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Abstract

A general approach to develop complete and rigorous analytical expres-
sions for the energy-release rates and phase angles for delamination of isotropic
beam-like geometries is summarized. The analysis allows the effects of trans-
verse shear to be correctly incorporated within the resulting expressions. The
approach requires four effective crack-tip loads to be determined from the ap-
plied loads: a moment, an axial force, a double transverse shear force, and a
single transverse shear force. Each of these effective loads provides an energy-
release rate and an associated phase angle; expressions for these quantities can
be found in the literature. These fundamental expressions can be combined
algebraically to generate analytical expressions for the total energy-release rate
and phase angle for any geometry and loading configuration of interest. The
approach is illustrated by general analyses of edge-notched flexure (ENF), end-
loaded split (ELS) and 3-point bending specimens. In particular, it is shown
that the equation for the energy-release rate for the ENF geometry reduces to
a very simple form that has previously been proposed from numerical studies,
when the geometry is perfectly anti-symmetrical.
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1 Introduction

1.1 Analyses of the edge-notch flexure geometry

The general geometry of an edge-notch flexure (ENF) specimen is shown in Fig.
1(a). Two laminates, with thicknesses h1 and h2 are bonded together with a debond
of length a extending from one end. The moduli of the two arms are Ē1 and Ē2,
respectively, where Ē is the plane-stress or plane-strain modulus, as appropriate.
The beam is simply supported at both ends, with a point load, F (per unit width),
applied to its mid-point.1 The special case of an anti-symmetrical geometry, with
h1 = h2 = h and Ē1 = Ē2 = Ē, is frequently used to evaluate the mode-II toughness
of an interface. Under these conditions, each arm is subjected to a transverse shear
force of F/4 and a moment of Fa/4 immediately behind the crack tip, while the
section immediately ahead of the crack tip is subjected to a transverse shear force
of F/2 and a moment of Fa/2. If the crack is very long compared to the height of
the two arms, the shear component at the crack tip can be neglected. A steady-state
energy balance can then be used to show that the energy-release rate is given by

G =
9

16

F 2a2

Ēh3
. (1)

Furthermore, the perfect asymmetry of the problem confirms that the phase angle
associated with this loading is 90◦, or pure mode-II.

It has long been recognized that the transverse shear load provides a correction
to this result. Carlsson et al. [1] developed an analysis based on Timoshenko beam
theory to derive an expression for the energy-release rate that incorporates a term
associated with shear:

G =
9

16

F 2a2

Ēh3

[
1 + 0.2(E/G)(h/a)2

]
, (2)

where G is the interlaminar shear modulus. As expected, this expression reduces to
Eqn. 1 when the crack is long enough for the moment contribution to dominate the
shear contribution. An alternative approach that has been proposed for analyzing this
geometry involves modeling half the specimen as a beam lying on an elastic founda-
tion, and then including the deformation of this foundation in the calculation of the
energy-release rate. As pointed out by Li et al. [2] only the shear contribution of the
energy-release rate is affected by the properties of the foundation in such a model,
so this approach has the feature of providing what is essentially a shear correction to
Eqn. 1. However, while the elastic-foundation approach provides a simple expression

1The analysis given in this paper assumes symmetry about the mid-point of the beam. Strictly
speaking, the ENF geometry with a single split doesn’t satisfy this symmetry condition, although a
clamped split beam would satisfy it. This issue is ignored for the small elastic deformations assumed
in this paper.
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for the energy-release rate of the mode-I double-cantilever beam geometry [3, 4], it
does not appear to provide a simple form for the energy-release rate of the mode-II
ENF geometry [5, 6]. Furthermore, there is no a priori method to determine the
value of the parameters to describe the appropriate stiffness of the foundation. They
have to be obtained by a comparison to numerical analyses of the geometry.

Comparisons to numerical analyses of the ENF geometry indicate that the follow-
ing expression for the energy-release rate is very accurate [7]:

G =
9

16

F 2a2

Ēh3
[1 + 0.209h/a]2 . (3)

Andrews and Massabò [8] have already shown that this equation can be derived by
incorporating the effects of shear into the calculation for the energy-release rate. The
shear correction has two components: (i) a steady-state energy term and (ii) a term
arising from the interaction of the shear force with the root rotation at the crack tip.
The first term is independent of crack length (as captured in the form of Eqn. 2);
the second term scales with the crack length. The bending moment at the crack
tip associated with the applied transverse shear force provides a term in the energy-
release rate that scales with the square of the crack length (as indicated in the form
of Eqn. 1). Only in special geometries does the functional form of the combined con-
tributions reduce to the perfect square of Eqn. 3. The symmetrical double-cantilever
beam is another example of a geometry where the shear correction reduces in a similar
fashion [2].2

A general analysis for the energy-release rate and phase angle associated with
transverse shear on isotropic beam-like geometries was developed by Li et al. [2]. It
was demonstrated that, by combining these results with the earlier results of Suo
and Hutchinson [10] for the energy-release rate and phase angle associated with axial
loads and moments, analytical results for the phase angle and energy-release rate of
arbitrarily-loaded beam-like geometries could be determined. However, the examples
given in Ref. [2] were fairly straight-forward applications of the analytical technique,
with a focus on symmetrical and asymmetrical double-cantilever beam geometries.
The geometries presented in this paper complement these solutions and are much
richer in terms of the analysis. The primary purpose of this paper is to demonstrate
how to combine the results of Suo and Hutchinson [10] with those of Li et al. [2] when
analyzing general beam-like geometries. This is done by first calculating analytical
expressions for the energy-release rate and phase angle of edge-notched flexure geome-
tries. A second set of calculations is done for the delamination of an end-loaded split

2The reduction to such a simple form results in the notion that one can use Eqn. 1 with a
correction to the crack length providing the extra compliance required to model the additional
contribution to the energy-release rate from the transverse-shear loading [9]. This simple description
of the effects of shear as a change in the effective crack length is an artifact of the special case in
which the equation for the energy-release rate simplifies in a particularly elegant fashion.
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(ELS) specimen. The final set of calculations is done for delamination of three-point
bend specimens.

1.2 Effect of shear on delamination of beam-like geometries

Any arbitrary loading on a beam-like geometry consisting of two bonded layers can be
expressed as a set of moments, M1,M2,M3, axial forces, N1, N2, N3 and shear forces,
V1, V2, V3, acting on the laminates immediately behind and ahead of a delamination
front (Fig. 2). If the layers are isotropic and linear elastic, these nine loads can
further be reduced to a set of four effective loads: an axial load (Fig. 3a), N , a
bending moment (Fig. 3b), M , a double transverse shear load (Fig. 3c), Vd, and a
single transverse shear load (Fig. 3d), Vs. If the two layers are of thickness h1 and
h2, with elastic constants of E1, ν1, E2 and ν2, the effective loads are related to the
original set of loads by

M = M1 − C3M3

N = N1 − C1N3 − C2M3/h1

Vd = V1 − V3

Vs = V3 (4)

where [10],

C1 =
ΣH

1 + ΣH

C2 =
ΣH2

Ĩ(2)

[
1−∆ +

H

2

]

C3 =
ΣH3

12Ĩ(2)
(5)

and,

Σ = Ē1/Ē2

H = h1/h2

∆ =
1 + 2ΣH + ΣH2

2(1 + ΣH)

Ĩ(2) =
1

3

{
Σ
[
(H + 1−∆)3 − (1−∆)3

]
+ ∆3 + (1−∆)3

}
. (6)

The energy-release rate and phase angle resulting from these four effective crack-
tip loads can be found by a superposition of the four corresponding standard solutions

4



that exist in the literature. The results of Suo and Hutchinson [10] can be used to
determine the energy-release rate for the steady- state problems associated with the
bending moment and axial load:

GM = f 2
M(α,H)

M2

Ē1h1
3

GN = f 2
N(α,H)

N2

Ē1h1

ψM = ψM(α, β,H)

ψN = ψP (α, β,H), (7)

where α is the first Dundurs parameter [11], given by α = (Σ− 1)/(Σ + 1), and β is
the second Dundurs parameter [11]. The non-dimensional functions, fM(α,H) and
fN(α,H), can be found from a steady-state energy balance [10] as

fM(α,H) =
√

6(1 + ΣH3)

fN(α,H) =
√

0.5 + Σ(1.5H3 + 3H2 + 2H). (8)

A steady-state energy balance can also be used to show that the two phase angles are
related by

cos ζNM = cos(ψN − ψM) =
3ΣH2(1 +H)

fNfM

, (9)

leaving only one phase angle to be determined numerically [10]. It should be noted
that the absence of the second Dundurs parameter, β, from an expression indicates
that it can be derived from a steady-state energy balance, and that the expression
does not depend on the details of the crack-tip stress field or deformation.

The second two standard solutions are those associated with the double transverse
shear load (Fig. 3c) and the single transverse shear load (Fig. 3d). The energy-release
rate and phase angle associated with the double transverse shear load are [2]

GVd
= fVd

2(α, β,H)
Vd

2

Ē1h1

ψVd
= ψVd

(α, β,H). (10)

The corresponding results for the single transverse shear load are [2]

GVs = fVs

2(α, β,H)
Vs

2

Ē1h1

ψVs = ψVs(α, β,H). (11)

The dimensionless functions for the energy-release rates and the phase angles must
be calculated numerically, since there are no steady-state energy-balance solutions
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for transverse shear loading, and the solutions depend on the details of the crack-tip
deformations. This is indicated by the dependence of the solutions on β. The values
of fVd

(α, 0, H), fVs(α, 0, H), ψVd
(α, 0, H) and ψVs(α, 0, H) are given in Ref. [2]. They

are reproduced for convenience in the Appendix of this paper, along with ψM(α, 0, H).

The total energy-release rate, G, and the net phase angle, ψ, of a beam-like ge-
ometry subjected to any combination of the four loading conditions can be found by
adding the individual components in a vectorial fashion. The energy-release rate and
phase angle are given by

G = G1 + G2 (12)

ψ = tan−1
(√
G2/

√
G1

)
(13)

where,√
G1 =

√
GM cos(ψM) +

√
GN cos(ψN) +

√
GVd

cos(ψVd
) +

√
GVs cos(ψVs)√

G2 =
√
GM sin(ψM) +

√
GN sin(ψN) +

√
GVd

sin(ψVd
) +

√
GVs sin(ψVs) (14)

The sign of the phase angles given in the literature and Appendix (with −90◦ < ψN <
90◦) are for positive values of M , N , Vd and Vs as defined in Fig. 3. Individual phase
angles must be rotated by 180◦ if any of the corresponding loading parameters are in
the opposite sense from those shown in Fig. 3.

These expressions are valid for any isotropic linear-elastic geometry, provided the
loads and moments at the crack tip can be correctly calculated. The results appear to
be correct even when the length of the debond is comparable to the layer thickness,
provided steady-state stress distributions have been achieved in the layers [2]. In
particular, it should be noted that all root rotation effects are implicitly included in
the expressions for the energy-release rates and phase angles. While root rotation is
induced by all four types of loading, it only affects the energy-release rate associated
with transverse shear. This is directly related to the observation that the energy-
release rate for the axial load and the moment can be derived from a steady-state
energy balance, but the energy-release rate for the shear terms depends on the stress
field at the crack-tip. The interaction between the shear loads and the root rotation
associated with the other loads is incorporated by the phase angles. Andrews and
Massabò [8] have developed an equivalent approach for including the effects of shear
in which this interaction is made explicit.

2 Analysis of ENF geometry

The loads and moments acting at the crack tip of the ENF specimen shown in Fig. 1(a)
are given by M1 = F1a, M2 = F2a, M3 = Fa/2, V1 = F1, V2 = F2 and V3 = F/2,
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where F1 and F2 are found by matching the displacements of the two arms at the
crack mouth where the specimen is supported:

F1 =
AF

2
=

ΣH3

1 + ΣH3

F

2

F2 =
(1− A)F

2
=

1

1 + ΣH3

F

2
(15)

This results in an effective crack-tip loading of

M = (A− C3)
Fa

2

N = −C2

h1

Fa

2
Vd = −(1− A)F/2

Vs = F/2 (16)

The sign convention on these equations is established by Fig. 3, which illustrates the
positive directions for all loads and moments.

Equations 7 through 11 can then be used to express the individual components
of the energy-release rate in terms of the geometry and loads applied to the ENF
geometry of Fig. 1a:

Ē1h1
3GM

F 2a2
=

(A− C3)
2

4
fM

2

Ē1h1
3GN

F 2a2
=

C2
2

4
fN

2

Ē1h1
3GVd

F 2a2
=

(1− A)2(h1/a)
2

4
f 2

Vd

Ē1h1
3GVs

F 2a2
=

(h1/a)
2

4
f 2

Vs
(17)

Eqn. 14 then gives the two orthogonal modes of the energy-release rate:√
Ē1h1

3G1

F 2a2
= 0.5[(A− C3)fM cos(ψM)− C2fN cos(ψN)

−(1− A)(h1/a)fVd
cos(ψVd

) + (h1/a)fVs cos(ψVs)]√
Ē1h1

3G2

F 2a2
= 0.5[(A− C3)fM sin(ψM)− C2fN sin(ψN)

−(1− A)(h1/a)fVd
sin(ψVd

) + (h1/a)fVs sin(ψVs)] (18)

Eqns. 12 through 14 can then be used to calculate the total energy-release rate and
phase angle.
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The resulting expression for the energy-release rate can be simplified for the lim-
iting case of a very long crack, when the shear contribution is negligible. It is given
by

Ē1h1
3G

F 2a2
=

ΣH3

2

[
3

1 + ΣH3
− 1

4Ĩ2)

]
(19)

More general results including the effects of shear are plotted for some special cases
in Figs. 4 and 5. In all cases the asymptotic limits at large values of a/h1 correspond
to Eqn. 19. It can be seen from these figures that the effects of shear are important
for crack lengths less than about 10h1.

A simplified equation for the special case of a homogeneous geometry with arms
of equal thickness can be obtained by setting Ē1 = Ē2 = Ē and h1 = h2 = h. The
parameters then have the following values:

A = 0.5

C2 = 3/4

C3 = 1/8

fM =
√

12 = 3.464

fN =
√

7 = 2.646;

fVd
= 2.335;

fVs = 1.207;

ψM = 0.0◦

ψN = 49.107◦

ψVd
= 0.0◦

ψVs = −15.1◦. (20)

So that the components G1 and G2 are√
Ē1h3G1

F 2a2
= 0.00√

Ē1h3G
F 2a2

= 0.5[−1.500− 0.314h/a], (21)

and the energy-release rate is

Ē1h1
3G

F 2a2
=

9

16
[1 + 0.210h/a]2. (22)

This is identical (with the shear term agreeing to within a fraction of a percent) to
Eqn. 3. This particular form of the equation, that makes the shear term look like a
simple correction to the crack length, is the result of one mode of the energy-release
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rate being equal to zero. As discussed above, the functional relationship between the
energy-release rate and crack length can’t generally be expressed as a perfect square,
and the apparent connection between the shear contribution and a change in effective
crack length is lost.

It should be noted that the correction term associated with shear occurs in the
absence of any interfacial compliance, and that only this correction term can be af-
fected by interfacial compliance. This point is important in any discussion about
mechanics models that include the effects of different types of interfacial bonding, the
compliance of an adhesive layer, or the rotation at the crack tip. In particular, anal-
yses that attempt to capture the effect of a compliant adhesive layer [12] or cohesive
zone, must be cast in the form of corrections to the shear term only [2, 13]. In the
limit of rigid interfaces, these analyses must reduce to a form that contains a shear
correction. Several models in the literature do not apparently reduce to such a form;
the absence of a shear term then raises the question of whether the models might
have an internal inconsistency since it is only the shear term that can be affected by
interfacial compliance. This is a general observation that is valid for assessing inter-
face models for all types of beam-like geometries, whether they are mode-I, mode-II
or mixed-mode geometries.

3 Analysis of end-loaded split specimen

The general geometry of an end-loaded split (ELS) specimen is shown in Fig. 1b. A
beam, consisting of two laminates (with thicknesses h1 and h2 and moduli Ē1 and
Ē2) bonded together, is clamped at one end and contains a delamination of length a
at the other end. A load F is applied to only one arm to cause delamination. Since
the general results in the Appendix are limited to cases for which H < 1, two types
of effective loads have to be considered, depending on whether h1 is greater or less
than h2. If h1 < h2, the crack-tip loading is M1 = M3 = Fa, and V1 = V3 = F ; the
results of the Appendix can then be used directly with

M = (1− C3)Fa

N = −C2Fa/h1

Vd = 0

Vs = F. (23)

If h1 > h2, the crack-tip loading is M2 = Fa, M3 = −Fa, V2 = F , and V3 = −F ; the
results of the Appendix can then be used with

M = C3Fa

N = C2Fa/h1
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Vd = F

Vs = −F, (24)

and a recognition that this represents a specimen that has been flipped upside down
(changing the sign of the phase angle).

For a homogenous specimen with h1 = h2 = h and Ē1 = Ē2 = Ē, the energy-
release rate and phase angle can be shown to be given by

ĒGh3

F 2a2
= 5.250 + 4.989(h/a) + 1.462(h/a)2

ψ = tan−1

(
−
√

3(1 + 0.210h/a)

2(1 + 0.674h/a)

)
(25)

This is essentially identical to the result quoted in Ref. [7], and can be derived by
recognizing that the solution for the ELS geometry can be obtained from a superposi-
tion of the pure mode-I double-cantilever beam configuration [2] and the pure mode-II
ENF configuration. This geometry provides an example of the general relationship
between energy-release rate and crack length, where the shear correction cannot be
expressed in terms of a simple change in the effective crack length. Figures 6 and 7
show plots for the energy-release rate and phase angle for more general configurations
of this specimen.

4 Analysis of 3-point bend geometry

The geometry of a 3-point bend specimen is shown in Fig. 1(c). A beam of length
2L, consisting of two laminates (with thicknesses h1 and h2 and moduli Ē1 and Ē2)
bonded together, is simply supported at both ends and supports a point load, F , in
the center. One laminate is completely cracked up to the interface, and a debond
of length a extends symmetrically along the interface from this crack. As mentioned
in the previous section, the results in the Appendix are limited to h1/h2 < 1 so two
geometries need to be analyzed: one in which the thicker laminate is fractured so that
M1 = M3 = F (L− a)/2, and V1 = V3 = −F/2, the other in which the thinner lami-
nate is fractured so that M2 = F (L− a)/2, M3 = −F (L− a)/2, and V2 = V3 = F/2.

Following the procedures of the previous sections, the loads and moments in the
fundamental solutions for the first of these geometries can be expressed as:

M = (1− C3)
F (L− a)

2

N = −C2

h1

F (L− a)
2
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Vd = 0

Vs = −F/2, (26)

with C2 and C3 defined in Eqn. 5. As before, Eqns. 7 through 11 can be used to express
the energy-release rate and phase angle in terms of the individual components of the
energy-release rate:

Ē1h1
3GM

F 2L2
=

(1− C3)
2

4
(1− a/L)2fM

2

Ē1h1
3GN

F 2L2
=

C2
2

4
(1− a/L)2fN

2

Ē1h1
3GVd

F 2L2
= 0

Ē1h1
3GVs

F 2L2
=

(h1/L)2

4
f 2

Vs
. (27)

For geometries in which the cracked laminate is thinner than the uncracked laminate,
it can be shown that the appropriate equations are

M = C3
F (L− a)

2

N =
C2

h1

F (L− a)
2

Vd = −F/2
Vs = F/2. (28)

So that,

Ē1h1
3GM

F 2L2
=

C2
3

4
(1− a/L)2fM

2

Ē1h1
3GN

F 2L2
=

C2
2

4
(1− a/L)2fN

2

Ē1h1
3GVd

F 2L2
=

(h1/L)2

4
f 2

Vd

Ē1h1
3GVs

F 2L2
=

(h1/L)2

4
f 2

Vs
. (29)

As in the previous sections, the quadrants of the individual phase angles are es-
tablished by the signs of the appropriate loads in Eqns. 26 and 28. This second
configuration represents a specimen that has been flipped up-side down, changing the
sign of the resultant phase angle.

11



Three non-dimensional length parameters affect the mechanics of the three-point
bend geometry. In addition to the thickness ratio, H = h1/h2, and crack length, a/L,
the span length, L/h1, also plays an important role in the fracture mechanics of this
geometry. The effects of transverse shear can be neglected in the limits that the span
is very long, L/h1 → ∞, and the crack is relatively short, a/L << 1. Under these
conditions, the energy-release rate is given by

Ē1h1
3G

F 2L2
=
(
1− a

L

)2
(

3

2
− ΣH3

8Ĩ(2)

)
(30)

The three-point bending geometry is one that exhibits stable crack growth; the
energy-release rate decreases as the crack extends. Figure 8 shows how the energy-
release rate and phase angle vary as functions of the non-dimensional span length, at
the point at which the crack extends half way across the span. The limiting steady-
state solutions corresponding to Eqn. 30 have been added to these plots in the form of
dotted lines at large values of the span length. One of the points that will be noticed
from this figure is that the effect of transverse shear is to reduce the energy-release
rate. This occurs because the phase angle of the transverse shear components are
in a sense that partially cancels the other components. It can be seen that for this
geometry the drop in the energy-release rate associated with shear effects is fairly
significant, even for relatively long spans and cracks (a/h1 > 10). Furthermore, the
phase angle tends to pure mode-II conditions in a fairly precipitous fashion at relative
span lengths, L/h1, significantly less than 10.

A final comment should be made about a three-point bend geometry in which
there is an interfacial debond, but neither laminate is cracked. It can be shown that
in the absence of a crack through one of the laminates, the effective bending moment,
M , and axial load, N , acting on the interfacial crack are both equal to zero. Therefore,
there is no driving force for delamination if the shear term is neglected. However,
a small driving force can arise from the shear component in this configuration. For
example, in the special case of a homogenous beam under three-point bending with
a point load of F and with a delamination crack running along the central plane, the
two shear loading terms are Vd = F/4 and Vs = −F/2. It can readily be shown that
the energy-release rate for the delamination is pure mode-II and has a magnitude of

ĒhG
F 2

= 0.0258. (31)

This is small, but definitely non-zero.

5 Concluding remarks

In this paper, the procedures for developing analytical expressions for the energy-
release rate and phase angle of beam-like geometries have been demonstrated for
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three specific configurations: the edge-notch flexure geometry, the end-loaded split
geometry, and the 3-point flexure geometry. Provided the basic loading parameters
of axial load, moment, and transverse shear are known, general analytical solutions
can be readily obtained by algebraic manipulation.

The energy-release rate associated with the moment and axial force components
can be derived from steady-state energy balances, and are not affected by any con-
siderations of the crack-tip field such as interfacial compliance, root rotation, elastic
foundations, or cohesive zones [2, 13]. The effects of shear provide additional terms to
these steady-state solutions. The shear component of the energy-release rate contains
a contribution from the interaction of the shear force with the compliance associated
with deformation at the crack tip [8]. The crack-tip deformation only affects the
energy-release rate of beam-like geometries through this interaction with the shear
component of the loading. Finally, it should be noted that additional corrections to
the energy-release rate, beyond what is predicted from elasticity, can be provided by
additional contributions to the crack-tip compliance such as the deformation of an
adhesive layer. However, these corrections act only as corrections to the shear term.
They do not provide corrections to the steady-state solutions associated with bending
or axial loading [2, 13].
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6 Appendix

6.1 Table of phase angles (β = 0) [2]

α -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
H
0.0 ψM -43.3◦ -42.3◦ -41.0◦ -39.6◦ -37.9◦ -35.9◦ -33.4◦ -30.1◦ -24.9◦

ψVd
+5.0◦ +4.0◦ +3.0◦ +2.0◦ +0.7◦ -0.5◦ -1.7◦ -3.1◦ -4.8◦

ψVs +5.0◦ +4.0◦ +3.0◦ +2.0◦ +0.7◦ -0.5◦ -1.7◦ -3.1◦ -4.8◦

0.2 ψM -43.0◦ -41.3◦ -39.4◦ -37.3◦ -34.8◦ -31.8◦ -28.1◦ -22.9◦ -14.3◦

ψVd
+4.6◦ +3.4◦ +2.1◦ +0.7◦ -0.6◦ -2.1◦ -3.6◦ -5.1◦ -6.6◦

ψVs +4.3◦ +2.6◦ +0.8◦ -1.2◦ -3.5◦ -6.0◦ -8.7◦ -11.7◦ -15.1◦

0.4 ψM -41.5◦ -38.4◦ -35.1◦ -31.6◦ -27.5◦ -22.8◦ -16.9◦ -8.9◦ +4.0◦

ψVd
+4.5◦ +3.3◦ +1.9◦ +0.6◦ -0.8◦ -2.1◦ -3.5◦ -4.8◦ -5.9◦

ψVs +3.2◦ +0.6◦ -2.0◦ -4.6◦ -7.4◦ -10.0◦ -12.6◦ -15.2◦ -17.9◦

0.6 ψM -39.2◦ -34.1◦ -29.1◦ -23.8◦ -18.1◦ -11.8◦ -4.3◦ +5.2◦ +18.5◦

ψVd
+4.5◦ +3.3◦ +2.1◦ +0.8◦ -0.5◦ -1.8◦ –3.1◦ -4.3◦ -5.3◦

ψVs +1.6◦ -1.9◦ -4.9◦ -7.6◦ -10.5◦ -12.8◦ -15.0◦ -17.1◦ -19.1◦

0.8 ψM -36.0◦ -28.8◦ -22.1◦ -15.4◦ -8.6◦ -1.3◦ +6.6◦ +15.8◦ +27.3◦

ψVd
+4.7◦ +3.5◦ +2.3◦ +1.0◦ -0.3◦ -1.5◦ -2.7◦ -3.9◦ -5.0◦

ψVs -0.5◦ -4.6◦ -7.7◦ -10.2◦ -13.0◦ -14.9◦ -16.7◦ -18.3◦ -19.8◦

1.0 ψM -32.4◦ -23.0◦ -14.9◦ -7.3◦ -0.0◦ +7.3◦ +14.9◦ +23.0◦ +32.4◦

ψVd
+4.8◦ +3.7◦ +2.5◦ +1.3◦ 0.0◦ -1.3◦ -2.4◦ -3.6◦ -4.9◦

ψVs -3.0◦ -7.5◦ -10.5◦ -12.7◦ -15.1◦ -16.3◦ -17.7◦ -19.0◦ -20.2◦
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6.2 Table of numerical constants (β = 0) for the shear com-
ponents of the energy-release rate [2]

α -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
H
0.0 fVd

1.64 1.69 1.76 1.84 1.94 2.09 2.29 2.61 3.28
fVs 1.64 1.69 1.76 1.84 1.94 2.09 2.29 2.61 3.28

0.2 fVd
1.635 1.687 1.753 1.833 1.940 2.089 2.300 2.654 3.412

fVs 1.607 1.628 1.662 1.715 1.791 1.902 2.075 2.380 3.055
0.4 fVd

1.645 1.708 1.784 1.881 2.009 2.186 2.439 2.865 3.800
fVs 1.531 1.507 1.510 1.545 1.618 1.729 1.908 2.214 2.851

0.6 fVd
1.663 1.739 1.836 1.954 2.106 2.314 2.619 3.125 4.250

fVs 1.413 1.354 1.351 1.386 1.458 1.573 1.746 2.023 2.518
0.8 fVd

1.684 1.781 1.898 2.037 2.217 2.460 2.809 3.394 4.704
fVs 1.282 1.206 1.206 1.247 1.323 1.434 1.590 1.812 2.137

1.0 fVd
1.711 1.829 1.968 2.127 2.335 2.605 3.003 3.665 5.127

fVs 1.150 1.077 1.088 1.133 1.207 1.306 1.438 1.607 1.787
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Figure Captions

Figure 1: The geometry of (a) an edge-notched flexure specimen, (b) an end-
loaded split specimen (ELS) and (c) a 3-point bend specimen. Each
geometry consists of two unequal laminates of thicknesses h1 and h2

and moduli Ē1 and Ē2 bonded together with a crack of length a along
the interface.

Figure 2: The bending moments, axial loads and transverse shear loads acting
on each segment of a cracked beam-like geometry.

Figure 3: The fundamental problems for delamination of beam-like geometries:
(a) axial load, (b) moment, (c) double transverse shear force, (d) sin-
gle transverse shear load.

Figure 4: The effects of crack length and thickness ratio on (a) the energy-release
rate and (b) the phase angle of an ENF beam, with no modulus mis-
match.

Figure 5: The effects of crack length and modulus mismatch on (a) the energy-
release rate and (b) the phase angle of an ENF beam, with h1 = h2 = h.
Negative values of the modulus mismatch parameter α simply change
the sign of the phase angle.

Figure 6: The effects of crack length and thickness ratio on (a) the energy-release
rate and (b) the phase angle of an ELS configuration with no modulus
mismatch.

Figure 7: The effects of crack length and modulus mismatch on (a) the energy-
release rate and (b) the phase angle of an ELS configuration with
h1 = h2 = h.

Figure 8: The effects of span length and modulus ratio on (a) the energy-release
rate and (b) the phase angle of a 3-point bend geometry, with lami-
nates of equal thickness. A comparison to the steady-state solutions,
calculated ignoring shear, can be seen from the dashed lines at very
large span lengths.
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