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Abstract

The effect of transverse shear on delamination in layered, isotropic, linear-

elastic materials has been determined.  In contrast to the effects of an axial load

or a bending moment on the energy-release rate for delamination, the effects of

shear depend on the details of the deformation in the crack-tip region.  It

therefore does not appear to be possible to deduce rigorous expressions for the

shear component of the energy-release rate based on steady-state energy

arguments or on any type of modified beam theory.  The expressions for the

shear component of the energy-release rate presented in this work have been

obtained using finite-element approaches.  By combining these results with

earlier expressions for the bending-moment and axial-force components of the

energy-release rates, the framework for analyzing delamination in this type of

geometry has been extended to the completely general case of any arbitrary

loading.  The relationship between the effects of shear and other fracture

phenomena such as crack-tip rotations, elastic foundations and cohesive zones

are discussed in the final sections of this paper.

(March 2003)
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1. Introduction

Linear-elastic fracture mechanics expressions for the delamination of

layered materials subjected to bending and axial loading (Fig. 1) were derived by

Suo and Hutchinson (Suo and Hutchinson, 1990; Hutchinson and Suo, 1992).

The magnitude of the energy-release rate, GM, and the complex stress-intensity

factor, KM, associated with a bending moment, M, are given by (Suo and

Hutchinson, 1990)

E f H Mh KM M M1 1
3 2 21 1G = ( ) = −( ) −( )−α β α, // (1a)

where E E= −( )/ 1 2ν  in plane strain or E E=  in plane stress, E is Young’s

modulus, ν is Poisson’s ratio, and the subscripts 1 and 2 denote arms 1 and 2

(Fig. 1).  The first Dundurs parameter, α, is given by  α = (Σ-1)/(Σ+1), where

Σ = E E1 2/ .  The second Dundurs parameter, β, is given by
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The magnitude of the energy-release rate, GP, and the complex stress-intensity

factor, KP, associated with an axial load, P, (when the bending moment, M, is

equal to zero) is given by (Suo and Hutchinson, 1990)
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Energy-release rates for arbitrary combinations of bending moments and

axial loads can be determined by adding the individual components of the stress-

intensity factors in a vectorial fashion, provided the appropriate phase angles for

pure bending, ψM, and axial loading, ψP, are known (Fig. 2).  These phase angles

are generally defined so that they are zero when the imaginary part of the

quantity Khi
1
ε  is zero (Suo and Hutchinson, 1990), where
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From Fig. 2 it can be seen that the energy-release rate for combined loading is

given by
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If the phase angle for one of the two loading conditions is known, the other can

be immediately calculated from Eqn. 5.  The two phase angles are functions of α,
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β and H.  They were calculated by Suo and Hutchinson (1990), and the full

results can be found in that reference.  Examples of ψM(α, 0, H) for the special

case of β = 0 are reproduced in Table 11, since they are used in the present paper.

These results of Suo and Hutchinson (1990) allow the interfacial fracture

mechanics of any general bi-layer geometry to be calculated when only bending

moments and axial loads act at the crack tip.  However, in general, there will be a

transverse shear force, V, at the crack tip in addition to a bending moment and

an axial force (Fig. 3).  The contribution of this transverse shear force to the

energy-release rate needs to be incorporated in a full analysis of the interfacial

fracture mechanics of bi-layers.  One well-known example where this transverse

shear force is significant is the double-cantilever beam (D.C.B.) geometry in

which the moment is supplied to the crack tip by the action of a remote load.

Indeed, it has been noted by a large number of authors that there is an additional

contribution to the energy-release rate (Gillis and Gilman, 1964,; Mostovoy et al.,

1967; Wiederhorn et al., 1968; Kanninen, 1973, 1974; Suo et al., 1991; Bao et al.,

1992; Sun and Pandey, 1994; Williams, 1987, 1989, 1995), or to the stress-intensity

factor (Fichter, 1983), beyond that expected only from pure bending.  Previous

explanations for this correction have included both the effects of shear, and

“root-rotation” or other manifestations of elastic deformation ahead of the crack

tip.  It will be shown in this paper that while the correction can be completely

and accurately accounted for in terms of the shear component of the energy-

                                                  
1 The values presented in Table 1 have been recalculated by the present authors using finite-
element techniques.  These represent some additional values of H, and some of the values appear
to be slightly more accurate than the original values given in Suo and Hutchinson (1990).
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release rate, crack-tip deformation does affects this component in a way that it

does not affect the other two components.

The major thrust of this paper is to determine the effects of transverse

shear on the energy-release rate and phase angle for delamination.  When

combined with the results of Suo and Hutchinson (1990), this analysis completes

the general solution for plane, linear-elastic, interfacial fracture mechanics of

layered materials.  By incorporating crack-tip shear, bending and axial loading,

these results can be used to calculate energy-release rates and phase angles for

any beam-like geometry subjected to arbitrary loading.  As particular examples,

it is shown that this approach provides complete descriptions for the mechanics

of various double-cantilever beam geometries that are in excellent agreement

with finite-element calculations.  Furthermore, the results also allow an

understanding to be developed for the relative roles of shear, cohesive zones,

root-rotation, and elastic foundations on the fracture behavior of layered

materials.

2. Calculations and results

The energy-release rate associated with a moment, M, at the crack tip can

be computed from a geometry in which the arms are subjected to a pure bending

moment (Fig. 1), while the energy-release rate associated with an axial load, P, at

the crack tip can be computed from a geometry in which the arms are subjected

to a uniform load plus the required compensating moment (Fig. 1).  The effect of

a transverse shear force, V , acting at the crack tip can be determined by

examining a geometry in which the moment at the crack tip resulting from an

applied shear force is exactly cancelled by a pure moment of equal and opposite
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magnitude (Fig. 4a).  It should be noted that while a crack parallel to the axis of a

beam does not affect the stress distribution caused by an axial load or a bending

moment (Suo and Hutchinson, 1990), it does affect the stress distribution caused

by a shear force.  Therefore, for completeness, the results presented in this paper

include the effects of a single transverse shear force acting on only one arm

(Fig. 4b), in addition to the effects of equal forces acting on both arms (Fig. 4a).

The analysis was performed numerically using the ABAQUS (version 5.8)

finite-element code.  The crack tip was surrounded by a square mesh of 30 rings

each of which contained 160 eight-noded, isoparametric, plain-strain elements.

The two modes of energy-release rate were determined using the virtual-crack

extension method (Parks, 1974; Haber and Koh, 1985; Matos et al., 1989).  To

ensure an acceptable level of accuracy, the mesh sensitivity and effects of remote

boundary conditions were explored, and estimates of the levels of uncertainty

are included in the tables of results presented in this paper.  The shear forces

were applied as point loads at the centroidal axes of the beams.

A series of systematic, parametric calculations showed that, provided the

crack is long enough, the phase angles and energy-release rates are independent

of the crack length, a.  Generally, these crack-length independent results are

realized when the distance to the end of either beam is greater than its thickness.

The magnitudes of the energy-release rates, GV and       GV1
, and the complex stress-

intensity factors, KV and     KV1
, associated with pure shear forces acting at the crack

tip are given by

E f H Vh KV V V1 1
1 2 21 1G = ( ) = −( ) −( )−α β β α, , // , (6a)
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for a double-shear force (Fig. 4a), and

  
E f H Vh KV V V1 1

1 2 2
1 1 1

1 1G = ( ) = −( ) −( )−α β β α, , // , (6b)

for a single shear force (Fig. 4b).  The phase angles are of the form ψ α βV H, ,( )

and ψ α βV H
1

, ,( )._ While these equations are very similar in form to Eqns. 1 and 2,

analytical results do not exist for fV(α, β, H) and f HV1
α β, ,( ) ; they have to be

found numerically.  These numerical solutions indicate that the second Dundurs

parameter, β, not only affects the phase angle, but also has a very small influence

on the magnitude of the energy-release rate.  This is in contrast to the solutions

for an axial load or bending moment where β affects only the phase angle.  Sets

of values for fV(α, 0, H), f HV1
α β, ,( ) , ψV(α, 0, H), and ψ α βV H

1
, ,( ) are given in

Tables 2 and 3 for a full range of H, and for different values of the modulus

mismatch (with β = 0).

3. Discussion

3.1 General beam-like geometries

The energy-release rate and phase angle for a layered material subjected

to an arbitrary combination of axial load, P, transverse load, V and bending

moment, M at the crack tip (Fig. 3) can now be calculated.  The energy-release

rate is given by
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where,  γ ψ α β ψ α βPM P MH H= ( ) − ( ), , , ,

γ ψ α β ψ α βPV P VH H= ( ) − ( ), , , ,

γ ψ α β ψ α βMV M VH H= ( ) − ( ), , , , .

The phase angle is given by
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As an example, consider a double-cantilever beam with a crack length a that is

loaded remotely by applied loads, F.  The crack tip is subjected to transverse

shear forces, V = F, bending moments, M = Fa, and no axial loads.  Therefore, the

energy-release rate can be obtained from Eqn. 7:
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and the phase angle can be obtained from Eqn. 8:
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where fM(α,  H) is given by Eqn. 1(b), and ψ M (α, 0, H), fV(α, 0, H) and

ψV(α, 0, H) are given in Tables 1 and 2.  In particular, if α = 0 and the geometry is

symmetrical so that H = 1 and ψ Μ  = ψV = γM V  = 0, then fM(0, 1) = 12  and

fV(0, 0, 1) = 2.335.  Equation (9) then reduces to the simple form of
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Apart from a minor correction in the third significant figure, this is

indistinguishable from the empirical fit to finite-element calculations given by
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Bao et al. (1992).2  Further examples of comparisons between Eqns. 9 and 10 and

the results of finite-element calculations for different values of α and H are given

in Figs. 5 and 6.  It will be seen that the concept of separating the energy-release

rate into a moment component and a shear component provides an excellent

method of analyzing these geometries.  In particular, these results now allow the

effect of modulus mismatch on the phase angle and energy-release rate to be

determined for asymmetrical double-cantilever beams.

The concept of splitting the applied loads into a moment, an axial force

and a shear force acting at the crack tip can be applied to many other geometries,

even those exhibiting non-linear deformations.3  For example, consider a

symmetrical double-cantilever beam (D.C.B.) undergoing large-scale

deformations, so that the lever arm between the applied load and the crack tip

gets smaller as deformation proceeds.  Eventually, the geometry changes from a

D.C.B. configuration to a symmetrical 90º T-peel configuration.  Therefore, the

energy-release rate must vary between one limit given by Eqn. 11 that is valid for

small deformations, and a second limit given by the T-peel result (Kendall, 1975)

of G / / /Eh P Eh P Eh= ( ) +( )1  that is valid for large deformations (provided the

strains remain linear).  Using a non-linear finite-element analysis to compute the

lever arm and, hence, the crack-tip bending moment, Eqn. 9 was used to

                                                  
2  It should be noted that the ASTM standard (D3433-93) for tests using double-cantilever beams

is based on the equation G = +4 32 2 2 3F a h Eh( ) / , which comes from an approximate analytical
result for the effects of shear as described by Mostovoy et al. (1967).  This equation has an
incorrect crack-length dependence and gives an error in G that can be as large as 52% for a/h = 1.
The error is still as large as 12% for a/h = 10.  These errors are only slightly less than those
associated with not correcting for shear at all.
3 It should be noted that warping of the beam occurs owing to the shear force and to the non-
uniformity of the stresses at the crack tip region.  This limits the accuracy of the analytical
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calculate the energy-release rate.  Finite-element methods were also used to

calculate a numerical value for the energy-release rate.  The excellent agreement

between these two sets of results, and the transition between the two limiting

solutions can be seen in Fig. 7.  A final comment on calculating energy-release

rates for geometries undergoing large deformations or rotations by means of the

approach presented in this paper is to note that if the geometry of interest

includes a crack-tip region that is subjected to a rigid-body rotation (such as

would occur in a bending beam), and the direction of the applied load is fixed,

care has to be taken to resolve the applied load into the appropriate shear and

axial components acting at the crack tip before using Eqns. 7 and 8.

3.2 Comment on analytical approaches

The results of Eqns. 1 and 2 for the bending-moment and axial-load

components of the energy-release rate can readily be obtained from simple beam

theory.  The similarity in form between these two equations and Eqn. 6 may

suggest the possibility of developing a similar approach for the shear component

using higher-order beam theories that incorporate shear.  Unfortunately, this

does not seem to be possible.  A hint of the problem is provided by comparing

the details of Eqns. 1(a) and 1(b), which can be obtained by beam theory, to

Eqn. 6, which that cannot.  The numerical constants in the first two equations

depend only on the geometry and one Dundurs parameter, α.  The numerical

constant in Eqn. 6 has an additional dependence on the second Dundurs

parameter, β.  This difference indicates that while the bending-moment and

axial-load components of the energy-release rate are unaffected by details of the

                                                                                                                                                      
approach to problems involving relatively small strains (although large deformations can be
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deformation in the crack tip region, the shear component is fundamentally

affected by this local deformation.

The fact that the bending-moment and axial-load components of the

energy-release rate are unaffected by details of the deformation in the crack-tip

region manifests itself by the existence of solutions that can be obtained by

steady-state energy-balance arguments.  A similar steady-state argument cannot

be developed for shear because a state of uniform shear cannot act over the

length of a beam in the absence of an associated gradient in bending moment.

Therefore, while Eqn. 6 correctly implies that a crack tip can be acted on by pure

shear (any bending moment component from the applied shear load being

eliminated by the application of an equal and opposite pure bending moment), it

would be misleading to consider this equation to be a steady-state solution in the

same way that Eqn. 2(a) can be considered to be a steady-state solution for

loading by a pure bending moment.  It can readily be shown that a steady-state

energy balance based only on the parabolic shear-stress distribution that exists

well away from the crack tip and the point of load application does not result in

the correct result for the shear component of the energy-release rate.  This is

because such an approach neglects the contribution of the crack tip deformation

on the energy-release rate.

The deformation in the crack-tip region has been described in terms of

“root-rotation” effects, where planes rotate in response to the applied loading

(Williams, 1987; 1989), and “elastic-foundation” effects, where there are strains

perpendicular to the crack plane (Kanninen, 1973, 1974).  These effects are

                                                                                                                                                      
accommodated).
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discussed in more detail in subsequent sections.  This deformation in the crack-

tip region occurs to various degrees when any shear force, bending moment or

axial load is applied to a beam-like geometry.  However, it only affects the shear

component of the energy-release rate.  When calculating the moment and axial-

load components of the energy-release rate, it doesn’t matter what assumption is

made about the boundary conditions where the beam is attached to the substrate

at the crack tip; any assumption results in rigorously correct solutions because

the crack-tip deformation doesn’t contribute to the solution.  Conversely, since

the crack tip region does affect the shear component of the energy-release rate,

the results of beam-based analyses are dependent on the nature of the

assumptions made about the boundary conditions at the crack tip.  Rigorous

solutions for the shear component of the energy-release rate can only be obtained

by an analysis of the full elastic problem including a correct description of the

interface between the two arms.  This is the analysis that has been performed in

the present paper by means of a finite-element method.

3.3 Root rotations

Consider a section just behind the crack tip that is initially normal to the

centroidal axis of an arm in a beam-like geometry.  After loading, this section

may rotate as shown in Fig. 8.  Two types of rotation can occur.  The angle

between the section and the centroidal axis can change – this is the shear strain at

the crack tip.  The other type of rotation occurs when the centroidal axis and the

section rotate together – this is “root rotation.”  In general, the magnitude of root

rotation will not be uniform across the section, but the average value is
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considered to be the “root rotation angle” in this paper.  If the crack length is

long enough to avoid boundary effects, the root rotation angle is given by

θo M P Vc
M

E h
c

P

E h
c

V

E h
= + +

1 1
2

1 1 1 1

, (12)

where cM, cP, cV are functions of the elastic constants and geometry.  The first two

coefficients, cM and cP, appear to be functions of α and β, whereas cV appears to be

a function of all three non-dimensional elastic constants.  Values for all three

coefficients are given in Fig. 9 as a function of α (with β = 0).4   

Root rotation is sometimes invoked as a reason for the difference between

the expressions for the energy-release rate of a layered material loaded by a

moment and the same geometry loaded by an applied force.  However, it can be

seen from Eqn. 12 that root rotation is a very general effect, and is not associated

just with the application of a shear force.  Furthermore, the general expressions

of Eqns. 1, 2 and 7 for the components of the energy-release rate are always valid

and completely incorporate any possible effects of root rotation.  Therefore, root

rotation should not be considered as an independent contributor to the energy-

release rate.  Energy-release rates can be calculated with reference only to the

crack-tip axial load, moment and shear force; root rotation does not provide an

independent contribution.  However, root rotation can play a very important role

in the fracture mechanics of beam-like geometries if it causes a large enough

change in geometry to affect significantly the calculation of the crack-tip forces

and moments for a particular geometry.  For example, the original calculations

(Hutchinson and Suo, 1992) for the energy-release rate of buckling-driven
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delaminations under compressively-stressed thin films were based on the

assumption of “clamped boundary conditions.”  It was assumed that the critical

stress required to buckle a film with a given size of delamination is identical to

that of a plate of the same size, but clamped around the perimeter.  The energy-

release rate was then calculated from Eqns. 1 and 2 by determining the bending

moment and axial force that act at the clamped boundaries of a buckled plate.  A

clamped boundary is tantamount to assuming no root rotation at the crack tip.

However, as shown by Cotterell and Chen (2000), and Yu and Hutchinson (2002),

this assumption of a clamped boundary (no root rotation) may cause significant

errors in calculating the crack-tip moment and force if the substrate is compliant.

Under these conditions, accurate calculations of the moment and force need to

incorporate the root rotation.  Once these have been calculated, Eqns. 1 and 2

then provide rigorous solutions for the energy-release rate.

Shear does not contribute to the energy-release rate in these buckling-

driven delamination problems.  However, it does contribute to other significant

thin-film geometries such as the blister test and the peel test.  Existing analyses of

the blister test are based on the assumption of a clamped boundary at the crack

tip, and they neglect the effects of shear (Jensen, 1991; Jensen and Thouless,

1993).  While the energy-release rate for an elastic peel test can be obtained

directly from a steady-state energy-balance argument (Kendall, 1975), existing

calculations of the phase angle also ignore the effects of shear (Thouless and

Jensen, 1992).  Shear effects in a peel test exhibiting plastic deformation have

                                                                                                                                                      
4 Note that in the results presented in Fig. 9, the root rotation is defined as the average rotation of
the plane at the crack tip.  This is a different definition from that used by Yu and Hutchinson
(2002) and is responsible for the slight discrepancy between the two sets of results.
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been identified (Yang et al., 2001), as have shear effects in wedge tests with

plastic deformation (Yang et al., 1999).

3.4 Cohesive zones

Cohesive zones and elastic foundations are two inter-related concepts that

also appear in the literature in connection with the effects of shear.  The final two

sections of the discussion will attempt to clarify the role of these two phenomena

in the elastic fracture mechanics of layered materials.  The discussion so far has

been limited to problems with uniform linear-elastic constitutive properties

throughout both portions of a bi-material beam.  If the cohesive tractions at the

interface contribute negligibly to the overall compliance of the system, this

discussion is valid, and linear-elastic fracture mechanics is appropriate.

However, additional complications arise if the cohesive tractions between the

two materials contribute significantly to the compliance of the system.

It has been demonstrated (Tvergaard and Hutchinson, 1992) that there are

two important cohesive parameters that dominate mode-I fracture: the cohesive

strength, 
)σ , and the toughness, Γ Io.  Details of the shape of the traction-

separation law for the cohesive tractions have a minor influence on the

mechanics.  Using a cohesive-zone model described elsewhere (with a

trapezoidal traction-separation law) (Yang et al., 1999; Cavalli and Thouless,

2001), the effects of these two dominant parameters can be explored using a

symmetrical, linear-elastic, double-cantilever beam as a model.  The resultant

load-displacement curves are shown in Fig. 10, and compared to the results of

linear-elastic calculations.  These curves show that if  E hIoΓ /
)σ 2  is less than about

0.4, the cohesive strength has a negligible effect on the deformation and fracture
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of the beam, and the toughness is the only interfacial parameter that affects

fracture.  The linear-elastic result of Eqn. 11, which incorporates shear, then

provides an accurate description of the fracture mechanics, and the interfacial

toughness can be obtained from a double-cantilever geometry by substituting the

maximum load obtained experimentally into Eqn. 11 and equating the energy-

release rate to the toughness.5  The toughness of the interface is then the only

interfacial parameter that affects fracture.  If  E hIoΓ /
)σ 2  is greater than about 0.4,

the peak load is significantly reduced from what would be predicted by L.E.F.M.,

and this approach would not be valid.  Both the strength and compliance of the

joint would then be required to find the fracture parameters (Suo et al., 1992;

Spearing and Evans, 1992).

Inspection of Fig. 10 suggests a simple, elegant and very practical way of

deducing the interfacial toughness from a double-cantilever beam experiment

when    E hIoΓ /)σ 2  is unknown.  It will be noted that the cohesive zone is fully

developed at the peak load and, subsequently, the crack grows maintaining a

cohesive zone of constant size ahead of its tip.  In this regime the load-

displacement plot does not depend on the cohesive strength.  In other words, the

LEFM results provide a master curve for crack propagation.  (The results for

different cohesive strengths are simply translated to different effective crack

lengths.)  It can be shown that this master curve relating the cracking load, Fc, to

the crack-mouth opening displacement, δ, is given by

                                                  
5 It is noted that the standard formulation for the validity of linear-elastic fracture mechanics

(L.E.F.M.) is that h Kc Y> ( )2 5
2

. /σ , where σY is the yield strength, and Kc is the fracture toughness

of the interface.  Recognizing that K Ec Io= Γ , it can be seen that this standard formulation is
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F

Eh Eh h
c Io



 = 











−2 3 2 1
1

3 3
Γ / δ

. (13)

Hence, if the experimental load and displacement are measured in this regime,

ΓIo can be determined directly from Eqn. (13) without any knowledge of the crack

length or of the cohesive strength.  Only the elastic properties and the thickness

of the arms need to be known.  This provides a powerful technique for analyzing

symmetrical double-cantilever geometries even under L.E.F.M. conditions.  Once

the toughness has been obtained by this approach then, if    E hIoΓ /)σ 2  > 0.4, the

cohesive strength can be found using a cohesive-zone model and comparing the

predictions for the peak load (or / and the loading compliance) to the

experimental observations.

3.5 Elastic-foundation models

An excellent solution for the energy-release rate of a double-cantilever

beam can be found using elastic-foundation models (Kanninen, 1973, 1974;

Williams, 1989, 1995; Williams and Hadavinia, 2002).  The concept underpinning

these analyses is that local deformation of the material immediately ahead of the

crack tip affects the compliance of the system and influences the energy-release

rate.  This effect is incorporated in the analysis by assuming that, as shown in

Fig. 11, the material between the mid-plane of the D.C.B. and the centroidal axis

of an arm can be modeled as a Winkler elastic foundation bonded to a rigid

surface (the plane of symmetry).  The analysis essentially proceeds by

considering a semi-infinite beam of elastic stiffness Eh3 12/  (per unit width)

supported on an elastic foundation of stiffness k (per unit width) and loaded by a

                                                                                                                                                      
essentially identical to the result indicated here with the cohesive strength of the interface being
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moment M (per unit width) and a shear force V (per unit width) at one end.  The

displacement at the edge of the elastic foundation is given by (Barber, 2001)

u
k

V
k

Mo = +2 2 2λ λ
 , (14)

where λ = ( )3 3 1 4
k Eh/

/
.  Recognizing that there two halves to this mode-I

geometry, the energy-release rate for the crack can be written as

G = kuo
2 . (15)

Hence, from Eqn. 14 it can be seen that

E
E

hk

V

h

M

h
G =  2 632 12

1 4

1 2 3 2

2

.
/

/ /







+












. (16)

It is noted that the stiffness of the foundation has no effect on the moment

component of the energy-release rate, and Eqn. 16 reduces to Eqn. 1 for H = 1 and

α = 0 if there is no shear force.  However, the shear component of the energy-

release rate is sensitive to assumptions about the stiffness of the foundation.  This

further emphasizes the point made in Section 3.2 that, while the moment

component of the energy-release rate does not depend on the deformation in the

crack-tip region, the shear component does.

A physical argument was made in Kanninen (1973) that k ≈ 2 E /h.  This

results in a very good agreement with numerical results for the double-cantilever

beam.  However, it is interesting to note that if one chooses k = 1.615 E /h, Eqn. 16

becomes

E Vh MhG =  2 335 121 2 3 2 2
. / /− −+[ ] , (17)

                                                                                                                                                      
represented by the yield stress.
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which is identical to Eqn. 11.  This exact match to the rigorous solution for the

shear component of the energy-release rate only works for the perfectly

symmetrical case when the phase angle is zero.  However, the approach (with

the same value for k) can be used to obtain an approximate analytical result for

fv(α, 0, H).  If the analysis is repeated for a asymmetrical double-cantilever beam

(assuming again that the foundation can be split into two portions corresponding

to each arm), the following result is obtained:

f H Hv ( , , ) .α α α0 1 65 1 1 1
1

≈ + +( ) −( )−
. (18)

It will be observed from Table 2(a) that this result generally provides quite a

good fit to the values given in Table 2(a).  An elastic foundation approach can

also be used to provide a good approximation to the solution for the energy-

release rate associated with a combined shear and bending moment (Williams,

1995).  While this approach can correctly reproduce the first two terms of Eqn. 9,

it does not accurately describe the interaction between the two components (the

last term in Eqn. 9); nor does it provide any information about the phase angle.

An approximate analytical result for a cohesive zone in a double-

cantilever beam geometry can be developed using the elastic-foundation model.

It should be noted that the springs for such a model need to include two

elements in series.  The first element represents the deformation of the arms, and

can be modeled by springs that have a spring constant of kd = 1.615 E /h.  The

second element represents the cohesive zone.  As noted by Williams and

Hadavinia (2002), analytical models can be developed for cohesive-zone

elements with different types of constitutive properties.  Here, the cohesive zone

is represented by linear-elastic elements, so that the spring constant is given by
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kc Io= )σ 2 / Γ (19)

(since there are two halves to the D.C.B. geometry).  The effective spring constant

is then given by

k
k k

k k

E h

E h
d c

d c

Io

Io

=
+

=
( )

+ ( )
1 615

1 1 615

2

2 2

. /

. /

Γ
Γ

)

)
σ
σ

 , (20)

and, from Eqn. 16, the expression for the energy-release rate of a point-loaded

double-cantilever beam with a crack of length a becomes

    

G = + +


















12
1 0 674 1 1 62

2 2

3 2

1 4 2

F a

Eh

h

a

E

h
Io. .

/
Γ
)σ

. (21)

An expression for the load at which crack growth occurs, Fc, is then given by

equating G to ΓIo:

  

F

Eh Eh

a

h

E

h
c Io Io=







+ +


















−
Γ Γ

12
0 674 1 1 62

1 2

2

1 4 1
/ /

. . )σ
(22)

This result is in moderately good agreement with the predicted fracture loads

shown in the numerical data of Fig. 10.  However, there is some discrepancy

associated with the different choices of the cohesive law used in the two

calculations.6

4. Conclusions

The forces and moments acting on the tip of a crack in a layered material

under any general plane loading can be described in terms of an axial

compressive load, a bending moment and a transverse shear load.  It is possible

to express the energy-release rate and the phase angle in terms of three separate
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components associated with each of the three types of loading.  In this paper, the

results for the shear component have been presented.  In contrast to the results

for the moment and axial-force components, the shear component of the energy-

release rate cannot be derived from either a steady-state energy argument or

from a beam analysis (even a higher-order theory that incorporates shear).  This

is because the details of the crack-tip deformation play a crucial role in the case

of shear.  The effect of shear is not merely a second-order correction to a simple

Euler-Bernoulli beam-theory approach to the mechanics of layered materials.

Shear loading at the crack tip is an important and independent phenomenon that

completes the triad of possible crack-tip loading configurations for a layered

material.  For example, in a short double-cantilever beam, the shear component

can contribute as much as two thirds of the total energy-release rate.  It is

theoretically possible for the shear component to be even more dominant if, for

example, a gradient of internal residual stresses in a thin film counteracts any

moment associated with an applied load (as in Fig. 4).

The results presented in this paper for the shear component of the energy-

release rate can be combined with the results previously derived by Suo and

Hutchinson (1990) for the axial-load and bending-moment components to

analyze any general loading of layered materials and other beam-like geometries.

For example, it is possible to use Eqns. 10 and 11 to calculate the energy-release

rate and phase angle of any double-cantilever beam geometry with a modulus

mismatch and different thicknesses of arms.  It has been shown that predictions

                                                                                                                                                      
6 The nature of the relationship between the fracture load and the cohesive strength (Eqn. 22)
indicates how estimates of Fc for given values of 

)σ  are not be very sensitive to the assumed
cohesive law, but estimates of 

)σ  obtained from observations of Fc are much more sensitive.
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from this type of analysis provide excellent agreement with numerical

calculations.  A particular illustration of this analysis is the fracture mechanics of

a symmetrical double-cantilever beam.  It has been shown that the analysis

results in the commonly accepted equation for the energy-release rate of a D.C.B.

that includes a “correction factor” to the equation that is derived from

considerations of pure bending. This “correction factor” arises from the shear

component to the energy-release rate, it does not arise from factors such as root

rotation, cohesive zones or elastic foundations.  The significance of these

phenomena and models in the mechanics of layered materials have been

discussed in the last section of this paper.
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Table 1 The phase angle, ψ α βM H, ,( ), for delamination of a bilayer subjected

to a pure bending moment and β = 0.  The uncertainty of these

results is better than ± 0.1°.

αααα -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
H
0.0 -43.3° -42.3° -41.0° -39.6° -37.9° -35.9° -33.4° -30.1° -24.9°

0.2 -43.0° -41.3° -39.4° -37.3° -34.8° -31.8° -28.1° -22.9° -14.3°

0.4 -41.5° -38.4° -35.1° -31.6° -27.5° -22.8° -16.9° -8.9° +4.0°

0.6 -39.2° -34.1° -29.1° -23.8° -18.1° -11.8° -4.3° +5.2° +18.5°

0.8 -36.0° -28.8° -22.1° -15.4° -8.6° -1.3° +6.6° +15.8° +27.3°

1.0 -32.4° -23.0° -14.9° -7.3° 0.0° +7.3° +14.9° +23.0° +32.4°
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Table 2(a) The coefficient f HV α β, ,( ) for delamination of a bilayer subjected to a

double transverse shear loads and β = 0. The uncertainties are ± 0.007

for H  ≥ 0.2.

αααα -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
H
0.0 see Table 3(a)

0.2 1.635 1.687 1.753 1.833 1.940 2.089 2.300 2.654 3.412

0.4 1.645 1.708 1.784 1.881 2.009 2.186 2.439 2.865 3.800

0.6 1.663 1.739 1.836 1.954 2.106 2.314 2.619 3.125 4.250

0.8 1.684 1.781 1.898 2.037 2.217 2.460 2.809 3.394 4.704

1.0 1.711 1.829 1.968 2.127 2.335 2.605 3.003 3.665 5.127

Table 2(b) The phase angle, ψ α βV H, ,( ) , for delamination of a bilayer subjected

to double transverse shear loads and β = 0 . The uncertainties are

± 0.2° for H  ≥ 0.2.

αααα -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
H
0.0 see Table 3(b)

0.2 +4.6° +3.4° +2.1° +0.7° -0.6° -2.1° -3.6° -5.1° -6.6°

0.4 +4.5° +3.3° +1.9° +0.6° -0.8° -2.1° -3.5° -4.8° -5.9°

0.6 +4.5° +3.3° +2.1° +0.8° -0.5° -1.8° -3.1° -4.3° -5.3°

0.8 +4.7° +3.5° +2.3° +1.0° -0.3° -1.5° -2.7° -3.9° -5.0°

1.0 +4.8° +3.7° +2.5° +1.3° 0.0° -1.3° -2.4° -3.6° -4.9°
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Table 3(a) The coefficient f HV1
α β, ,( ) (with β = 0) for delamination of a bilayer

subjected to a single transverse shear load on the arm 1.  The

uncertainties are ± 0.007 for H ≥ 0.2 and ± 0.03 for H = 0.

αααα -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
H
0.0 1.64 1.69 1.76 1.84 1.94 2.09 2.29 2.61 3.28

0.2 1.607 1.628 1.662 1.715 1.791 1.902 2.075 2.380 3.055

0.4 1.531 1.507 1.510 1.545 1.618 1.729 1.908 2.214 2.851

0.6 1.413 1.354 1.351 1.386 1.458 1.573 1.746 2.023 2.518

0.8 1.282 1.206 1.206 1.247 1.323 1.434 1.590 1.812 2.137

1.0 1.150 1.077 1.088 1.133 1.207 1.306 1.438 1.607 1.787

Table 3(b) The phase angle, ψ α βV H
1

, ,( )  (with β = 0) for delamination of a

bilayer subjected to single transverse shear load on arm 1.  The

uncertainties are ± 0.1° for H  ≥ 0.2 and ± 0.5° for H =0.

αααα -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
H
0.0 +5.0° +4.0° +3.0° +2.0° +0.7° -0.5° -1.7° -3.1° -4.8°

0.2 +4.3° +2.6° +0.8° -1.2° -3.5° -6.0° -8.7° -11.7° -15.1°

0.4 +3.2° +0.6° -2.0° -4.6° -7.4° -10.0° -12.6° -15.2° -17.9°

0.6 +1.6° -1.9° -4.9° -7.6° -10.5° -12.8° -15.0° -17.1° -19.1°

0.8 -0.5° -4.6° -7.7° -10.2° -13.0° -14.9° -16.7° -18.3° -19.8°

1.0 -3.0° -7.5° -10.5° -12.7° -15.1° -16.3° -17.7° -19.0° -20.2°
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Figure captions

Figure 1 The general beam-like geometry subjected to axial loads and

bending moments for which the interfacial fracture mechanics have

been determined by Suo and Hutchinson (1990).

Figure 2 A schematic illustration of vectorial addition of stress-intensity

factors (and square roots of energy-release rates).

Figure 3 The general geometry of a layered material subjected to axial loads,

bending moments and transverse shear loads.

Figure 4 (a) A beam-like geometry subjected to double transverse shear

loads and double opposing bending moments.  (b) A beam-like

geometry subjected to a single transverse shear load and an

opposing bending moment.

Figure 5 Comparison between the analytical results (curves) and finite-

element results (data points) for a double-cantilever beam with

H = 1 and different values of α.  Plots are shown for (a) non-

dimensional energy-release rate, and (b) phase angle.

Figure 6 Comparison between the analytical results (curves) and finite-

element results (data points) for a thin film (H = 0) loaded by a

transverse shear force on a thick substrate, for different values of α.

Plots are shown for (a) the non-dimensional energy-release rate,

and (b) the phase angle.

Figure 7 A comparison of the energy-release rate for a symmetrical double-

cantilever beam undergoing large-scale deformation calculated
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from finite-element results (closed circle) and from the analytical

approach presented in this paper (closed diamond).  The bending

moments used in the analytical results were calculated from the

deformations predicted by finite-element calculations.

Figure 8 Root rotation and shear on a section at the crack tip.

Figure 9 Plots of the coefficients for the root rotation angle as a function of α

for H = 1 (open symbols) and H= 0 (closed symbols), and for β = 0. 

Figure 10 A plot of the load versus displacement for a symmetrical double-

cantilever beam calculated using a cohesive-zone model, for an

initial crack length ao = 2h.

Figure 11 An elastic foundation model for a double-cantilever beam used to

analyze the effects of deformation between the centroidal axis of

the arms and the mid-plane of the geometry, as proposed by

Kanninen (1973, 1974).
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