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Abstract 
While toughening and damage might seem to be two contradictory concepts for the 
mechanics of crack growth, they are actually the same phenomena perceived from two 
different vantage points.  Similarly, the concepts of extrinsic and intrinsic toughening, 
defined in terms of whether a toughening mechanism occurs behind or ahead of a crack, 
depend on the definition of a crack tip that, in the absence of a singularity, can be 
somewhat arbitrary.  Cohesive-zone models provide useful numerical tools for 
rationalizing these different concepts and, here, we use them to show how different 
perspectives of toughening and damage can be understood. 
 The concept of a cohesive length, defined in terms of an effective modulus and 
the magnitudes of the local tractions and displacements (or work done), can be 
generalized so that it can be used at any load before failure, and at any point along the 
interface.  We show that this general concept allows multiple damage and toughening 
mechanisms, each with its own characteristic cohesive length, to be described and 
tracked in terms of a single traction-separation law. In general, the onset of damage 
corresponds to an increase in cohesive length.  This tends to weaken a material unless 
compensated for by a sufficiently high increment of additional toughness.  The ratio 
between the cohesive length of a particular damage / toughening mechanism and any 
relevant geometrical length determines whether the mechanism needs to be included in 
the cohesive-zone formulation.  Furthermore, it appears that diffuse damage and crack 
jumping between interfaces may be induced when the cohesive length of a damage 
mechanism is large compared to a micro-structural length. It is speculated that this may 
be of some relevance to the design of hierarchical materials. 
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1. Introduction 

Toughening mechanisms can be categorized into two types: intrinsic and extrinsic 

(Fig. 1) [Ritchie, 2011].  Intrinsic mechanisms are the dissipative processes that occur 

ahead of the crack tip in what is known as a crack-tip process zone.  Extrinsic 

mechanisms are those that occur behind the crack tip.  Examples of intrinsic toughening 

include plasticity, void growth, micro-cracking, phase changes and crazing. Examples of 

extrinsic toughening include bridging zones and the unloading of a crack-tip process 

zone as it passes into the wake of a crack.  However, as will be emphasized in this work, 

the physical reality that singular stresses do not occur in real materials means that the 

location of a crack tip can be arbitrarily defined, and the division of toughening 

mechanisms into intrinsic and extrinsic is a matter of perspective and convenience.  For 

example, the crack tip could be defined as being the point at which there is no 

interaction between the crack surfaces.  In this case, all deformation up to the point of 

rupture would be associated with intrinsic toughening.  Alternatively, the crack tip could 

be defined as being the point at which one deformation process ceases; for example, the 

point at which the matrix material ruptures leaving bridging fibers as the only interaction 

between the crack surfaces.  Any mechanism acting ahead of this point would then be 

associated with intrinsic toughening; any mechanism acting behind would be associated 

with extrinsic toughening. 

 Recognition of the arbitrary nature of the definition of a crack tip is important 

because understanding the processes by which one might strengthen a material can be 

influenced by one's perception of the nature of the toughening.  Furthermore, it should 

be recognized that intrinsic toughening mechanisms that introduce an aspect of non-



!

! $!

linearity into the crack-tip process zone ahead of a crack could equally-well be viewed 

as damage mechanisms that might be perceived to weaken a material [Thouless 1988].  

Indeed, the question of whether damage (intrinsic-toughening) mechanisms strengthen 

or weaken a material is addressed in this paper. 

 Cohesive-zone models provide useful analytical tools for exploring the concepts 

of toughening and damage (Fig.1).  Traction-separation laws, which dictate the tractions 

across a crack plane as a function of separation distance, can be used as a means of 

representing various forms of crack-tip processes into a finite-element analysis that 

allows crack propagation to evolve naturally upon loading.  Numerical experiments can 

be performed in which the stress evolution, crack propagation and applied loads are 

investigated for different forms of cohesive laws, and the results can be interpreted from 

different perspectives of toughening, and with different definitions of the crack tip.  

Since the behavior of the body from a global perspective has to be independent of any 

perspective chosen to describe the mechanics (Fig. 1), this approach provides a means to 

rationalize different perceptions of toughening under unifying concepts. 

 The concept of a cohesive, fracture, or bridging length has been established for 

composites and other materials [Hillerborg et al., 1976; Bao and Suo, 1992]. For mode-

I, this length is dependent on three important parameters: (i) the cohesive or bridging 

strength, 

! 

ˆ " , which is the maximum stress that can be supported by any element of 

material in the crack plane; (ii) the mode-I toughness, !I, which is the total energy 

dissipated by creating unit area of new crack surface, including fracture of any ligaments 

across the crack plane; and (iii) the effective modulus of the material on either side of 

the interface, 

! 

E * .  These three quantities can be combined to give a material parameter 
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with dimensions of length, so that a nominal mode-I fracture length can be defined as 

[Hillerborg et al., 1976; Bao and Suo, 1992; Sills and Thouless, 2013] 

   

! 

"I =
E *#I

ˆ $ 2
,       (1a) 

where the effective modulus for a bi-material system is 

   

! 

E * =
2E 1E 2
E 1 + E 2  

,      (1b) 

! 

E  is Young's modulus (E in plane stress, E/(1-!2) in plane strain, and ! is Poisson's 

ratio), and the subscripts 1 and 2 refer to the materials on either side of the interface. 

 The ratio of the nominal fracture length to the smallest geometrical dimension 

associated with fracture, such as the crack length, a, the uncracked ligament length, L, or 

the laminate thickness, h, gives a non-dimensional nominal fracture-length scale.  If this 

fracture-length scale is small, less than about 0.41, crack growth is controlled by the 

toughness.  An energy-release rate based on linear-elasticity can be calculated and 

compared to the interfacial toughness to determine if the crack will grow.  As will be 

discussed later, this gives an upper-bound for the strength of a bonded system. If the 

fracture-length scale is large, greater than about 2, crack growth is controlled by the 

cohesive strength [Parmigiani & Thouless, 2007].  This provides a second upper-bound 

for the strength of a bonded system that can be obtained by equating the average stress 

supported by the interface to its cohesive strength.  At intermediate scales, there is a 

smooth transition between toughness- and strength-controlled fracture.  The two limits 

are linked to the concepts of notch sensitivity and insensitivity [Bao and Suo, 1992].  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 This value of 0.4 has been selected to make a connection to the common definition for the validity of 
linear-elastic fracture mechanics. 



!

! &!

When failure is controlled by toughness, the strength of the material is sensitive to 

geometrical stress concentrations, such as cracks or changes in section.  When failure is 

controlled by cohesive strength, geometrical features do not concentrate stresses, leaving 

the strength to be dictated by the average stress on the smallest load-bearing ligament. 

 In a companion paper [Sills and Thouless, 2013], it was observed that an 

instantaneous cohesive length, defined in terms of the displacement and work done by 

the cohesive tractions, can be defined for any increment of loading up to, and including, 

the point of fracture.  The definition of the instantaneous cohesive length can be 

illustrated by reference to a generic form of the mode-I traction-separation law that will 

be used in this paper (Fig. 2). When the instantaneous displacement from the 

equilibrium separation of the interface is "n, the cohesive tractions have done work WI.  

The mode-I instantaneous cohesive length is then defined as 

  
  

! 

"I =
E *#n

2

W
I

=
E *WI

$ avg
2  ,      (2) 

where #avg is the average stress exerted by the cohesive element up to the displacement 

of interest.  An instantaneous cohesive-length scale can then be defined by comparing 

the magnitude of $I to a characteristic dimension, such as a crack size, ligament length, 

kink length or microstructural length.   

 The parameters at the tip of the cohesive crack, defined as the last location along 

a crack surface at which tractions occur (Fig, 1), are designated by the subscript "o", so 

that the work done by the mode-I cohesive tractions is denoted by WIo, and the 

corresponding instantaneous cohesive length is denoted by $Io.  When fracture occurs in 

pure mode-I, WIo = !I, and the instantaneous cohesive length at fracture is directly 
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related to the nominal fracture length, %I, through a numerical constant related to the 

shape of the traction-separation law.  It should be noted that $o scales with the lengths of 

features in the stress field ahead of a cohesive crack, which might be used as measures 

of a cohesive-zone length.  However, the precise relationship depends on the definition 

of the cohesive-zone length and on the shape of the traction-separation law. 

 The concept of an instantaneous cohesive length can be used at arbitrary 

positions along an interface, not just at the cohesive crack tip.  This allows different 

portions of a single cohesive law to be used to describe multiple damage / toughening 

mechanisms, each having their own instantaneous cohesive length, measured from the 

displacement at which the mechanism was triggered.  For example, the initial portion 

("n < "n1) of the cohesive law shown in Fig. 2 (which could be considered to represent 

matrix cracking in a composite) will have a much smaller value of $I than the subsequent 

portions of the law corresponding to damage or bridging mechanisms.  

 The concepts of nominal fracture length and instantaneous cohesive length can 

also be extended to mode-II.  Mixed-mode and modulus-mismatch effects have been 

discussed elsewhere [Sills and Thouless, 2013].  For simplicity, such effects are not 

considered in this paper, and the subscripts "I" and "II" will be dropped.  Furthermore, in 

this paper bi-material systems will not be considered, so the effective modulus is 

designated simply by 

! 

E . 

 In this paper, different shapes of traction-separation laws, representing different 

types of damage / toughening mechanisms are incorporated into cohesive-zone models.  

The results are analyzed from the perspectives of intrinsic toughening, extrinsic 
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toughening and damage, and the effects of cohesive-length scales on stress fields and the 

strength of interfaces are examined.  Two additional points are made about cohesive-

length scales.  The first point is to emphasize the importance of appropriately matching 

the geometrical lengths to cohesive lengths in any experiment designed to extract 

cohesive parameters.  The second point is to demonstrate a possible relationship 

between cohesive lengths and micro-structural lengths in the generation of diffuse 

damage that is an important aspect of many toughening mechanisms.   

2. Approach 

2.1 Implementation of cohesive-zone and traction-separation law 

The cohesive zone model developed by Yang et al. [1999] was utilized for all results 

presented in this work.  It was implemented by means of a user-defined element (UEL) 

in ABAQUS v6.9.  All simulations were run using three- and four-node linear, fully-

integrated, plane-strain, continuum elements. Loads were applied with a displacement 

boundary condition and stress uniformity along the boundary was confirmed for each 

simulation to ensure a far-field constant stress was well represented.  Symmetry 

boundary conditions were applied along the vertical and horizontal centerlines of the 

specimen where appropriate (unless shown otherwise).  Mesh-refinement sufficiency 

was verified iteratively and by comparison with analytical solutions.  For problems with 

crack growth, mesh refinement is required along the entire domain over which the crack 

extends.  It was found that interfacial stresses are sufficiently resolved provided the 

cohesive-element length, le, is less than about 0.02$ (a similar requirement would also be 

put on mode-II calculations).  This requirement has ramifications for problems in which 

$ varies ahead of a crack, and it should be emphasized that this means the necessary 
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extent of mesh refinement is dictated by the traction-separation law shape (since this sets 

$).  The cohesive-zone half-thickness was set at hcz/a = 1.11x10-4 so that elements had a 

reasonable aspect ratio.  A sample mesh is pictured in Fig. 3.  The deformations 

associated with two distinct portions of a cohesive law such as that shown in Fig. 2 can 

be clearly identified.  This figure illustrates the two definitions of a crack tip  identified 

in Fig. 1: (i) the unbridged or cohesive-zone crack tip, behind which there are no 

tractions and (ii) the matrix-crack tip.  

 The 4-part law shown in Fig. 2 is a generalized form of a traction-separation law 

that provides an approximate model for matrix cracking and bridging in a composite. 

Cohesive-zone models have been extensively studied in the context of composite 

materials under both mode-I and mixed-mode conditions [Sorensen and Jacobsen, 1998; 

Li et al., 2005; Sorensen and Jacobsen, 2009].  The cohesive law presented in Fig. 2 

follows the concept first discussed by Cox and Marshall [1994] that it can be used to 

represent both matrix cracking and bridging in a composite.  This 4-part law is the most 

general form of some simple cases that are often used as generic traction-separation 

laws: linear-hardening (Fig. 4a); linear-softening (Fig 4b); constant-stress (Fig. 4c); and 

trapezoidal (Fig. 4d).  As observed in Sills and Thouless [2013], the linear-hardening 

law is particularly interesting because the instantaneous cohesive length is constant.  

Therefore, it incorporates no concept of damage, and provides a prototypical cohesive 

law against which the specific effects of damage can be compared.  For example, the 

other three simple laws shown in Fig. 4 reach a limiting cohesive strength before failure, 

which can be equated to the onset of damage (or bridging).  In the context of using these 

simple laws to describe a composite, this initial portion of the traction-separation law 
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will be associated with matrix cracking2, or intrinsic toughening, and the latter parts of 

the curve will be associated with bridging, extrinsic toughening, or damage.  

2.2 Intrinsic and extrinsic toughening 

The distinctions between extrinsic toughness, intrinsic toughness / damage, matrix-crack 

tips, and cohesive-zone crack tips are illustrated by means of the mode-I center-cracked 

geometry shown in Fig. 5.  The model has a cohesive interface running along the crack 

plane all the way to the specimen boundaries.  The mode-I cohesive law shown in Fig. 2 

applies along the whole length of the interface; there is no embedded elastic crack tip 

where stresses could be unbounded. The width of the specimen is 2b, the unbridged 

crack length is 2ao, and the distance ahead of the unbridged, or cohesive, crack tip is r.  

The displacements on the boundaries are such that the remote applied stress is 

! 

"# . 

 From the perspective of intrinsic toughening or damage, the nominal energy-

release rate for this geometry with respect to the crack tip can be calculated from linear-

elastic fracture mechanics (LEFM) [Tada et al., 1985]  

   
  

! 

Go
" = #f ao /b( )$

"2ao

E 
      (4) 

where, 

   

! 

f ao /b( ) =
1" 0.5 ao /b( ) + 0.326 ao /b( )2[ ]

2

1" ao /b( )
 

The superscript "!" is used to denote the nominal energy-release rate calculated from 

linear-elasticity, corresponding to a cohesive-length scale identically equal to zero.  The 

subscript "o" is used to denote the fact that the energy-release rate is calculated with 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#!An infinite steepness for the initial portion of the traction-separation laws would correspond to a matrix 
with no toughness, and an instantaneous cohesive length $ = 0.!
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respect to the unbridged or cohesive-zone crack tip.  The singular stress field ahead of 

the crack tip corresponding to the LEFM solution is given by 

   

! 

"
"# =

f ao /b( )
2

r
ao

$ 

% 
& 

' 

( 
) 

*1/ 2

 .    (5) 

 At the heart of LEFM approaches to problems involving intrinsic toughening or 

damage is the notion that for small cohesive lengths there is a portion of the stress field 

ahead of the crack that can still be described by the inverse square-root form of Eqn. (5). 

In this context, it should be noted that the nominal energy-release rate has been defined 

in Eqn. (4) in terms of the remote stress, effective modulus and geometry, so that it has 

meaning even when the conditions of LEFM are not satisfied, and it does not represent 

the actual energy-release at the crack tip.  

 From the perspective of extrinsic toughening, one can arbitrarily define the 

location of the crack tip according to what portion of the cohesive law one wishes to 

designate as representing an extrinsic toughening mechanism.  For the purposes of this 

paper, we will define the intrinsic (or matrix) crack tip as being the point on the interface 

where the traction-separation law has reached "n1 (Fig. 2).  This corresponds to a crack 

tip at a distance "a ahead of the cohesive crack tip, so the new crack length is  

   

! 

am = ao + "a .       (6) 

The intrinsic (or matrix) toughness is given by 

   

! 

"m = ˆ # 1$1 /2,       (7) 

while the extrinsic toughness, !b, is 

     

! 

"b = Wo #"m .       (8) 

Under LEFM conditions, the remote energy-release rate can be calculated in terms of the 
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matrix-crack length, am, and the applied stress as 

   
  

! 

Gm
" = #f a /b( )$

"2a
E 

      (9)  

The subscript "m" is used to denote the fact that the energy-release rate is calculated 

with respect to the matrix crack tip.  The value of this energy-release rate required to 

propagate the matrix crack is considered to be the toughness of the composite, and a plot 

of how it varies with crack extension, "a, is known as an R-curve. 

 The stress field predicted by LEFM at the tip of a propagating matrix crack is 

given by 

   

! 

" ao

E #m

=
1
2$

r % &a
ao

' 

( 
) 

* 

+ 
, 

%1/ 2

     (10) 

where r is measured from the original cohesive crack tip.  A comparison between 

Eqns. (10) and (5) emphasizes that an inverse square root singularity should be expected 

for the stress field ahead of a crack whether it is measured from the cohesive crack tip or 

from the matrix crack tip.  The validity of such an expectation is one of the issues that 

will be examined in the analyses that follow. 

3. Intrinsic toughening / damage 

3.1.  Stress field for linear-hardening law 

A linear-hardening traction-separation law (Fig. 4a) has the form 

   

! 

" = k# ,        (11) 

Therefore, the instantaneous cohesive length is constant throughout the entire loading 

history and at any location along the interface.  It can be expressed as 

   

! 

" = 2E /k .       (12) 

Figure 6 shows plots of the stress field ahead of the cohesive crack tip for different 
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levels of $.  As expected, these plots do not change during loading since the 

instantaneous cohesive-length scale is a constant.  For the lower values of $, there is a 

region where the stresses are approximately described by the LEFM expression of Eqn. 

(5), but slightly elevated above that level.  The stresses deviate significantly from this 

relationship and exhibit a plateau close to the crack tip.  It should be noted that this 

plateau is completely unrelated to any concept of cohesive strength, because the stress in 

a linear-hardening law is not limited (except at the point of failure).  Rather, recognizing 

that   

! 

W ="2 /2k , Eqn. (12) can be used to show that the stress is given by 

   
  

! 

" = 2 E W
ao

# 

$ 
% 

& 

' 
( 

1/ 2
)
ao

# 

$ 
% 

& 

' 
( 

*1/ 2

 .     (13a) 

As $ becomes very small, the work done by the tractions at the crack tip, Wo, approaches 

  

! 

Go
".  Using Eqn. (4), it is then possible to show that the stresses at the crack tip must be 

given by 

   

! 

"o

"# = 2 $f ao /b( ) %
ao

& 

' 
( 

) 

* 
+ 

,1/ 2

     (13b) 

3.2.  Stress field for cohesive laws with damage 

The other laws considered in this paper have a cohesive strength that is reached before 

(rather than simultaneously with) failure of the element.  Therefore, the cohesive 

strength at the crack tip will limit the stresses prior to failure.  This cohesive strength can 

be considered to represent either the onset of damage (intrinsic toughening) ahead of the 

crack, or the propagation of a matrix crack leaving a wake of extrinsic toughening 

behind it.  The commonly used laws of Figs. 4(b), (c) and (d) represent simple cases 

where the peak stress for damage or bridging is identical to the strength of the matrix 
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crack.  In the numerical examples that follow, finite, but steep, initial loading slopes 

were assumed, ("1/"c = 0.001 for the linear-softening and constant-stress laws; "1/"c = 

0.01 for the trapezoidal law), with the matrix toughness being only 0.05% of the overall 

toughness for the constant-stress law, 0.1% for the linear-softening law, and 0.7% for 

the trapezoidal law.  These initial slopes correspond to instantaneous cohesive-length 

scales of $o/ao = 0.0020 for the first two laws and 0.0268 for the trapezoidal law.  An 

additional example using a more involved cohesive law that represents matrix cracking 

followed by fiber bridging was also used.  For this example, "1/"c = 0.0999, "2/"c = 0.1, 

! 

ˆ " 1 / ˆ " 2 =10, 

! 

ˆ " 1 / ˆ " 3 = 6, with an initial instantaneous cohesive-length scale of 

$o/ao = 0.0040  For the trapezoidal law "3/"c = 0.5, but for all other laws used in this 

paper "3/"c = 0.999. 

 Plots of how the stresses along the interface evolve during loading (Fig. 7) show 

similar features to those of Fig. 6.  However, close to the crack tip, the magnitude of the 

stresses has an additional limitation imposed by the cohesive strength (represented by 

the cusp in the stress plots).  As will be discussed in the subsequent section, the location 

of this cusp can be taken to be the position of the matrix crack; its progression across the 

specimen during loading can be seen in the plots of Fig. 7.  As with the linear-hardening 

law, there is a region outside the damage / toughening zone where the stresses follow an 

inverse square-root relationship for values of $o/ao less than about 1, and are elevated  

above the LEFM level.   

3.3.  Damage or intrinsic toughening? 

 As shown in Fig. 8a, the elevation of the stresses in the inverse-square-root 
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regime is also reflected in the observation that Wo is elevated over   

! 

Go
" for non-zero 

values of $o.  As can be seen from this figure, the ratio of   

! 

Wo/Go
"  increases with $o/ao, 

and is elevated by about 10% for a value of $o/ao # 0.4.  Plots for different cohesive-laws 

show similar, but not identical,3 behavior.   

 The significance of this relationship between $o/ao and   

! 

Wo/Go
"  can be seen by 

considering what happens if one were to change various geometrical or 

material/interfacial parameters. For example, if one were to halve the crack length 

(keeping the ratio a/b constant), so as to double $o/a, the stress required to give the same 

value of Wo would increase by less than the factor "2 predicted by LEFM.  Therefore, 

the condition for fracture would be met at a lower stress than would be expected.  A 

similar argument would apply for doubling the toughness.  Owing to the corresponding 

increase in $o/ao, the increase in strength would not increase by as much as the increase 

in toughness would indicate from an LEFM perspective.  If the cohesive strength were 

dropped, the strength of the bonded system could only be maintained if the toughness 

were increased to compensate for the increase in $o/a.   Furthermore, the elevation of Wo 

over   

! 

Go
" means that the calculation of a strength based on LEFM will always be an 

upper bound for any non-zero value of $o.  This is shown in the plot of Fig. 8b, in which 

the strength of a cracked interface has been presented as a function of the instantaneous 

cohesive-length scale at fracture.   

 Any introduction of damage ahead of a crack that causes $o to increase without 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 It is not apparent whether there is an alternative definition of instantaneous cohesive length that would 
make this relationship independent of cohesive law.  A similar issue was raised for mixed-mode problems 
in Sills and Thouless [2013].   
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increasing ! sufficiently to overcome the effect of a larger cohesive-length scale, will 

always make an interface weaker.  It truly is damage, even if ! is increased!  If one is 

designing the traction-separation law of an interface to toughen a material, one must 

always ensure that any increase in ! more than off-sets the effect of any increase in $o. 

For example, one might wish to trigger an additional toughening mechanism such as 

crazing, void growth or delamination.  This could be done by triggering a new damage 

mechanism at a lower level of interfacial traction than the original cohesive strength 

(Fig. 9).  The new mechanism would be beneficial as a toughening mechanism only if 

the critical displacement for crack propagation of the new mechanism is large enough to 

elevate the toughness sufficiently to overcome the increased value of $o (which increases 

owing to both the decreased cohesive strength and the increased toughness).  

4. Extrinsic toughening  

As discussed in Section 2.2, the concept of damage (or intrinsic toughening) ahead a 

crack tip can also be viewed through the lens of extrinsic toughening behind a crack tip, 

if the definition of the crack tip is moved from the point at which cohesive tractions 

cease to some intermediate point within the cohesive law.  While there is complete 

flexibility about the definition of a crack tip within this framework, we will define it as 

the point at which the instantaneous cohesive-length scale begins to change.  The point 

along the interface at which this occurs will be described as the matrix crack tip; the 

instantaneous cohesive length with respect to the matrix crack will be identified as $m; 

and the area under the traction-separation curve up to this point will be described as the 

matrix toughness, !m.   
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 The propagation of the matrix crack across the sample can be monitored from the 

numerical simulations.  An example of matrix-crack growth as a function of applied load 

is shown in Fig. 10a.  In the simulation with a constant-stress law and %/ao = 5, the 

matrix crack reached the specimen boundary, leaving a fully-bridged crack.  In the other 

simulations, the fracture became unstable before the matrix crack reached the specimen 

boundary, either because a steady-state crack had evolved (bridging model), or because 

the stored energy was sufficient for crack growth with no further increase in applied 

displacement [Li et al., 2005].  

 At low values of the instantaneous cohesive-length scales, matrix-crack growth 

can be viewed through the lens of R-curve behavior.  The data from Fig. 10a can be used 

to compute R-curves for these interfaces, as would be done in an experimental 

investigation of extrinsic toughening.  Such R-curves are shown in Fig. 10b.  These plots 

show   

! 

Gm
"/!m against crack growth, "a/L, where   

! 

Gm
" is defined in terms of the matrix 

crack length and the applied stress (Eqn. 9).  Superimposed on this figure are plots of 

Wo/!m against crack growth, where (from Eqn. 8), Wo = !m+!b..   

 It was shown earlier that from an intrinsic-toughening perspective,   

! 

Wo /Go
" >1, 

with the ratio increasing with cohesive-length scale.  Therefore, using a failure criterion 

of   

! 

Go
" = ! provides an over-estimate of the fracture strength.  Conversely, Fig. 10b 

shows that, from an extrinsic-toughening perspective,   

! 

Wo /Gm
" <1, with the ratio 

decreasing with increased toughening.  Therefore, the use of an R-curve to equate   

! 

Gm
" to 

!b + !m provides an under-estimate of the toughening associated with bridging.  The 

discrepancy increases as the intrinsic cohesive-length scale increases, as it generally 
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does during the growth of a matrix crack.   

 When developed from an LEFM perspective, extrinsic crack-growth models 

assume that there is a stress field with an inverse-square root singularity with respect to 

the distance from the matrix-crack tip (Eqn. 10).  We have already demonstrated the 

existence of an inverse square-root field for intrinsic toughening (Fig. 7).  Since 

toughening mechanisms that occur within the plane of a crack can be viewed equally 

from an intrinsic or extrinsic perspective, there is an implication that stress fields should 

have square-root singular regions whether measured from the cohesive- or matrix-crack 

tip.   To investigate whether this notion is valid, the data from Fig. 7a and 7d (in which 

stresses are plotted in terms of distance from the cohesive-crack tip) were re-plotted in 

Figs. 11a and 11b, in terms of distance from the matrix-crack tip.   

 As can be seen from these figures, there is evidence of an inverse square-root 

field from both perspectives, but only when the extrinsic / bridging contribution to the 

toughness is relatively small.  These, and related calculations, reveal that the stress field 

exhibits a singular behavior over a range of distances from the matrix crack tip.  

However, the singular behavior is generally less strong that an inverse square-root, and 

only approaches that limit when there is very little extrinsic toughening.  In particular, in 

cases where $o/ao is relatively small, and there is a square-root singular field from the 

perspective of the cohesive crack tip, the extrinsic toughening may be too great for such 

a field to be exhibited from a matrix-crack perspective. The difficulty of maintaining a 

singular LEFM field from a matrix-crack perspective would seem to raise some concern 

about the use of stress-intensity factors for crack bridging, although concepts such as R-

curves do seem to reasonably robust in the limit of small-scale cohesive lengths.  
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5. Cohesive scales for toughening mechanisms 

The concept of an instantaneous cohesive length has been introduced as a way to 

characterize the development of a cohesive zone, and as a way to describe different 

toughening / damage mechanisms that may be operating at the tip of a crack.  One 

obvious question that arises is whether there are any implications in comparing the 

cohesive lengths of different mechanisms to the size of geometrical and microstructural 

features.  Both of these aspects are discussed below. 

5.1 Geometrical features 

The first case considered is prompted by the experimental observations of Li et al. 

[2005]: a cohesive law developed from observations made on composite specimens with 

large-scale cracks failed to describe the behavior of uncracked composites.  An initial 

high-strength portion of the law had to be assumed. A model system used to revisit the 

observations, and to study the interaction between different damage mechanisms and 

geometrical length scales, is provided by a specific cohesive law of the form shown in 

Fig. 2.  The law chosen had a high matrix-cracking stress (

! 

ˆ " 1 / ˆ " 2 = 3, !m = 0.0024, $1/$c 

= 0.05, $2/$c = 0.06), and a softening phase to represent fiber bridging ($3 = $c).   

 Figure 12 shows an example of how the strength of such a composite varies with 

crack length.  As expected, the matrix strength controls the behavior at very small crack 

lengths, while the bridging toughness controls the behavior at very long crack lengths.  

Superimposed on this plot are lines indicating how the cohesive lengths of the two 

mechanisms compare with the crack length (which is the controlling dimension, since it 

is always smaller than the ligament length in the plot).  In addition, predictions of the 

strength based on the cohesive-law of each of the two mechanisms considered in 
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isolation are shown.  If the crack length is comparable to the bridging cohesive length, 

then the bridging law alone is adequate to describe the fracture process.  Conversely, 

once the crack is significantly smaller than the matrix cohesive length, then only the 

matrix law is needed. 

 The concept that the cohesive length of a toughening mechanism indicates the 

geometrical scale at which it needs to be included in a model is probably a general one.  

For modeling purposes, one needs a cohesive law that matches the scale of the problem 

being investigated.  If one is not interested in how a composite behaves in the presence 

of small geometrical features, then the only portions of the cohesive law that need to be 

considered are the ones with large cohesive-length scales.  Conversely, if the study is 

only at small geometrical scales, the larger-scale cohesive law can be neglected.  

Conversely, one has to be careful when measuring a cohesive law at the wrong scale if 

there is more than one damage / toughening mechanism operating.  For example, the use 

of macroscopic cracks to deduce the cohesive law of composites may not provide the 

information needed to model crack initiation or the propagation of very small flaws.  

This caution is valid even if (as in the present example) all the mechanisms of interest 

operate during delamination, and there is no mechanism change in the initiation phase of 

damage.   

5.2 Micro-structural features 

Cohesive-length scales can also be compared to the size of micro-structural features.  As 

will be demonstrated below, such a comparison may determine whether a higher scale of 

toughening mechanism can be induced by a crack jumping to a new interface and 

triggering large-scale bridging.  LEFM models of interfacial crack propagation don't 
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provide any mechanism for cracks to jump between interfaces, because crack 

propagation will always occur from the tip of a dominant crack.  Cohesive-zone models 

allow for such jumping provided that the strength on a neighboring interface is lowered 

sufficiently.  While one can argue that there may be statistical variation in the strengths 

of neighboring interfaces, such a model only becomes realistic if the required strength 

fluctuations between interfaces become reasonably small relative to the local stress field.  

This becomes possible if the cohesive length of the interfaces is large compared to the 

distance between the interfaces.  Large cohesive-length scales will allow crack jumping 

to occur with small fluctuations in cohesive strengths between neighboring interfaces.  

Therefore, for a given set of interface properties, crack jumping is more likely if the 

spacing between the interfaces is decreased.  It is speculated that this may be how some 

biological materials derive their macroscopic toughness.  Small micro-structural 

features, with correspondingly large cohesive-length scales, permit cracks to jump 

between interfaces with only limited variations in cohesive strengths, leading to a larger 

scale toughening by ligament-bridging between the interfaces. 

 Such a concept is illustrated in the simple geometry of Fig. 13.  This geometry 

consists of a remotely-loaded edge-cracked specimen with an initial crack running along 

an interface.  There are two secondary interfaces running parallel and at a distance h 

from this primary interface.  Linear-hardening laws with identical cohesive-length scales 

were used for each interface.  By varying the relative cohesive strengths of each 

interface, and keeping the cohesive-length scales the same, it is possible to determine the 

conditions under which the crack will jump to a weaker interface.  This is shown in the 

plot of Fig. 14, which presents the maximum strength ratio between the secondary and 
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primary interface at which the crack jumps from the primary to secondary interface.  A 

relatively coarse micro-structure was used, but the trend in the strength ratio required to 

trigger crack jumping increasing to unity as the cohesive-length scale increases is very 

clear.  An example of a crack that has jumped to a secondary interface is given in 

Fig. 15.  The similarity of this to observations of ligament bridging in fiber composites 

[Sørensen et al., 2008; Sørensen, 2010] is striking, and an example of such a 

phenomenon from nature observed at the site of the Computational and Experimental 

Mechanics of Advanced Materials (CEMAM) conference is given in Fig. 16. 

6. Conclusions 

Damage and toughening mechanisms are two manifestations of the same process.  They 

are both associated with a drop in the cohesive strength of an interface, and a 

corresponding increase in the cohesive-length scale.  Any increase in the cohesive-

length scale can result in crack propagation occurring at a lower level of applied stress, 

even with an increase in toughness.  The introduction of a toughening mechanism 

strengthens an interface (rather than damaging it) only if it leads to a sufficiently large 

increase in toughness that more than compensates for the increase in cohesive-length 

scale.  In other words, it is possible to "toughen" an interface in the sense of increasing 

the energy dissipation associated with crack growth, but to actually "damage" the 

interface in the sense of reducing the applied stress at which a crack propagates.  

Toughening/damage mechanisms that increase the fracture energy by more than what is 

required to compensate for the increase in cohesive-length scale will both strengthen and 

toughen the material.   Merely increasing the toughness of an interface is not a guarantee 

that enhanced fracture properties will result - the effect on the cohesive-length scale 
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must also be considered.  Since the cohesive-length scale is also dependent on the 

characteristic size of the material and microstructure, considerations of the efficacy of 

toughening mechanisms may need to take length scales into account. 

 The virtue of a cohesive-zone approach to fracture, over a traditional fracture-

mechanics approach, is that it automatically incorporates a cohesive length that allows it 

to bridge all length scales.  However, caution must be exercised when employing 

cohesive zones because fracture mechanisms are often associated with multiple length 

scales.  A traction-separation law that doesn't capture these different scales may fail in 

its predictive capability when used to analyze problems at a size scale that is 

incompatible with the assumed cohesive length.  For example, crack initiation in a 

composite may be associated with a mechanism (such as matrix failure) that has a much 

smaller cohesive length than the mechanism (such as crack bridging) associated with 

crack propagation.  A cohesive law developed from experiments with large-scale cracks, 

and with a correspondingly large cohesive-length scale, may not be appropriate at the 

smaller length scales associated with crack initiation.  If there are multiple mechanisms 

for crack propagation, the cohesive law must be developed at the scale(s) of interest.  

Conversely, there is no need to develop cohesive laws for failure mechanisms with 

cohesive lengths outside the scale of practical interest. 

 One important role of cohesive-length scales is their effect on describing the 

extent to which fracture may be delocalized.  If there are micro-structural features that 

are significantly smaller than the cohesive length, then the conditions for failure may not 

be localized on the plane ahead of a macroscopic crack.  This can induce crack jumping 

to neighboring interfaces, creating distributed damage and bridging ligaments.  These, in 
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turn, can introduce toughening at larger length scales, possibly creating hierarchical 

toughening mechanisms. 
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Figure 1 Comparisons between the assumed locations of crack tips for extrinsic 
toughening models, intrinsic toughening models and cohesive-zone models.  
All these represent the same physical reality.. 
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Figure 2:  Generic mode-I traction-separation law.  It should be emphasized that the 
origin of cohesive tractions and displacements should always occur at the 
equilibrium separation of the interface; this allows for some compressive 
contributions to the mode-I traction-separation law.  
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Figure 3:  Mesh at crack tip showing the deformation at different regions of the 
cohesive law.  The region between the cohesive-crack tip and the matrix-
crack tip is considered to be an extrinsic-toughening or bridging zone from 
the perspective of the matrix-crack tip.  It is considered to be an intrinsic-
toughening or damage zone from the perspective of the cohesive-crack tip. 
Contours show the normal stresses orthogonal to the crack plane. 
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Figure 4  Examples of simple cohesive-laws: (a) linear-hardening case with no 
damage; (b) linear-softening; c) constant-stress; (d) trapezoidal. 
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Figure 5 Center-cracked geometry used for the analysis. 
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Figure 6   Stress field ahead of crack for different linear-hardening laws.  Note that, 
since the instantaneous cohesive length is fixed for a linear-hardening law, 
the normalized stress fields do not change during loading.  At very large 
values of the instantaneous cohesive-length scale, the stress tends to a 
uniform value along the interface.  For a linear-hardening law, the cohesive-
length is constant, so $ = $o. 
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Figure 7(a) Evolution of the stress field ahead of the cohesive-crack tip during 
loading for a linear-softening law with a nominal fracture-length scale of 
% /ao = 5.  As the remote stress, &!, increases, the instantaneous cohesive 
length at the crack tip, $o, also increases.  Plots corresponding to various 
values of the crack-tip instantaneous cohesive-length scale $o/ao are 
shown. 
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Figure 7(b)   Evolution of the stress field ahead of the cohesive-crack tip during 
loading for a constant-stress law with a nominal fracture-length scale of 
% /ao = 5.  As the remote stress, &!, increases, the instantaneous cohesive 
length at the crack tip, $o, also increases.  Plots corresponding to various 
values of the crack-tip instantaneous cohesive-length scale $o/ao are 
shown. 
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Figure 7(c)   Evolution of the stress field ahead of the cohesive-crack tip during 
loading for a trapezoidal law with a nominal fracture-length scale of 
% /ao = 3.  As the remote stress, &!, increases, the instantaneous cohesive 
length at the crack tip, $o, also increases.  Plots corresponding to various 
values of the crack-tip instantaneous cohesive-length scale $o/ao are 
shown. 
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Figure 7(d)   Stress field ahead of the cohesive crack tip for a cohesive law 
representing a fiber composite, from the initial loading of the unbridged 
matrix crack (for which $o/ao = 0.040) until the crack is fully bridged 
($o/ao = 1.18).  The nominal fracture length scale for this law is 
%/ao = 3.4, based on 

! 

ˆ " 1.  

 !
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Figure 8(a)   Evolution of the ratio of the work done by the crack-tip tractions to the 
nominal energy-release rate calculated from LEFM, using a constant-
stress and linear-hardening cohesive law.  The relative increase in Wo is 
associated with the additional compliance from the cohesive zone ahead 
of the crack tip.  It results in a failure load that is lower than that 
predicted by LEFM.  
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Figure 8(b)   An increase in the cohesive-length scale decreases the fracture strength of 
a cracked body.  As the cohesive-length scale decreases to zero, the 
strength asymptotes to the strength predicted by LEFM (toughness-
controlled strength).  As the cohesive-length scale increases, the strength 
tends to the cohesive-strength controlled limit. 
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Figure 9   Introducing a new toughening mechanism triggered by dropping the 

cohesive strength from 

! 

ˆ " A  to 

! 

ˆ " B  may not result in a stronger material, 
even if the new toughness, !B, is greater than the original toughness, !A.  
This is because the cohesive-length scale at fracture for mechanism "B" 
will be larger than for mechanism "A". 
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Figure 10(a)   Applied stress as a function of the matrix crack growth for various 
cohesive laws.  The "o" on the cohesive curve represents the onset of 
matrix cracking.  An "X" on a plot marks the onset of a fracture 
instability; this occurred at "/"c = 1 for the fiber-bridging law, 
"/"c = 0.792 for the linear-softening law, and "/"c  = 0.827 for the 
trapezoidal law. 
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Figure 10(b)   R-curves calculated from the data of Fig. 10a.  The "o" on the cohesive 
curve represents the onset of matrix cracking.  An "X" on a plot marks 
the onset of a fracture instability.  These plots (solid lines) show   

! 

Gm
"/!m 

plotted against crack growth, where   

! 

Gm
" is defined in terms of the matrix 

crack length and the applied stress.  A comparison is also made between 
these curves and Wo/!m (dashed lines).  
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Figure 11(a)   Stress ahead of the matrix crack tip at the condition for matrix crack 
growth for a linear-softening cohesive law.   
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Figure 11(b)   Stress ahead of the matrix crack tip at the condition for matrix crack 
growth for a cohesive law representing a fiber composite, from the initial 
growth of the unbridged crack (Wb/!m = 0), until the crack is fully 
bridged (Wb/!m = 2.40). 
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Figure 12 Predictions for failure strength of a crack with a cohesive law 
representing fiber-bridging in a composite.  A comparison is made 
between the predictions for the full law, with predictions made assuming 
only the matrix portion of the law, and predictions made assuming only 
the bridging portion of the law. 
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Figure 13 Geometry for investigating crack jumping across interfaces.  Linear-
hardening laws with the same cohesive-length scale were used for all 
interfaces, but different cohesive strengths were assigned to different 
interfaces.  The dashed red lines correspond to the interfaces along which 
there are cohesive zones. 
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Figure 14 A plot of the critical ratio for the cohesive strength of the secondary 
interface to the cohesive strength of the primary interface required for 
crack jumping, as a function of the cohesive-length scale used for all 
three interfaces.  All the interfaces have linear-hardening laws, which are 
identical in mode-I and mode-II.   
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(a)  

 

(b)  

Figure 15 (a) Deformation of the cohesive zones near the original crack tip for the 
geometry shown in Fig. 13 just before crack growth. (b) Delamination 
after the crack has jumped from the primary interface to the secondary 
interface.  For these figures, the bottom secondary interface was given the 
same cohesive strength as the primary interface, so the crack could only 
jump to the top interface.  In both of these figures, an "X" indicates the 
location of cohesive elements, and the grey areas represent regions where 
the tractions are still acting.  All interfaces have linear-hardening laws 
with $o/h= 9; the cohesive strength of the top secondary interface is 40% 
of the cohesive strength of the primary interface.  The stress contours are 
normal stresses orthogonal to the crack plane normalized by the cohesive 
strength of the primary interface. 
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Figure 16 Crack jumping across interfaces exhibited in a natural composite (the 
bark of a coconut tree) observed at the marina in KAUST (site of the 
CEMAM 2013 conference). 


