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Abstract 

Cohesive-zone models of fracture provide a framework that allows a smooth transition 

between a strength-based approach to fracture and an energy-based approach.  At the 

heart of these models are traction-separation laws that are described by a cohesive 

strength and toughness.  These cohesive-law parameters can be used to define a cohesive-

length scale that, when compared to physical length scales in the problem, gives an 

indication of whether failure is controlled by strength or energy considerations.  Mixed-

mode fracture is described by a phase angle that provides a measure of the partition of the 

deformation energy into shear and normal components.  It is shown that this phase angle 

can be calculated for a cohesive-zone model, and that, if the cohesive length is small 

enough, the phase angle agrees with the value predicted by linear-elastic fracture 

mechanics, irrespective of the shape of the cohesive-laws.  It is further shown that the 

cohesive length derived from the cohesive parameters can be used to rationalize the 

concept of a phase angle for interfacial fracture in the presence of a modulus mismatch.  

In particular, the length scale required to define a phase angle for interfacial fracture can 

be identified with the cohesive length of a cohesive-zone model.  This phase angle shifts 

with changes in the cohesive length in accordance to the predictions of linear-elastic 

interfacial fracture mechanics.  
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1. Introduction 

Cohesive-zone models of fracture provide a framework that allows a smooth 

transition between the strength-based approach of Inglis [1913] to fracture, and the 

energy-based approach of Griffith [1920].  At the heart of these models are the cohesive 

stresses that provide bonding across an interface or putative crack plane.  These stresses 

are described by a traction-separation law that is characterized by a cohesive strength 

(peak stress) and toughness (area under the traction-separation curve).  Under pure mode-

I loading, the cohesive strength, , toughness, ΓI, and elastic modulus of the material 

adjacent to the crack plane, , can be combined to define a nominal cohesive length 

[Hillerborg et al., 1976; Bao and Suo, 1992]: 

 

€ 

ζ I = E ΓI / ˆ σ 2  ,       (1) 

where 

€ 

E = E / 1−ν 2( ) in plane strain, 

€ 

E = E  in plane stress, and E and ν are Young's 

modulus and Poisson's ratio, respectively.  This nominal cohesive length provides an 

indication of whether failure is controlled by strength or energy considerations.  When ζI 

is much smaller than the characteristic geometrical lengths, crack propagation is 

controlled only by the energy considerations.  Under these conditions, linear-elastic 

fracture mechanics (LEFM) provides a well-understood basis for describing fracture, and 

toughness is the important failure parameter.  Conversely, when ζI is much greater than 

the characteristic geometrical lengths, crack propagation is controlled only by stress 

considerations, and the cohesive strength controls failure.  Under intermediate conditions, 

both the strength and toughness influence the conditions for crack growth. 

 Within the LEFM framework for analyzing crack propagation, the cohesive 

strength is assumed to be infinite, and there is no concept of a cohesive length.  This 
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means that there is no length scale associated with the fracture process.  As explained 

below, this can result in a well-known conundrum for a crack growing along an interface 

between two dissimilar materials, since there are conditions under which LEFM cannot 

be used to analyze crack growth without invoking the existence of a cohesive length.  

 The modulus mismatch across a planar, isotropic, bimaterial interface (Fig. 1) can 

be described by the two Dundurs parameters [Dundurs, 1969], 

  

€ 

α =
E1 −E 2

E1 +E 2
       (2a) 

and 

  

€ 

β =
E1 f ν2( )−E 2 f ν1( )

E1 +E 2
 ,     (2b) 

where the subscripts 1 and 2 denote the materials on either side of the interface, 

€ 

f (ν ) = 1−2ν( ) / 2 1−ν( )[ ]  in plane strain, and 

€ 

f (ν ) = 1−2ν( ) /2 in plane stress.  The 

expression for the normal stress, σyy, and shear stress, σxy, on the interface at a distance r 

immediately ahead of a crack tip is given by [Rice, 1988] 

  

€ 

σ yy + iσ xy( ) = Kriε 2πr       (3a) 
where, 

  

€ 

ε =
1
2π
ln 1− β
1+ β

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟        (3b) 

and K is a complex stress-intensity factor with real, Re(K), and imaginary, Im(K), parts, 

related by a phase angle ψK. The phase angle is a function of a characteristic dimension, 

L, of the geometry, and is of the form 

  

€ 

ψK = tan−1 Im K( ) /Re K( )[ ] =ω−ε lnL  ,     (4) 

where ω depends on the geometry and loading.  When β and, hence, ε = 0, this 

expression is well defined.  However, the phase angle becomes dependent on the choice 

of units for length if β ≠ 0! 
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 The energy-release rate, G, which is the energetic driving force for crack 

propagation, is related to the stress-intensity factor by 

  
  

€ 

G =
1− β 2( )

E *
K 2

=
1

E * cosh2 πε
K 2  ,    (5) 

where 

€ 

K  is the magnitude of K, and  is the characteristic modulus of a bi-material 

system: 

  

€ 

E * =
2E 1E 2
E 1 + E 2

= 1−α( )E 1.      (6) 

Following the Griffith assumption of fracture [Griffith, 1920], crack propagation along 

the interface occurs when the energy-release rate exceeds a critical value known as the 

interfacial toughness, Γ.  The concept of a phase angle enters the analysis of crack 

propagation because there is extensive experimental evidence that the interfacial 

toughness is not a fixed material parameter, but depends on the loading and geometry 

through the phase angle [Cao and Evans, 1989; Wang and Suo, 1990; Thouless, 1990; 

Thouless, 1992; Liechti and Chai, 1992].  This concept, known as a "mode-dependent 

toughness" or a "mixed-mode failure criterion," is used in LEFM analyses and 

predictions of interfacial crack propagation. 

 If the Dundurs parameter β is zero, the real and imaginary parts of the stress-

intensity factor are uniquely identified as the mode-I and mode-II components, KI and KII, 

of the stress-intensity factor, with each component independently describing the normal 

and shear deformations along the interface.  These normal and shear deformations can 
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also be associated with the mode-I and mode-II components of the energy-release rate, 

  

€ 

G I = KI
2 /E *  and   

€ 

G II = KII
2 /E *, respectively, so that the phase angle can be written as1 

  
  

€ 

ψK =ψ∞ = tan−1 KII /KI( ) = tan−1 G II /G I( ) =ω  .   (7) 

 The problem associated with the definition of a phase angle in LEFM solutions 

for bi-material interfaces when β ≠ 0 has long been recognized [Comninou, 1990].  It 

arises because there is no length scale in the mathematical formulation of linear-elastic 

fracture mechanics that can be used to normalize the characteristic dimension in Eqn. 4. 

One approach to resolve this difficulty is the introduction of an arbitrary length, ξ, into 

the formulation of the problem.  The phase angle of the product 

€ 

Kξ iε  is then well-defined 

[Rice, 1988], and can be used as the nominal phase angle: 

  

€ 

ψ∞ = tan−1
Im Kξ iε( )
Re Kξ iε( )
⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
 .      (8) 

This nominal phase angle is related to the phase angle ψΚ of Eqn. 4 by 

  

€ 

ψ∞ =ψK +ε ln ξ /L( )  .      (9) 

However, any attempt to link ψ∞ to a mixed-mode failure criterion depends on the choice 

of ξ.  A definition of ξ  from a model of the fracture process or the crack-tip deformation 

[Leichti and Chai, 1992; Kim, 2003] introduces the concept of a cohesive length as an 

additional fracture parameter.  This starts to move the analysis away from a pure LEFM 

approach, where an energy term is the only required fracture parameter, towards a 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

1	
  In practice, some of the details of the geometry and material properties at the crack-tip scale may not be 
exactly as assumed in the LEFM analysis of an interface crack.  For this reason, the term "nominal phase 
angle", ψ∞, will be used to describe ψK when we don't wish to imply mathematical rigor at the crack-tip 
scale.  
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cohesive-zone type of model in which the second fracture parameter in the form of the 

cohesive strength naturally introduces a length scale into the framework.   

 In this paper, we shall show how the length scale that evolves from a cohesive-

zone model provides a natural link between the nominal phase angle and a mixed-mode 

failure criterion.  Two basic questions provided the initial impetus for the work described 

in this paper: (i) What is the relationship between the intrinsic cohesive length that 

controls the phase angle in bi-material systems and the nominal cohesive length that is 

defined in terms of the cohesive parameters?  (ii) How does this relationship depend on 

the shape of the cohesive law?  These questions were addressed by first examining 

mixed-mode fracture when β = 0.  Under these conditions, there is a regime in which 

crack propagation can be well defined within an LEFM framework, and any valid mixed-

mode cohesive-zone model must reproduce the phase angle predicted from LEFM, with 

no dependence on the details of the cohesive laws.  Once this was demonstrated, the 

cohesive-zone model was used to explore conditions that deviated from those required for 

LEFM and also to explore the case of β ≠ 0. 

2. Analytical and numerical approaches 

2.1 Linear elastic solutions 

 The beam-like geometries described by Suo and Hutchinson [1990] were used to 

explore mixed-mode interfacial fracture in this study.  As shown in Fig. 2, these consist 

of two beams of thickness h1 and h2 bonded across an interface containing a crack and 

loaded only by axial loads, N, and moments, M.  The more general loading associated 

with transverse shear [Li et al., 2004] was not considered in this study, as the LEFM 

solutions have not been extended to include the effects of non-zero values of β.  The 
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complex stress-intensity factors, KN and KM, for the two separate problems shown in 

Fig. 2, one defined only by axial loads and the other defined only by moments, is given 

by [Suo and Hutchinson, 1990] 

  

€ 

KN =
ρN
2Uh1

eiω N h1
−iε        (10a) 

  

€ 

KM =
ρM
2Vh1

3
ei ω N −φ MN( )h1

−iε       (10b) 

where the phase shift between KM and KN is given by 

  

€ 

cosφMN = 6ΣH 2 1+H( ) UV  . 

The other parameters in Eqn. (10) are 

  

€ 

U =
1

1+ Σ 4H +6H 2 + 3H 3( )
 ,   

  

€ 

V =
1

12 1+ ΣH 3( )
  , 

  

€ 

Σ =
1+α
1−α

, 

€ 

H =
h1
h2

,  

€ 

ρ =
1−α
1− β 2

, 

and ωN is a function of α, β and H given in Suo and Hutchinson [1990].2  The stress-

intensity factor for combined loading, KMN, is equal to KM + KN.  The obvious choice of 

characteristic length in Eqn. 9 is h1, so the nominal phase angle for this combined loading 

is  

  

€ 

ψ∞ = tan−1
Im KMNh1

iε( )
Re KMNh1

iε( )
⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
= tan−1

η sinωN + sin ωN −φMN( )
η cosωN +cos ωN −φMN( )
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 ,  (11) 

where 

€ 

η = V /U Nh1 /M( ).  The use of a different characteristic length, ξ, changes the 

phase angle to 

  

€ 

ψξ =ψ∞ +ε ln ξ /h1( )       (12) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

2	
  ωM = ωN - φMN is also given in Li et al. [2004] for β = 0 and other values of H.  These values were used 
for some calculations in this paper to avoid uncertainties from interpolation. 
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2.2 Cohesive-zone model 

The 2-D mixed-mode cohesive-zone model used in this paper follows that 

developed by Yang and Thouless [2001] in which two distinct relationships are used for 

the opening (mode I) and shear (mode II) traction-separation laws, as indicated 

schematically in Fig. 3.  In this model, the two modes are coupled only through a failure 

criterion that gives the critical combination of opening and shear displacements at which 

the tractions in both modes fail simultaneously.  This type of mixed-mode law has been 

shown to have predictive capabilities for some adhesive joints [Yang and Thouless, 

2001].  It is recognized that there are physical problems for which deformation in one 

mode may be expected to affect the details of the constitutive behavior in the other mode.   

However, for the purposes of the present paper, the model provides a useful 

simplification in the number of parameters required to describe the cohesive laws, and the 

general concepts for the behavior of mixed-mode cohesive laws elucidated in this paper 

should extend to these other types of models.  In particular, the robust reduction to LEFM 

results when the fracture length scale is small that will be demonstrated in this paper, 

must be reproduced in any valid cohesive-zone model. 

In the cohesive-zone model used in this study, the tractions across the interface 

independently follow the traction-separation curves appropriate to the mode of 

deformation as the crack surfaces move relative to each other.  At any increment of 

loading, the area swept out under the appropriate traction-separation law at any point 

ahead of the crack tip is WI for the mode-I tractions and WII for the mode-II tractions 
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(Fig. 3).3  The areas swept out under the two traction-separation curves at the crack tip 

(the first element for which both tractions are non-zero) can be designated as WIo and 

WIIo, and if the materials on either side of the interface are elastic, the J-integral at the 

crack tip is [Budiansky, 1986]: 

    

€ 

J = JI + JII = WIo +WIIo ,     (13) 

where JI and JII are the mode-I and mode-II components of the J-integral.  Following the 

form of Eqn. (7), it is then possible to write a general definition for the crack-tip phase 

angle in a cohesive-zone model as  

    

€ 

ψo = tan−1 WIIo /WIo  .      (14) 

Parmigiani and Thouless [2007] have verified that, for one particular form of cohesive 

law, when β = 0 and the cohesive length is small enough, this crack-tip phase angle, ψo, 

is identical to the nominal phase angle defined by Eqn. 7.  It should be emphasized that 

alternative definitions for the phase angle based on displacements or stress, rather than 

energy, that are often used in the cohesive-zone literature will generally be dependent on 

the shape of the cohesive-law, and will not match LEFM values except by serendipity.   

 A number of authors have proposed that the shape of the traction-separation law 

may influence the behavior of cohesive-zone models [Chandra et al., 2002; Volokh, 

2004; Alfano, 2006].  Therefore, different forms of the cohesive laws were used in this 

study to explore how different cohesive laws affect the concepts of mixed-mode fracture.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

3	
  As implemented in this study, WI and WII are not realized as energy losses until failure of the element has 
occurred - non-linear elastic traction-separation laws are being used.  Again, this was done to minimize the 
number of parameters needed to describe the laws.  Only for problems in which the cohesive tractions 
unload before failure would any difference between elastic and inelastic laws be realized.  There are several 
scenarios in which this could be an issue, including problems for which β ≠ 0, but in the interests of focus 
and space, this complication is not developed further. 
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In particular, a tri-linear shape was chosen for both modes of deformation, since this is a 

general form that can describe a wide range of different behaviors by means of changing 

only a few non-dimensional parameters.  The details of this law are best described by 

reference to Fig. 4.  In mode I, the relationship between normal stress and normal 

displacement is given by 

 

€ 

σ =
ˆ σ a
δIa

δI     

€ 

δI <δIa  

 

€ 

σ = ˆ σ a −
ˆ σ a − ˆ σ b
δIb −δIa

δI −δIa( )   

€ 

δIa ≤δI <δIb  

 

€ 

σ = ˆ σ b −
ˆ σ b

δIc −δIb
δI −δIb( )  

€ 

δIb ≤δI <δIc     (15a) 

The stiffness for negative mode-I displacements is identical to the initial stiffness for 

positive displacements.  In mode II, the relationship between shear stress and shear 

displacement is given by 

 

€ 

τ =
ˆ τ a
δIIa

δII     

€ 

δII <δIIa  

 

€ 

τ = ˆ τ a −
ˆ τ a − ˆ τ b
δIIb −δIIa

δII −δIIa( )   

€ 

δIIa ≤δII <δIIb  

 

€ 

τ = ˆ τ b −
ˆ τ b

δIIc −δIIb
δII −δIIb( )  

€ 

δIIb ≤δII <δIIc     (15b) 

The shear stresses for negative shear displacements follow the same relationships, except 

the sign of the shear stress is reversed.  Since a finite thickness was always used for the 

cohesive elements, compressive stresses (negative mode I) could be accommodated 

across the interface, without resorting to contact elements.  It was always verified that 

negative mode-I displacements were always less than the thickness of the cohesive 

elements during the calculations presented in this paper. 
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 In the results that follow, the tri-linear laws are described by three non-

dimensional shape parameters for each mode: 

€ 

δa /δc, 

€ 

δb /δc  and R, where 

€ 

RI = ˆ σ a / ˆ σ b  and 

€ 

RII = ˆ τ a / ˆ τ b .  The total area under each traction-separation curve is designated by the 

mode-I and mode-II toughness values, ΓI and ΓII.  The two cohesive strengths,  and , 

that are used in the definition of the cohesive length for each mode (Eqn. 1) are the 

largest of  or  and  or , respectively.  By varying the three shape parameters it 

is possible to describe (i) linear-hardening laws (δa/δc = δb/δc = R = 1), (ii) linear-

softening laws (δa/δc = δb/δc = 0; R = 1), (iii) constant stress laws (δa/δc = 0; δb/δc = R = 

1), (iv) saw-tooth laws (δa/δc = δb/δc; R = 1), and (v) trapezoidal laws (δa/δc ≠ δb/δc; 

R = 1).  It is also possible to describe double-peak laws that provide models for interfaces 

with two characteristic strengths such as fiber-reinforced composites  [Li et al., 2005]: 

R > 1, if the initiation or matrix-cracking strength is greater than the bridging or fiber-

bundle strength, and R < 1, if the initiation or matrix strength is less than the bridging or 

fiber-bundle strength. 

3. Results 

 The cohesive-zone model discussed above was used to analyze mixed-mode 

geometries of the form shown in Fig. 2.  Three- and four-node, fully-integrated, two-

dimensional, plane-strain, linear-elastic, continuum elements were used, with an 

unstructured mesh.  Cohesive elements with the traction-separation law described in the 

previous section were placed all the way along the interface, with the thickness of the 

cohesive zone being set at t/h2 = 1/12,500.  The cohesive model was implemented in a 

user-defined element (UEL) definition in ABAQUS v6.7 with a Fortran subroutine as 

originally developed by Yang et al. [1999], and extended for mixed-mode conditions 
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[Yang and Thouless, 2001].  A specific example of the mesh and loading used is shown 

in Fig. 5.  External loads and moments were applied as distributed surface forces where 

appropriate.  The necessary extent of mesh refinement was determined by trial and error 

until discrepancies were within an acceptable level of uncertainty that is reflected by the 

magnitude of error bars on the plots presented in this paper.  The required size, lmax, for 

the cohesive-zone elements was about lmax/h1 ≈ 2 - 3 x 10-4 for the range of cohesive-

length scales considered.  This ensured that the ratio of the nominal cohesive-length scale 

to the cohesive-zone element size, 

€ 

E *ΓI / ˆ σ 2lmax , was greater than about 300.  

3.1 Effects of cohesive law on phase angle for β = 0 

 The concept of a phase angle, given in Eqn. 14 for a cohesive-zone framework, 

can be expanded so that it is defined as a local phase angle at any element along the 

interface: 

    

€ 

ψ = tan−1 WII /WI  .      (16) 

This local phase angle calculated for a geometry loaded only by an axial couple (as 

illustrated in Fig. 5) is plotted in Fig. 6 as a function of distance along the interface from 

the crack tip.  In this plot the nominal mode-I and mode-II cohesive-length scales, 

€ 

ζ I / h1 = E ΓI / ˆ σ 2h1 and 

€ 

ζ II / h1 = E ΓII / ˆ τ 2h1, are kept relatively small, so that LEFM 

conditions are expected to prevail.  The phase angles greater than 90º at locations remote 

from the crack tip indicate the compressive loading across the interface that is required to 

compensate for the opening mode at the crack tip, since there is no net normal force 

across the interface in this geometry.  This compression across the interface is 

accommodated by the finite thickness of the cohesive zone.  Figure 6 reproduces one of 

the key results of Parmigiani and Thouless [2007] that, for small nominal cohesive-length 
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scales, the local phase angle along the interface asymptotes at the crack tip to the nominal 

value given by LEFM [Suo and Hutchinson, 1990].  The important new result 

demonstrated in this paper is that this agreement between the asymptotic crack-tip phase 

angle and the nominal phase angle is a general phenomenon, and does not depend on the 

choice of cohesive law.  Furthermore, although most of the results in the figure have been 

presented for a subset of cohesive-laws that are identical in both modes, the asymptotic 

values are robust provided the nominal cohesive-length scale is small for both mode I and 

mode II.  This is further illustrated by the set of results (e) shown in Fig. 6, for which the 

two modes have different shapes of traction-separation laws.  The robustness of the 

crack-tip phase angle is consistent with the expectations that the cohesive law can have 

no effect on the partition of energy at a crack tip under LEFM conditions.  Indeed, 

reproduction of the LEFM phase angle at small cohesive-length scales is one of the few 

independent checks that can be made for the validity of cohesive-zone models.4   

 As the nominal cohesive-length scale is increased, LEFM conditions may be 

violated, and there is no longer any expectation that the crack-tip phase angle should 

match the nominal phase angle from LEFM.  As an example, Fig. 7 shows a gradual shift 

of the crack-tip phase angle as the nominal cohesive-length scale for each mode is 

increased.  Even though the crack-tip phase angle deviates from the LEFM prediction at 

larger cohesive-length scales, a plateau in the local phase angle was always observed at 

the crack tip.  The length of this plateau increases with the cohesive length (Fig. 8), but 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

4, It should be noted that the shape of a cohesive law may affect predictions of mixed-mode delamination, 
even under LEFM conditions, through any influence the shape may have on the mixed-mode failure 
criterion.  In this work, we assume that the mode-I and mode-II cohesive laws are coupled through a given 
mixed-mode failure criterion.  Other approaches can result in the mixed-mode failure criterion evolving 
from coupled cohesive laws.  However, in all valid cohesive-zone models the energy partition between the 
two modes (and, hence, the phase angle) must be consistent with LEFM at small cohesive-length scales.   
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no relationship between the plateau length and the properties of the cohesive laws has 

been found.   

 Figure 9 shows a plot of the normal and shear stresses ahead of the crack tip for 

the same conditions that were used to calculate the local phase angles shown in Fig. 6.  

Most of the plots show at least a limited range of distances from the crack tip where the 

stresses follow the inverse-square-root distribution expected from LEFM.  However, this 

range can be very limited, especially for mode-II.  Indeed, for the cohesive law with a 

constant stress level, there appears to be no portion of the mode-II stress distribution that 

can be considered to follow the LEFM field.  However, it should be noted that this 

doesn't seem to affect the fact that the crack-tip phase angle asymptotes to the nominal 

LEFM value.  It is also noted that the region in which the stresses might be considered to 

follow an inverse-square-root distribution is much further away from the crack tip than 

the length of the plateau over which the local phase angle asymptotes to the nominal 

value.   

3.2 Effects of cohesive law on phase angle for β ≠ 0 

 Figure 10 shows how the local phase angle varies with distance from the crack tip 

for several values of β  and for a linear-hardening law with nominal cohesive-length 

scales of ζI/h1	
  =	
  ζII/h1 = 0.1.  As previously illustrated for a different law [Parmigiani and 

Thouless, 2007], three important features are shown in this figure. First, as with β = 0, the 

phase angle asymptotes to a fixed value at the crack tip.  Second, this crack-tip phase 

angle, ψo, is different from the nominal phase angle, ψ∞, that can be calculated from 

Eqn. 11 [Suo and Hutchinson, 1990].  Third, the difference between ψo and ψ∞ 
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systematically varies with β.  These three observations are consistent with Eqn. 12, and 

this equation can be used to obtain what will be referred to as an intrinsic cohesive 

length, ξo, which controls the shift between the crack-tip phase angle and the nominal 

phase angle: 

  

€ 

ψ0 −ψ
∞

= ε ln ξo /h1( )  .      (17) 

Therefore, if the nominal phase angle is known for a particular geometry, the shift 

between the nominal phase angle and the crack-tip phase angle can be used to infer the 

intrinsic cohesive-length scale, ξo/h1.  As shown in Fig. 11, the intrinsic cohesive-length 

scale is directly proportional to the nominal cohesive-length scale within numerical 

uncertainty, but the constant of proportionality depends on the nature of the cohesive law. 	
  

 The shifts in phase angle and the associated cohesive lengths shown in the 

previous two plots were obtained at one particular instant during loading (the point at 

which the condition   

€ 

WIo /ΓI +WIIo /ΓII =1  is met, corresponding to one particular choice of 

mixed-mode failure criterion).  However, the phase angle can be determined at any point 

during loading, and the possibility that the crack-tip phase angle and cohesive length 

changes as the applied load is increased has to be considered.  Figure 12(a) shows that the 

phase angle does, indeed, change slightly during loading.  However, Fig. 12(b) shows an 

exception to this generality for linear-hardening laws.  The phase angle (and hence the 

intrinsic cohesive length) remains constant for this type of proportional loading.  This is 

true even when the two modes have different values for the nominal cohesive-length.  

This observation is probably associated with the fact that linear-hardening laws are 

unique because the quantities   

€ 

E WI /σ
2 and   

€ 

E WII /τ
2  are always constant and equal to ζI 

and ζII, respectively.   
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 Figure 12(b) also shows that the mode-I and mode-II nominal cohesive lengths 

have different effects on the crack-tip phase angle.  This raises the question of whether 

there is any effect of nominal phase angle on the intrinsic cohesive-length scale.  As 

shown in Fig. 13, there may be a small effect if the mode-I and mode-II laws have 

different length scales, but no effect if the two modes have the same length scale. 

Furthermore, this figure indicates that the intrinsic cohesive-length scale is essentially 

independent of geometry.  The apparent independence of the intrinsic cohesive-length 

scale from the nominal phase angle and geometry makes the concept of the intrinsic 

cohesive-length scale appealing.  However, the interaction between the mode-I and 

mode-II length scales complicates the issue in general, especially since all laws other than 

the linear-hardening ones have intrinsic cohesive-length scales that change during 

loading.   

 The results of a concluding set of calculations (Fig. 14) show how the nominal 

cohesive length might usefully be defined when the modulus mismatch parameter α is 

not equal to zero.5  The calculations for this figure were conducted by using identical 

linear-hardening cohesive laws for modes I and II, and by varying the loading to keep the 

nominal (and crack-tip) phase angle constant for different values of α.  As can be seen 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

5 A series of numerical studies confirmed that the effective modulus enters the problem only in conjunction 

with the two values of toughness, as 

€ 

E *ΓI  and 

€ 

E *ΓII .  In other words, while the dimensionless group 

€ 

E *h1 /ΓI  enters a dimensional analysis of the problem, it does not appear to affect the results at any 
cohesive-length scale.  This is consistent with LEFM formulations, for which it is well-established that 

€ 

E *appears only as a product with ΓI and ΓII in an LEFM formulation and that, consequently, there is no 
length scale associated with the fracture process.  However, our numerical results suggest that non-
dimensional groups of the form 

€ 

E *h1 /ΓI  are not important, even for large cohesive- lengths where LEFM 
is violated.   
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from this figure, the intrinsic cohesive length scaled linearly with a bi-material nominal 

cohesive length defined using the effective modulus of Eqn. 6:  

  

€ 

ζ I = E *ΓI / ˆ σ 2  ,        (18a) 

  

€ 

ζ II = E *ΓII / ˆ τ 2   .      (18b) 

Furthermore, it should be noted that Fig. 14 was developed using various values for β, so 

it appears that this second modulus mismatch parameter does not enter any definition of 

the cohesive length. 

4. Discussion 

 The plots of Fig. 9 illustrate the problem with a common approach in the 

cohesive-zone literature of defining the phase angle either in terms of the ratio of the 

shear to normal stresses or in terms of the displacements.  At the crack tip, where fracture 

occurs, both of these definitions are completely dependent on the choice of cohesive law.  

Only for linear-hardening cohesive laws that are identical in both mode-I and mode-II do 

the definitions based on stress or displacement give a phase angle that is consistent with 

LEFM.  For the particular geometry used in Figs. 6 and 9, a crack-tip "phase angle" based 

on stress would have varied from 11º to 56º, while a crack tip "phase angle" based on 

displacement would have varied from 56º to 70º, depending on the choice of cohesive 

law.  These variations in the phase angles should be compared to the constant value of 

54-57º (including numerical uncertainty) for all cohesive laws using the definition of 

phase angle given by Eqn. 14, and to the LEFM value of 55º for this geometry [Li et al., 

2004]. 

By defining the phase angle in terms of the energy partition at the crack tip 

(Eqn. 14), a connection can be made between analyses for mixed-mode crack growth in 
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LEFM and in cohesive-zone models.  Failure criteria of the form Γ = Γ(ψ∞) are often 

used within an LEFM framework.  Such criteria can be re-expressed (or approximated) 

within a cohesive-zone framework in the form of   

€ 

f WIo /ΓI , WIIo /ΓII( ) =1 for failure of the 

crack-tip element (and crack advance).  For example, a simple failure criterion that has 

some of the attributes associated with experimental observations of mixed-mode failure, 

and that could readily be used within a mixed-mode LEFM analysis is  

 

€ 

Γ =Γ ψ∞( ) =ΓI
λ 1+ tan2ψ∞( )
λ + tan2ψ∞

 ,     (19) 

where λ is the ratio between the toughness in mode-I and mode-II: λ = ΓII/ΓI.  It can be 

shown that this is equivalent to a critical condition of  

 
  

€ 

WI o

ΓI
+

WII o

ΓII
=1        (20) 

when implemented within a cohesive-zone framework.  This was used as a condition to 

define an end point for the mixed-mode calculations of this paper.  Other choices for the 

LEFM mixed-mode failure criteria can be expressed as different criterion for failure of 

the crack-tip element.  None of the significant conclusions of this paper are affected by 

the choice of failure criterion.  

 The shape of the cohesive laws can affect mixed-mode fracture in bi-material 

systems even when the cohesive lengths are small.  Furthermore, the intrinsic cohesive 

length can change during loading for all laws except for the linear-hardening ones.  These 

observations suggest that it might be useful to define an instantaneous cohesive length, 

perhaps in terms of the average stress experienced by the crack-tip element: 

    

€ 

˜ ζ I = E *WIo /σ ave
2 = E *δIo

2 /WIo  ,     (21) 

where σave is the average stress of the traction-separation law for the crack-tip element up 
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to a displacement δIo.  This concept that the average cohesive strength, rather than the 

peak cohesive strength, controls fracture is supported by experimental evidence given by 

Li et al [2005].  This work showed that there were two characteristic cohesive-length 

scales associated with a single traction-separation law that could be used to describe the 

entire process of matrix cracking and fiber bridging.  One small length scale was 

associated with the high strength and low toughness of matrix cracking; this controlled 

fracture at small scales, for example, in the absence of a macroscopic crack.  A second 

larger length scale was associated with the relatively low stress and high toughness of 

fiber bridging; this controlled the propagation of large cracks in fracture specimens.  An 

instantaneous cohesive-length scale (Eqn. 21) naturally provides a smooth transition 

between the two length scales within a single definition.  This concept of an 

instantaneous cohesive length is being explored further in a companion study. 

5. Conclusions 

 A phase angle that is defined in terms of the partition of energy into shear and 

normal components, asymptotes to a constant value at the crack tip in a cohesive zone.  

When the cohesive-length scales are sufficiently small, this asymptotic phase angle is in 

agreement with the value predicted by LEFM analyses, provided that β = 0, so the phase 

angle is well-defined .  The stress field in the immediate vicinity of the crack tip (where 

this phase angle operates) does not follow the inverse square root dependence, although 

there can be a K-dominated stress field outside this crack-tip region.   

 The complications in the definition of a phase angle that are introduced by LEFM 

when β ≠ 0 can be rationalized by the cohesive-length scales that are inherent to 

cohesive-zone models of fracture.  The intrinsic cohesive-length that dictates the crack-
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tip phase angle is proportional to the nominal cohesive length, defined in terms of the 

toughness and strength.  It is also proportional to the effective bi-material modulus.  The 

dependence of the intrinsic cohesive length on the shape of the cohesive-laws for the two 

modes is not clear.  However, the results indicate that the cohesive length may be more 

usefully defined in terms of an average strength, rather than the peak strength. 

 The connection between the cohesive parameters, the cohesive-length scale and 

the crack-tip phase angle that controls fracture appears to be quite robust within the 

cohesive-zone framework used in this study.  Although it is beyond the scope of this 

present paper, it should be possible to explore these issues for other types of cohesive-

zone models, where the modes of deformation might be more tightly coupled.  However, 

it would appear that a key validation for these models should be the correct partition of 

the energy into the two modes at the crack tip. 
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Figure 1:   A semi-infinite crack along a bi-material interface with associated 
coordinate systems. 
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a) 

 

b) 

Figure 2:  All the geometries analyzed in this paper consist of the superposition of 
two basic laminated configurations loaded by either (a) axial loads, N, or 
(b) moments, M.  
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a) 

 

b) 

Figure 3:   Schematic illustration of (a) mode-I and (b) mode-II traction-separation 
laws. Zero displacement corresponds to the equilibrium separation of the 
interface in these laws. 
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Figure 4:   General forms of the (a) mode-I and (b) mode-II traction-separation laws 

used in this study. The negative mode-II law is identical to the positive 
mode-II law.  In compression, the stiffness of the mode-I law is the same 
as the initial stiffness in tension.  During the numerical studies, it was 
always verified that any negative mode-I displacements were less than the 
thickness of the cohesive elements. 
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Figure 5:  An example of a geometry, mesh and loading used to analyze the mixed-
mode problem. In this case an axial couple is applied at the fractured end 
and a corresponding moment at the unfractured end.  Note that the vertical 
scale is exaggerated, and non-linear deformations were not used in the 
analyses.     
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Figure 6:   Local phase angle as a function of distance from the crack tip for different 
cohesive laws. The geometry of the specimen is H = 0.2, a/h1 = 40 and 
L/h1 = 80, with a nominal phase angle of 55.2º [Li et al. 2004].  All the 
laws, except for (e) are identical in modes I and II, and all the laws have ΓI 
= ΓII and 

€ 

ˆ σ = ˆ τ : (a) is a linear hardening law, with ζI = ζII = 0.1; (b) is a 
linear softening law with δa/δc = 0.001 and δb/δc = 0.01, and ζI = ζII = 0.5; 
(c) is a constant-stress law with δa/δc = 0.01 and δb/δc = 0.99, and 
ζI = ζII = 0.2; (d) is a double-peak law with R = 5, δa/δc = 0.1, δb/δc = 0.2, 
and ζI = ζII = 0.1; (e) has a double-peak mode-I law with R = 5, 
δa/δc = 0.1, δb/δc = 0.2, and ζI = 0.05, and a linear-hardening mode-II law 
with ζII = 0.05.  (The data in these plots are taken at the condition where 
  

€ 

WIo /ΓI +WIIo /ΓII =1 .) 
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Figure 7:   3-D Plot showing the deviation of the crack-tip phase angle from the 
nominal value, as the cohesive-length scales in the two modes increase.  
This plot was obtained using linear-hardening laws for both mode-I and 
mode-II, with ΓII/ ΓI = 

€ 

ˆ τ / ˆ σ  =1, and 

€ 

ΓI /E *h1 =1×10−8 . The geometry of the 
specimen is H = 0.2, a/h1 = 40 and L/h1 = 80, and α = β = 0 so that the 
nominal phase angle is 55.2º [Li et al. 2004]. (The data in this plot are 
taken at the condition where   

€ 

WIo /ΓI +WIIo /ΓII =1 .)  
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Figure 8:  Plot of how the plateau length, ro, over which the phase angle varies by 

less than 1.5º depends on nominal cohesive-length scale for different 
cohesive laws. The mode-I and mode-II traction-separation curves are 
identical for all the laws: (a) represents a linear hardening law; (b) 
represents a linear softening law with δa/δc = 0.001 and δb/δc = 0.01; (c) 
represents a constant-stress law with δa/δc = 0.01 and δb/δc = 0.99; (d) 
represents a double-peak law with R = 5, δa/δc = 0.1 and δb/δc = 0.2. (The 
data in this plot are taken at the condition where   

€ 

WIo /ΓI +WIIo /ΓII =1 .)  
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a) 

 

Figure 9a    
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b)        

 

Figure 9:   (a) Mode-I and (b) mode-II stress fields along the interface ahead of an 
interface crack, with H = 0.2, loaded by an axial couple at the fractured 
end. (The data in this plot are taken at the condition where 
  

€ 

WIo /ΓI +WIIo /ΓII =1 , so there are finite tractions in both modes I and II in 
the crack-tip element.) 
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Figure 10:   Plot of the phase angle at the point of crack propagation at different 
positions along the interface for different values of β.   (The data in this 
plot are taken at the condition where   

€ 

WIo /ΓI +WIIo /ΓII =1 .) 
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Figure 11:  Intrinsic length scale as a function of the nominal cohesive-length scale 
for various law shapes. (The data in this plot are taken at the condition 
where   

€ 

WIo /ΓI +WIIo /ΓII =1 .) 
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(a) 
 
Figure 12 (a) 
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Figure 12  Phase angle as a function of load state for (a) different types of cohesive 

laws and for (b) linear-hardening traction-separation laws.  The intrinsic 
cohesive-length scale that controls the crack-tip phase angle changes with 
loading for all laws except the linear-hardening ones.  
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Figure 13:   Intrinsic cohesive-length scale plotted as a function of nominal phase 
angle for a range of beam-like geometries loaded by a moment and axial 
couples.  Linear-hardening laws have been used for the cohesive-zone 
model, with several different nominal cohesive-length scales in mode-I 
and mode-II. 
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Figure 14:   Variation of the cohesive-length scale and intrinsic-length scale with the 
modulus mismatch, α.  The cohesive laws were kept the same for all the 
data points, so that the only change in the cohesive-length scale came from 
changes in the modulus.  This plot demonstrates that the effective, bi-
material modulus, 

€ 

E * , is the correct modulus to use in defining the 
cohesive-length scale of a bi-material system. 

 


