4.2 Comparison to an elastic-foundation model

Although not originally cast in those terms, the elastic-foundation model of Kanni-

nen [3] can be viewed as a cohesive-zone model in which the DCB arms have only a

bending stiffness, with a linear traction-separation law representing the out-of-plane

stiffness of the arms. For an elastic beam of thickness h and modulus Ē supported by

linear springs of stiffness k′ (per unit area) on a rigid foundation, the root rotations

and displacements are given by [29]

θo = 2× 31/2

(
Ē

hk′

)1/2
Vod
Ēh

+ 4× 33/4

(
Ē

hk′

)1/4
Mo

Ēh2
(35)

uo = 2× 31/4

(
Ē

hk′

)3/4
Vod
Ē

+ 2× 31/2

(
Ē

hk′

)1/2
Mo

Ēh
(36)

Such a model represents half of a symmetrical double-cantilever beam geometry, with

a spring stiffness of k = k′/2. This model does not provide a valid description of the

crack-tip stress fields in the small-cohesive-length-scale limit [30]. However, it will be
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shown below that, with the use of a single empirical fit, the model correctly describes

all the root rotations and displacements in this limit, so it can be used to compute

fracture conditions for LEFM. Since there are two identical arms, the root rotations

and displacements of a symmetrical DCB are double those given above:

θo = 2× 61/2

(
Ē

hk

)1/2
Vod
Ēh

+ 4× 63/4

(
Ē

hk

)1/4
Mo

Ēh2
(37)

uo = 2× 61/4

(
Ē

hk

)3/4
Vod
Ē

+ 2× 61/2

(
Ē

hk

)1/2
Mo

Ēh
. (38)

The corresponding work done against the tractions at the crack tip is

Wo = ku2o/2 . (39)

By comparison to Eqn. 20, it will be seen that the first term on the right hand

side of Eqn. 37 is θVdo , and the second term is θMo . Therefore, if k = 24Ē/θ̃2dh, the first

term is identical to the expression for θVdo given by Eqn. 18. In addition, this identity

also makes the second term equivalent to the expression for θMo given by Eqn. 23, with

θ̃m = 4
√

3θ̃d (as shown at the beginning of Section 4). Furthermore, with Mo = P∞ao

and Vod = P∞, substitution of Eqn. 38 into Eqn. 39 results in Eqn. 28. Finally, a

comparison between the equations for the root-displacement (Eqns. 38 and 32) con-

firms the observation that ũm = θ̃d. It also indicates that ũd = θ̃
3/2
d /(2

√
3), which is

a new result that could not be obtained by the analyses of the earlier sections.

In Kanninen’s original formulation [3], k was identified with the average transverse

stiffness of the arms, so it was assumed to be given by k = Ē/h. This corresponds

to the approximation that θ̃d =
√

24, and it can be verified from the equations given

in this paper that it gives a reasonably good approximation for the energy-release

rate under LEFM conditions. For example, Eqn. 28 shows that this approximation
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gives a value of 0.64h for the fictitious increase in crack length needed to correct for

shear effects in effective crack models [3, 25], rather than the correct value of 0.673h.

The correct value for θ̃d under LEFM conditions and for a symmetrical DCB is 5.44

(Table 1). This corresponds to a spring stiffness of k = 0.811Ē/h [17]. Substituting

this value into Eqns. 37 and 38, Eqn. 33 can be used to show that the compliance for

a DCB is

∆∞
P∞

=
24

Ē

 a3o
3h3

+

(
θ̃d
12

)1/2
a2o
h2

+

(
θ̃d
12

)
ao
h

+ 0.5

(
θ̃d
12

)3/2
 . (40)

The specific result for an isotropic DCB is given by setting θ̃d to 5.44:

∆∞
P∞

=
1

Ē

[
8
a3o
h3

+ 16.2
a2o
h2

+ 10.9
ao
h

+ 3.66

]
. (41)

This provides a minor correction to the equivalent result given in Ref. [3].

The elastic foundation model can also be used for an orthotropic system. Using

Eqn. 25, and remembering that Ē = Ē11 and λ̃ = Ē22/Ē11, it can be readily seen

that k = 24Ē22/θ̃
∗2
d h. All the results for a symmetrical DCB are then rigorously

reproduced by the elastic-foundation model. The root displacements are

uMo = θ̃∗d
Mo

Ē
1/2
11 Ē

1/2
22 h

uVdo =
θ̃∗

3/2

d

2
√

3

Vo

Ē
1/4
11 Ē

3/4
22

, (42)

and the compliance of an orthotropic DCB is given by Eqn. 40 as

∆∞
P∞

=
24

Ē11

 a3o
3h3

+

(
θ̃∗d

12
√
λ̃

)1/2
a2o
h2

+

(
θ̃∗d

12
√
λ̃

)
ao
h

+ 0.5

(
θ̃∗d

12
√
λ̃

)3/2
 . (43)
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5 Conclusions

We have followed the work of Andrews and Massabò [12] to demonstrate how the

concept of root-rotation is linked to phase angles and to the energy-release rate as-

sociated with shear in a beam-like geometry. However, we have developed a simpler

approach in which shear deformation does not need to be separated from root rota-

tions, and simple-beam theory can be used without resorting to Timoshenko-beam

theory.

The contribution to the energy-release rate from transverse shear forces is simply

the product of the shear force and the associated root rotation at the crack tip. This

is valid, not only in the LEFM limit, but also for adhesive bonds with large-scale cohe-

sive lengths, and for composites with large-scale bridging. It has been shown that this

approach is completely consistent with earlier analyses of the effect of shear [17, 12].

However, a new concept that arises from the present approach is the need to consider

root displacements at a crack tip to ensure consistency between root-rotation and

compliance-based calculations of energy-release rates.

For the special case of a symmetrical DCB, we have demonstrated how this ap-

proach is tightly linked to the elastic-foundation model of Kanninen [3]. One empirical

fitting parameter is required to provide complete consistency between this model and

later, rigorous approaches used to model the effects of shear on a symmetrical DCB.
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α̃B -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

H̃B

0.0 2.69 2.86 3.10 3.39 3.76 4.37 5.24 6.81 10.8
0.2 2.67 2.85 3.07 3.36 3.76 4.36 5.29 7.04 11.6
0.4 2.71 2.92 3.18 3.54 4.04 4.78 5.95 8.21 14.4
0.6 2.77 3.02 3.37 3.82 4.44 5.36 6.86 9.77 18.1
0.8 2.84 3.17 3.60 4.15 4.92 6.05 7.89 11.5 22.1
1.0 2.92 3.35 3.87 4.52 5.44 6.79 9.03 13.4 26.3

Table 1: Values of θ̃d for isotropic bi-layers, with β̃ = 0 [17].

α̃B -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

H̃B

0.0 5.35 5.72 6.20 6.75 7.42 8.35 9.54 11.4 15.1
0.2 5.40 5.88 6.44 7.09 7.89 8.94 10.3 12.6 17.1
0.4 5.62 6.30 7.08 7.96 9.07 10.5 12.5 15.7 23.0
0.6 5.96 6.95 8.04 9.31 10.8 12.8 15.7 20.6 32.7
0.8 6.43 7.83 9.35 11.1 13.2 16.0 20.1 27.3 46.1
1.0 7.03 8.96 11.0 13.3 16.2 20.0 25.7 35.9 63.2

Table 2: Values of θ̃m for isotropic bi-layers, with β̃ = 0, calculated from Ref. [17].
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ρ̃ 1 3 5

H̃
0.0 3.81 6.43 8.93
0.2 3.77 6.68 9.54
0.4 4.04 7.37 10.66
0.6 4.44 8.21 11.96
0.8 4.91 9.15 13.36
1.0 5.44 10.14 14.81

Table 3: Values of θ̃∗d for homogeneous orthotropic layers, calculated from Ref. [12].
These values are accurate for 0.025 ≤ λ̃ ≤ 1 [12].

ρ̃ 1 3 5

H̃
0.0 7.44 10.05 12.03
0.2 7.90 10.71 12.88
0.4 9.07 12.35 14.89
0.6 10.85 14.80 17.87
0.8 13.21 18.04 21.80
1.0 16.15 22.06 26.66

Table 4: Values of θ̃∗m for homogeneous orthotropic layers, calculated from Ref. [12].
These values are accurate for 0.025 ≤ λ̃ ≤ 1 [12].

ρ̃ 1 3 5

H̃
0.0 1o -2o -3o

0.2 -0.7o -2o -3o

0.4 -0.8o -2o -2o

0.6 -0.6o -1o -1o

0.8 -0.4o -1o -1o

1.0 0o 0o 0o

Table 5: Values of ψVdo for orthotropic layers, calculated from Eqn. 24. The phase
angles for ρ̃ 6= 1 have been rounded, to reflect the uncertainty associated with the
very small dependency of ψMo on ρ̃.
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Figure 1: The crack-mouth opening, ∆ of a beam that forms part of a double-
cantilever beam with a crack length of ao (top), can be considered to be made up
of two contributions: ∆′ = 4P∞a

3
o/Eh

3 + P∞ao/κsGh, representing the deflection
of a clamped Timoshenko beam (middle), and ϕao, representing the rotation of the
clamped boundary (bottom).
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Figure 2: The basic crack-tip loads for which interfacial fracture mechanics solutions
exist: (a) axial loads, (b) moments, (c) symmetrical shear forces acting at the crack
and (d) a single shear force at the crack tip. The energy-release rates for (a) and
(b) are given by general solutions that have no dependence on the nature of the
cohesive tractions along the interface. Conversely, the energy-release rates for (c) and
(d) depend on the cohesive-length scale of the tractions. Note that the shear forces
in (d) are taken to be those immediately ahead and behind the crack tip, with the
separation between them being vanishingly small, so no compensating moment has
been drawn on the figure.
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Figure 3: A schematic diagram of the tip of an interface crack showing how the
centroidal axis of the section rotates at the crack tip - coupling both the effects of
shear and root rotation into a single parameter. The usual approach of imposing
a rotation on a clamped boundary of a Timoshenko beam, would result in a kink
in the angle at the crack tip. This figure shows that the smooth slope assumed
here, must also be accompanied by a root-displacement, uoA , which is discussed in a
subsequent section. This root displacement has one contribution from the separation
of the interface, δoA , and a second contribution from the elastic deformation of the
arms.

34



Figure 4: A general double-cantilever-beam geometry with applied moment, M∞, and
load, P∞, a crack length ao, arm thicknesses hA and hB, and elastic moduli, ĒA and
ĒB.
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Appendix: Asymmetrical shear

An analysis similar to that described in the main text can be repeated for geometries

in which a shear force is applied to only one arm. Consider such a geometry shown

in Fig. A-1, in which a force of P∞ is applied to one arm at a distance ao behind

the crack tip, along with a moment applied to both arms. There are different ways

in which the moments can be applied to maintain equilibrium. However, to simplify

the analysis, we have chosen to distribute the moments by assigning a reference value

of M∞ to the bottom arm, and a corresponding moment M∗ = M∞ − P∞ao to the

top arm. A corresponding force, P∞, and moment, P∞L, are applied at a distance

L ahead of the crack to maintain equilibrium (Fig. A-1). This particular loading

configuration has been chosen so that the crack-tip loads and moments are described

by superposition of the basic cases illustrated in Fig. 2(b) and (d).

Evaluating the J-integral around an external contour of the geometry shown in

Fig, A-1 gives the result

Jext = P∞ΘA +
6M∗2

ĒAh3A
+

6M2
∞

ĒBh3B
− P 2

∞L
2

2ĒcIC
(A-1)

where ĒcIC is the bending stiffness of the uncracked segment C, ahead of the crack,

and the angle ΘA is the total rotation between the line of action of the force applied

to the upper arm and the line of action of the force applied to the segment ahead of

the crack.

The rotation, ΘA, has contributions from (i) θoA , the root rotation of the top arm

relative to the bonded interface, (ii) the deformation of the upper arm behind the
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crack tip, and (iii) the deformation of the uncracked ligament ahead of the crack:

ΘA = θoA +
6P∞a

2
o

ĒAh3A
+

12M∗ao
ĒAh3A

− P∞L
2

2ĒcIC
+
P∞L

2

ĒcIC
. (A-2)

As before, the effect of shear deformation of the beams is being incorporated into the

root rotation, so there is no need for a Timoshenko-beam analysis.

Substituting the equation for ΘA into Eqn. A-1, and using the fact that M∗ =

M∞ − P∞ao, one obtains

Jext = P∞θoA +
6M2

∞
ĒAh3A

[
Σ̃H̃3 + 1

]
= Go =Wo (A-3)

The result for only an asymmetrical shear at the crack tip is generated by the special

case of M∞ = 0, so that M∗ = −P∞ao. Then, by recognizing that the shear force at

the crack tip is given by Vos = P∞, one obtains a general equation for WVs
o :

WVs
o = Vosθ

Vs
oA
, (A-4)

where θVsoA is the root rotation, associated with shear only, of the top arm relative to

the bonded interface.

For a linear system, the root rotation associated with shear must be given by

θVsoA = θ̃sAVos/ĒAhA , (A-5)

so that

WVs
o = θ̃sAV

2
os/ĒAhA . (A-6)

This is identical to the form given in Ref. [17] for the energy-release rate correspond-

ing to asymmetrical shear (Fig. 2d).

37



In a linear system with a combined moment, Mo, and shear force, V Vs
o , acting at

the crack tip, the root rotation is

θoA = θMoA + θVsoA , (A-7)

where θMoA is the root rotation of the top arm in response to a crack-tip moment only:

θMoA = θ̃mA
Mo/ĒAh

2
A . (A-8)

Following the same argument that was used to derive Eqn. 22 in Section 3.1, it can

be shown that the crack-tip phase angle for asymmetrical shear, ψVso is given by

cos
(
ψMo − ψVso

)
= θ̃mA

[
24θ̃sA(Σ̃H̃3 + 1)

]−1/2
. (A-9)

Numerical values for the energy-release rate associated with a asymmetrical shear

force, GVso , and the corresponding crack-tip phase angle, ψVso , are given in Ref. [17]

for the limiting case of LEFM. These can be used to deduce values for θ̃sA and θ̃mA
,

which are reproduced in Tables A-1 and A-2. Corresponding values for orthotropic

materials can be deduced from Ref. [12], recognizing from that reference that

θ̃sA = θ̃∗sA(H̃, ρ̃)λ̃−1/2

θ̃mA
= θ̃∗mA

(H̃, ρ̃)λ̃−1/4 , (A-10)

and

θ̃∗sA =

[
b̃sA +

ρ̃

κs(1 + H̃)

]
, (A-11)

with κs = 5/6, and the values of b̃sA given in Table 1 of Ref. [12]. The values of θ̃∗sA

and θ̃∗mA
are reproduced in Tables A-3 and A-4. Where they can be directly com-

pared, the values for these two parameters calculated from Refs. [17] and [12] differ

only by minor numerical discrepancies.
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As with symmetrical shear, the results can also be expressed in terms of the

energy-release rate, GVso and phase angle ψVso . These can be found directly in Ref. [17]

for isotropic materials. The phase angle, ψVdo , for orthotropic materials can be calcu-

lated from Eqn. A-9 using the root rotations presented above, and assuming that ψMo

is given by the isotropic values. The results are presented in Table A-5.
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α̃ -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

H̃
0.0 2.69 2.86 3.10 3.39 3.76 4.37 5.24 6.81 10.8
0.2 2.58 2.65 2.76 2.94 3.21 3.62 4.31 5.66 9.33
0.4 2.34 2.27 2.28 2.39 2.62 2.99 3.64 4.90 8.13
0.6 2.00 1.83 1.83 1.92 2.13 2.47 3.05 4.09 6.34
0.8 1.64 1.45 1.45 1.56 1.75 2.06 2.53 3.28 4.57
1.0 1.32 1.16 1.18 1.28 1.46 1.71 2.07 2.58 3.19

Table A-1: Values of θ̃sA for isotropic layers with β̃ = 0 [17].

α̃ -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

H̃
0.0 5.35 5.72 6.20 6.75 7.42 8.35 9.54 11.4 15.1
0.2 5.34 5.75 6.23 6.81 7.53 8.44 9.68 11.6 15.5
0.4 5.35 5.78 6.28 6.89 7.68 8.65 9.99 12.1 16.3
0.6 5.30 5.76 6.31 6.97 7.81 8.87 10.3 12.5 16.8
0.8 5.26 5.72 6.32 7.05 7.95 9.08 10.6 12.8 16.9
1.0 5.17 5.68 6.35 7.13 8.07 9.27 10.8 13.1 16.8

Table A-2: Values of θ̃mA
for isotropic layers,with β̃ = 0, calculated from Ref. [17].
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ρ̃ 1 3 5

H̃
0.0 3.81 6.42 8.93
0.2 3.21 5.68 8.10
0.4 2.62 4.77 6.90
0.6 2.13 3.97 5.78
0.8 1.75 3.31 4.85
1.0 1.46 2.78 4.09

Table A-3: Values of θ̃∗sA for orthotropic layers, calculated from Ref. [12]. These values

are accurate for 0.025 ≤ λ̃ ≤ 1 [12].

ρ̃ 1 3 5

H̃
0.0 7.44 10.05 12.03
0.2 7.53 10.23 12.31
0.4 7.67 10.49 12.66
0.6 7.82 10.71 12.95
0.8 7.95 10.88 13.16
1.0 8.08 11.03 13.33

Table A-4: Values of θ̃∗mA
for orthotropic layers, calculated from Ref. [12]. These

values are accurate for 0.025 ≤ λ̃ ≤ 1 [12].

ρ̃ 1 3 5

H̃
0.0 1o -2o -3o

0.2 -3.5o -6o -6o

0.4 -7.4o -9o -10o

0.6 -10.4o -12o -13o

0.8 -13.1o -15o -16o

1.0 -15.1o -17.2o -18.0o

Table A-5: Values of ψVso for orthotropic layers, calculated from Eqn. A-9. The phase
angles have been rounded, except for ρ̃ = 1 and H̃ = 1, to reflect the uncertainty
associated with the very small dependency of ψMo on ρ̃.
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Figure A-1: A laminated structure loaded by a force P∞ applied to only one arm,
and a bending moment M∞. Equilibrium, requires that M∗ = M∞ − P∞ao.
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