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ABSTRACT 
 

Cohesive zone models of fracture have seen great success in modeling delamination and 
debonding of composite materials (Aymerich et al. 2009; Li et al. 2005b; Yang & Cox 2005). 
By embedding cohesive zone elements along potential crack planes, arbitrary delamination 
configurations can be represented without the need for a priori knowledge of crack locations or 
pre-existing cracks.  The stress-displacement behavior of elements in cohesive zone modeling is 
governed by cohesive or traction-separation laws, which dictate the tractions across the interface 
as a function of the crack plane separations.  For mixed-mode problems, orthogonal sets of 
cohesive laws can define these relationships for each mode.  In fibrous composites, various 
toughening mechanisms such as matrix cracking and fiber bridging operate at different strengths 
and length scales forming a complicated amalgamation of processes that are difficult to model 
directly.  With cohesive zone modeling, these processes can be accounted for in the cohesive 
law via the fracture length scale.  Many authors have pointed out that the shape of the traction-
separation law and its associated fracture length scales is dictated by the cohesive mechanisms 
at work (Dávila et al. 2009; Li et al. 2005a; Yang & Cox 2005) but a general framework for 
understanding how the evolution of these mechanisms with loading manifest themselves within 
the cohesive zone structure has not been presented.  In this work, such a framework will be 
developed by defining an average fracture length scale that is a property of the load state along 
the crack plane.  With this new length scale, the effects of cohesive law shape can be understood 
– allowing a direct connection between law shape and physical process. 
 
 

1. INTRODUCTION 
 

Cohesive zone models of fracture provide a broad framework for representing material behavior 
during fracture or delamination.  By defining the normal and shear tractions across potential 
fracture planes, arbitrary crack configurations can be modeled without the need for a priori 
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knowledge of crack locations.  The relationships defining these tractions are known as cohesive 
or traction-separation laws and they relate the tractions to the opening displacements between 
the planes.  An example of a traction-separation law is given in Fig. 1.  The area swept out 
under-the-curve at any increment of load is the strain energy release rate, G, and the net area 
under-the-curve is the toughness of the interface, Γ.  By introducing finite stresses at the crack 
tip, cohesive zone models of fracture provide a means for understanding the effects of cohesive 
strengths on fracture (Tvergaard and Hutchinson 1992; Parmigiani and Thouless 2007).  
Furthermore, these finite stresses introduce a length scale absent in linear-elastic fracture 
mechanics (LEFM) known as the fracture length scale.  This length scale is generally defined as 
(Hillerborg et al. 1976; Bao and Suo 1992) 
 

          (1) 
 

where Γ is the toughness, E is the modulus of elasticity, and is the peak stress of the traction-
separation law (see Fig. 1).  It has been demonstrated by numerous authors that this length scale 
is instructive in predicting whether the Inglis (1913) strength approach to fracture or the Griffith 
(1920) energy approach will predict the crack behavior (Bao and Suo 1992; Parmigiani and 
Thouless 2007).  When the fracture length scale is small compared to all physical dimensions, 
energy dominates the fracture process, the assumptions necessary for LEFM are valid, and the 
material and geometry is said to be flaw intolerant (notch sensitive).  When the length scale is 
large, strength is the dominating property causing net-ligament failure and flaw insensitivity.  If 
the length scale exists between these extremes, both strength and energy will play a role. 
 

 
Fig. 1. A basic traction-separation or cohesive law. 

 
Traction-separation laws can take any shape depending on the toughening and deformation 
processes present.  Such generality allows for the accurate depiction of a broad range of 
materials.  In the case of fibrous composite materials numerous processes contribute to the 
cohesive tractions including matrix cracking, fiber breakage, delamination, and pullout, and 
frictional sliding.  The law shape can be derived by direct measurement of tractions and 
displacements (Sørensen and Jacobsen 1998), performing strength and toughness characterizing 
mechanical tests (Li et al. 2005b), or with micromechanical modeling (Sørensen et al. 2008).  
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Many authors have found that in modeling material systems, details regarding the shape of the 
traction-separation law are of secondary importance as long as the toughness and cohesive 
strength (peak stress) are correct - it is upon this assumption that Eqn. 1 was derived.  Sills and 
Thouless (2011a,b) however, demonstrated that the law shape and fracture length scale are 
intrinsically linked.  Extending the fracture length scale concept to any increment of load, they 
defined an instantaneous fracture length scale as 
 

             (2) 

 
where σave is the average stress of the cohesive law at the current load increment and 
displacement, δ, given by 
 

        (3) 
 

With Eqn. 2, a linear traction-separation law will have an instantaneous fracture length scale  
that is independent of the load increment and inversely proportional to the slope.  Any nonlinear 
cohesive law will have a changing fracture length scale as the system is loaded.  In mixed-mode 
problems, each mode has its own fracture length scale given by the relevant displacement 
(normal, in-plane tangential, or out-of-plane tangential) and strain energy release rate 
component.  How these fracture length scales combine and form an overall fracture length scale 
is not clear (Sills and Thouless 2011b), however it is clear that law shape must be accounted for 
in calculating the fracture length scale. 
 
It should be noted that in the case of large scale bridging (when the length of the bridging zone 
becomes comparable to a characteristic physical dimension), the physical manifestation of the 
fracture length scale becomes dependent on a characteristic physical dimension (Bao and Suo 
1992; Yang and Cox 2005).  This is due to the fact that the compliance of the system limits the 
development of the process zone.  In this work, the fracture length scale will be examined 
independent of specimen size and geometry.    
 
A large effort has been put forth to understand the fracture length scale in the context of 
delamination in composite materials.  Most of the relationships given in the literature are 
derived upon the assumption that law shape is of secondary importance and no work to date, to 
the authors’ knowledge, takes into account the evolution of the fracture length scale with 
loading.  The impetus for this work is then to understand the behavior of the fracture length 
scale during delamination in composites. 
 
             

2. DESCRIPTION OF THE DELAMINATION PROCESS 
 
The delamination behavior of composites can vary greatly as a function of the fiber and matrix 
materials, fiber volume fraction, ply composition and orientation, and the specimen geometry.  
In general, however, the process can be decomposed into two stages: matrix cracking and fiber 
bridging.  Matrix cracking initiates the delamination process and is generally considered to 
occur in a manner consistent with linear-elastic fracture mechanics – the toughness of the fiber-
reinforced matrix dominates crack growth.  Following the matrix crack, fibers can bridge the 
crack opening for a significant amount of growth as they undergo debonding, pull-out, and 
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frictional sliding.  The bridging portion of the crack growth process is often considered within 
the context of a bridging law, which dictates the tractions applied by the bridging fibers as a 
function of the crack face displacements in the same way a cohesive law does.  Cohesive and 
bridging laws differ only in how their abscissa is defined – cohesive laws describe the entire 
delamination process while bridging laws only focus on crack growth after the matrix crack has 
formed; this work focuses on the former.  From a computational point of view cohesive laws are 
more useful because they allow cracks to be modeled easily from an equilibrium (unloaded) 
state. 
 
Many authors have noted that the various portions (displacement regimes) of traction-separation 
laws for composite materials can be thought of as representing different toughening and 
deformation mechanisms (Dávila et al. 2009; Gutkin et al. 2011; Li et al. 2005b; Yang and Cox 
2005) – this work will make use of this observation as follows.  Before matrix cracks develop or 
grow, the system behaves in a linearly elastic manner with the opening behavior being dictated 
primarily by the matrix and fiber moduli and the fiber volume fraction.  Matrix cracks then 
form, either on their own or due to fiber debonds, and grow up to when the matrix strength, , 
and toughness, Γm, are reached.  The crack faces are then primarily supported by fiber ligaments 
that bridge between them, providing tractions that start at some peak bridging value, , and 
decay to zero as the strain energy release rate approaches the sum of the matrix  and bridging 
toughness, Γb.  This simple description of the delamination process can be represented by the 
tri-linear cohesive law in Fig. 2.  With this model, matrix cracking dominates the stress-
displacement behavior when the opening displacement, δ, is less than δm.  Beyond this value, 
fiber bridging governs the response until all of the fibers fully pull-out or break at the critical 
displacement, δc.  
 

 
Fig. 2. The traction-separation law used to model composite delamination in this work.  
Subscripts m and b represent matrix cracking and fiber bridging, respectively. 

 
              

3. COHESIVE LAW FORMULATION 
 
For a general tri-linear cohesive law, the traction-separation law has the piecewise form (Gutkin 
et al. 2011): 
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     (4) 

 
where the subscripts 1 and 2 denote the ends of the first and second linear segments and R is the 
strength ratio, .  For this work, the differentiation between the displacements δ1 and δ2 is 
unnecessary and so to reduce the number of parameters all results will be derived with δ1= δ2. 
 
As discussed above, the cohesive law used in this work will represent matrix cracking followed 
by fiber bridging.  This formulation is convenient because it is a direct analog to much of the 
fiber bridging literature, which considers a toughness at the crack tip (matrix cracking) and a 
toughness and strength in the bridging zone.  In order to fully define the law shape, four of the 
following six parameters must be specified: 
 
   Γm Γb δm δc 

 
where the first four retain the definition used above, δm is the displacement after full matrix 
crack-dominated growth, and δc is the critical displacement upon complete fiber-ligament 
failure.  These variables are depicted in Fig. 2.   
    
 

4. FRACTURE LENGTH SCALES 
 
By using Eqn. (4) in Eqn. (3) and applying the result to Eqn. (2), the instantaneous fracture 
length scale for our model traction-separation law as a function of the opening displacement is 
given by 
 

(5) 

 
where G=Γm/Γb, the toughness ratio, , the strength ratio, and E* is the effective 
modulus.  Note that the two key displacements are related by δm/δc=G/(R+G).  For a bimaterial 
interface crack, the effective modulus is , where the subscripts 1 and 2 denote 
the two materials (Sills and Thouless 2011b).  Eqn. (5) provides a simple formulation for 
understanding the effects of relative changes in toughness and strength on the fracture length 
scale. 
 
Fracture length scales have been calculated using Eqn. (5) for a variety of toughness and 
strength ratios – changing these parameters can be thought of as modifying the matrix or fiber 
material, or the interface between the two.  Fig. 4 presents how the fracture length scale evolves 
with loading (displacement) for toughness ratios of G=1, 10, 100, strength ratios of R=1, 10, 25, 
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50, 100 and with .  In all cases, the length scale starts small during the matrix cracking 
phase and grows with loading as fiber bridging takes over up to a peak value at fracture (δ=δc).  
For values of R less than 1, the length scale will actually shrink for some portion of loading but 
the overall behavior is not appreciably different.  All cases begin with the length scale assuming 
a constant value due to the initial linear portion of the traction-separation law, as discussed 
above.  When the matrix toughness is small relative to the fiber bridging toughness (small G), 
the fracture length scale at fracture is highly sensitive to the strength ratio, taking larger values 
as the matrix becomes significantly stronger than the bridging fibers.  As the toughness ratio 
grows, the length scale growth becomes less pronounced and less sensitive to R eventually 
becoming independent of it – in the limiting case, the cohesive law has a pure linear hardening 
shape and the fracture-length scale is completely independent of load. 
 

a)        b) 

     
    c) 

 
Fig. 3. The fracture length scale of the model traction-separation law depicted in Fig. 2 
when , R=1, 10, 25, 50, and 100 and G=1(a), 10(b), and 100(b).   

 
To further understand how the fracture-length scale behaves, values at fracture have been 
calculated and plotted in Fig. 4.  In this plot, it can clearly be seen that the length scale shrinks 
rapidly as matrix cracking toughens relative to fiber bridging.  A similar trend has been 
elucidated by Cox and Marshall (1994) in considering the ratio of the toughness at the crack tip 
to the bridging zone – their length scale assumes a bridging law with a constant bridging stress 
and in the notation of this work can be expressed as  
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        (6) 

 
This expression applies to small-scale bridging where the fracture process is fully characterized 
by energy considerations – the stresses at the crack tip are singular and when G is of order unity.  
Eqn. (6) has also been plotted in Fig. 4 with R=1000 – the curve approximately matches the 
results from this work around G≈1, as expected.   
                      

 
Fig. 4. The fracture length scale at fracture of the model traction-separation law depicted 
in Fig. 2 as a function of the toughness ratio, G= Γm/Γb, when and R=1, 10, 25, 
50, 100, and 1000.   

	
  
It can also be seen that the strength ratio strongly affects the length scale at fracture when the 
toughness ratio is small – increasing the strength ratio by an order of magnitude results in a 
corresponding increase in the fracture length scale.  This is due to the fact that when the matrix 
cracking strength is significantly higher than the fiber bridging strength, the interface softens 
significantly in transitioning between the mechanisms, and in general softening grows the 
fracture length scale.  At large toughness ratios, the strength ratio becomes less important and in 
the limiting case doesn’t matter all as discussed above.  It is important to keep in mind that for 
all of these results, the effective modulus has been held constant relative to the matrix strength.     
 
In delamination models that use bridging laws, fracture length scales are generally only 
considered with respect to the bridging phenomenon.  Indeed, the entire benefit in using 
bridging models stems from the distillation of processes at the crack tip down to a strain-energy 
release rate and corresponding toughness, bypassing direct modeling of the large stress gradients 
therein (Cox and Marshall 1994).  Calculating length scales in this way, however, ignores the 
contribution of the finite crack tip strength.  Eqn. (2) dictates that the fracture length scale is a 
function of the entire loading history of the system, so neglecting the crack tip can result in 
incorrect length scales.   
 
Cohesive laws of the form in Fig. 2 have been derived and used by numerous authors in order to 
represent mode I delamination and the R-curve behavior of composites.  While some authors 
have noted that such laws work because they accurately capture the fracture mechanisms, how 
these mechanisms manifest themselves in the models has not been thoroughly explained.  Fig. 3 
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presents evidence that these mechanisms affect the simulation by changing the fracture length 
scale, indicating that the length scale is a dynamic variable of the model.  Therefore, the 
instantaneous fracture length scale provides an explanation for how cohesive zone modeling 
accurately captures the delamination process – the dynamics of strengthening and toughening 
are represented by changes in the fracture length scale.   
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