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ABSTRACT

Cohesive-zone models for interfaces incorporate both strength and energy parameters. There-
fore, they provide a natural bridge between strength-based models and energy-based models
for fracture, allowing delamination to be described by a single framework that covers a range
of applications for which the strength or energy criteria alone might not be sufficient. In
this paper, the relationships between cohesive-zone models and fracture models based on
strength or energy are discussed. A mixed-mode formulation of cohesive-zone models has
been used to investigate a number of issues related to the delamination of interfaces. It
has been shown that linear-elastic fracture mechanics (LEFM) provides an excellent de-
scription of mixed-mode delamination, beyond the limits where LEFM would usually be
thought to be appropriate. In particular, the concept of a nominal phase angle, calculated
from stress-intensity factors is very robust. Compressive normal stresses on interfaces can
be accommodated by the finite thickness of cohesive-zone models, resulting in increased
levels of nominal toughness. The length scale naturally associated with cohesive zones al-
lows them to describe mixed-mode fracture of interfaces with a modulus mismatch across
them. Cohesive-zone models have also been used to explore the phenomenon of crack de-
flection at interfaces. The results of these calculations appear to be more consistent with
strength-based models of deflection, rather than with energy-based models. They indicate
that the strength ratio between the cohesive strengths of the interface and substrate play
an important role in determining whether crack deflection or propagation occurs.

1. INTRODUCTION

Crack propagation along interfaces often controls the mechanical behaviour of composites
(Fig. 1). The toughness of a fibre composite depends on delamination of the matrix-fibre
interfaces, and frictional sliding along the interfaces. Failure of laminated composites can
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occur by delamination of the plies. However, crack deflection along interfaces, and multiple
delaminations between successive plies or bonded interfaces, can lead to enhanced tensile
strengths and energy dissipation. Historically, two approaches have been used to analyze
these aspects of composite mechanics: a strength-based approach to fracture (Inglis 1913),
and an energy-based approach (Griffith 1920). While the energy-based approach of fracture
mechanics is the most versatile of the two for linear-elastic systems, and is the dominant
tool currently used for analysis, there are regimes for which the other approach may be
more appropriate (particularly at small length scales). Furthermore, for many practical
applications, such as when large-scale plasticity dominates the fracture process, neither
approach is sufficient. The relatively recent development of numerical cohesive-zone analyses
provides a much more general model of fracture and allows the limiting regimes, in which
either energy or strength alone are the dominant failure criteria, to be bridged within a
single framework.

Multiple delamination

Fibre pull-out

Delamination

Fig. 1: Effects of interfacial failure and crack deflection in composites. Figure adapted
from Parmigiani and Thouless (2006).

2. MODELS OF FRACTURE

2.1 Energy-based approach to fracture. The energy-based approach to fracture assumes that
crack growth occurs when the energy-release rate G reaches a critical value, Γ, the toughness.
However, when delamination of an interface occurs, the crack is constrained by geometry to
grow along a fixed path. Depending on the geometry and the nature of the applied loads,
the crack may grow under mixed-mode conditions with both normal and shear components
to the crack-tip deformation, and the toughness of an interface is a function of the rela-
tive amounts of normal and shear deformation. Experimental observations indicate that
the toughness under pure mode-II conditions, ΓII , is generally larger than the toughness
under pure mode-I conditions, ΓI . The relative proportions of shear to normal deformations
contributing to crack growth is defined by interfacial fracture mechanics through use of a
concept known as the phase angle. In a plane problem, and in the absence of a modulus mis-
match across the interface, the nominal phase angle, ψ∞, is defined in terms of the nominal
mode-II and mode-I stress intensity factors, KI and KII as calculated from the assumption
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of sharp cracks and linear elasticity:

ψ∞ = tan−1 (KII/KI) . (1)

This can be re-expressed in terms of the mode-I and mode-II energy-release rate components,
GI and GII as

ψ∞ = tan−1(
√
GII/GI), (2)

where the total energy-release rate is the sum of the two components:

G = GI + GII . (3)

A mixed-mode failure criterion is established by assuming that the toughness is a function
of the nominal phase angle, so that it varies from ΓI when ψ∞ = 0o to ΓII when ψ∞ =
90o. Many different functional dependences have been proposed in the literature; they are
generally monotonic between the two limits and, beyond the observation that the effects of
mode-II can often be neglected at phase angles below about 45o, experimental observations
tend not to be sensitive enough to argue for one particular function over another. One
functional dependence, that follows the general trend of experimental observations, results
from an assumption that the values of the two components of the energy-release rate at
fracture are given by the condition:

GI

ΓI
+
GII

ΓII
= 1. (4)

If these components are denoted by GI
∗ and GII

∗, so that

GI
∗

ΓI
+
GII

∗

ΓII
= 1, (5)

then the mixed-mode toughness of the interface is given by

Γ = GI
∗ + GII

∗, (6)

at a phase angle of

ψ∞ = tan−1
(√

GII
∗/GI

∗
)

, (7)

Combining Eqns. 5, 6 and 7, results in a mixed-mode failure criterion of

Γ = ΓI
λ(1 + tan2 ψ∞)

λ + tan2 ψ∞
, (8)

where λ = ΓII/ΓI . This relationship is plotted in Fig. 2. This functional form (or any
other similar form) can be used in linear-elastic fracture mechanics (LEFM) analyses to
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predict the strength of mixed-mode geometries. The concept of mixed-mode fracture can
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Fig. 2: Dependence of toughness on nominal phase angle following the mixed-mode
failure criterion of Eqns. 4 and 8.

be slightly more involved when there is modulus mismatch across the interface. In a plane
geometry containing an interface between two different isotropic materials with moduli E1

and E2, and Poisson’s ratios ν1 and ν2, the mechanics depends on two non-dimensional
groups of the elastic parameters. These two groups are given by (Dundurs 1969)

α =
Ē1 − Ē2

Ē1 + Ē2
, (9)

and

β =
Ē1f(ν2)− Ē2f(ν1)

Ē1 + Ē2
, (10)

where Ē = E(1 − ν2) and f(ν) = (1 − 2ν)/[2(1 − ν)] in plane strain, and Ē = E and
f(ν) = (1 − 2ν)/2 in plane stress. If β = 0, then the discussion of the previous paragraph
about mixed-mode fracture still applies, since the shear and normal components of the
crack-tip stress field are well-defined. However, if β "= 0, the nominal phase angle has to be
defined with respect to a characteristic length scale, such as the layer thickness, h1:

ψ∞ = tan−1
[
#(Khiε)/$(Khiε)

]
, (11)

where K is the complex stress-intensity factor (Rice 1988), and

ε = (1/2π) ln [(1− β)/(1 + β)]. (12)
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Now, the mixed-mode failure criterion depends on the choice of the characteristic length
scale chosen to define the phase angle.

The condition for whether a crack impinging on an interface will continue into the underlying
substrate, or whether it will deflect along the interface, is computed by comparing the
energy-release rate and toughness for two separate problems (He and Hutchinson 1989):
(i) for a small kink extending ahead of the crack across the interface, and (ii) for a small
kink extending from the crack along the interface (Fig. 3). For a homogeneous composite
that has the same modulus on both sides of the interface, crack deflection will occur if
the toughness of the interface Γ is less than about 25% of the mode-I toughness of the
substrate Γ2 (He and Hutchinson, 1989; Thouless, Cao and Mataga 1989). However, since
the interface is generally under mixed-mode conditions, the ratio of ΓII/ΓI for the interface
also affects the conditions for crack deflection. In particular, the effect of ΓII becomes
increasingly important when the crack is trying to penetrate into a compliant material (He
and Hucthinson, 1989; He, Evans and Hutchinson, 1994), and crack deflection tends to be
suppressed if the interface has a high value of the mode-II toughness.

Fig. 3: Crack deflection and crack penetration across an interface are analyzed by
considering two distinct geometries: (i) a kink extending across an interface, and (ii)
a kink extending along an interface.

2.2 Strength-based approach to fracture. There are two types of strength-based analyses.
One type involves elastic stress calculations, with an assumption that an interface fails
when the stress reaches a critical value. For example, the normal stress distribution along
the interface of a fiber or a laminate being subjected to an applied load (Fig. 4) can be
calculated if the stresses are completely elastic along the interface (Muki and Sternberg,
1970). When the maximum stress on the interface reaches a critical value, corresponding to
either the normal or shear cohesive strength of the interface, σ̂ or τ̂ , debonding is initiated
(Hsueh 1990). While such an elastic calculation gives a value for the debond strength of a
fiber or laminate, it is very sensitive to stress concentrations and elastic singularities.

An elastic stress analysis can also be used to compute the conditions for crack deflection at an
interface in a composite. A classic example is the Cook-Gordon analysis (Cook and Gordon
1964) in which the normal stresses ahead of a matrix crack (modelled as an elliptical flaw)
is compared to the normal stresses along an interface perpendicular to the crack (Fig. 5).
By equating the ratio of the maximum values of the two stresses, it can be shown that the
debond strength of the interface will be reached before before the matrix crack grows if the
cohesive strength of the interface is less than about 20% of the matrix strength. A similar
result was also obtained by an elastic stress analysis for cracks approaching an interface
with a modulus mismatch (Gupta, Argon and Suo 1992).



Thouless and Parmigiani

Fig. 4: Stress analysis for debonding of a fibre in a composite.

Fig. 5: The Cook-Gordon model for delamination at an interface in a composite.

An alternative type of stress analysis for debonding of an interface, that is less sensitive
to the effects for stress concentrations, are shear-lag analyses. In these calculations, it is
recognized that the maximum stress that can be supported by an interface is limited by
the shear cohesive strength τ̂ . But, it is assumed that when this stress level is reached,
the interface maintains its stress-bearing capability, with relative slip occurring across the
interface. A force equilibrium calculation then permits a calculation of the slip length over
which the maximum shear strength is exhbited. For example, if a fibre of radius R is
subjected to an applied load P (Fig. 6), then the slip length is Lc = P/2πRτ̂ .

Embedded within this model is an implicit assumption that an infinite shear strain can be
supported across the interface. As the applied load supported by the fibre is increased, it is
assumed that the slip length can increase without limit until the fracture strength of the fibre
is reached (or until the slip zone extends across the matrix and the fiber is pulled out of the
matrix). If there is a limit to the relative displacement that could be accommodated across
the interface while still maintaining the full strength of the interface, then the concept of an
interfacial toughness would be introduced into such a model. The notion that the properties
of an interface can be described by both a strength and a toughness leads naturally into the
concept of a cohesive-zone model.

2.3 Cohesive-zone approach to fracture. The toughness of an material or interface is per-
formance limiting for energy-based fracture criteria, but the strength is not. Conversely,
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Fig. 6: Shear-lag analysis for a fibre embedded in a matrix.

strength, not toughness, is performance limiting for strength-based fracture criteria. By
explicitly modelling the tractions across an interface, cohesive-zone models allow for a full
description of fracture that incorporates both types of behaviour. These tractions may be
associated with physical, chemical or mechanical bonding across a plane, or they can be
associated with the deformation of an intermediate layer between two planes. There is a
degree of arbitrariness as to the volume of material assigned to the cohesive-zone, which
depends upon the scale at which the fracture process is being described. For example, var-
ious amounts of the plastic deformation that may be intimately coupled with crack growth
can be incorporated into a cohesive zone. At the most fundamental level, the cohesive zone
might incorporate only atom-to-atom bonding, with no plasticity. Less computationally
intensive zones will generally include material in which plasticity might occur. The choice
of how much plasticity to assign to the fracture process, and how much to assign to the bulk
deformation of the material, will depend on what gives an adequate description of failure
at the scale of interest within the set of parameters required to describe the problem. For
adhesively-bonded joints or laminated composites, a natural size-scale for the cohesive-zone
is the thickness of the adhesive layer (Yang, Thouless and Ward 1999; Yang and Thouless
2001) or the interlaminar region. In this case, the properties of the traction-separation law
represent the entire deformation of the adhesive layer, and may depend on the details of
the geometry. However, this is not an issue limited to cohesive-zone models; energy and
strength-based approaches to adhesive fracture all incorporate the same assumption that
the entire adhesive layer is associated with the fracture process, and have the same issues
of geometry dependence.

In fibre-composite materials, cohesive-zone models can be used to represent the bridging
tractions imposed by the pull-out of fibres; the size and properties of the cohesive-zone then
have to capture fibre pull-out (Fig. 7). It is possible to use such a traction-separation law
to explore the behavior of a tensile composite bar of width, W , with different sizes of initial
crack, ao, (Li, Thouless, Waas, Schrœder and Zavattieri 2005b). A comparison between
the predictions for the load-displacement curves and the actual experimental observations
are shown in Fig. 8a. It will be observed from this plot that the energy dissipated by the
specimen varies with initial crack size. This is related to the stability of the crack (Fig. 8b),
and is a geometrical effect captured by the cohesive-zone model, rather than being associated
with any change in the cohesive properties.

For complete fidelity in mimicking the fracture process, the traction-separation law of the
cohesive should accurately represent the bonding across the interface or the deformation of
the bonding layer. In linear-elastic systems this can be determined by a J-integral approach
(Li , Maalej and Hashida 1994; Sørenson and Jacobson 2003). However, in general, much
of the fracture behavior at a practical engineering scale of observation can be captured
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Fig. 7: Traction-separation law for a polymer-matrix composite, with a matrix cracking
strength of σ̂m = 100 MPa, and a bridging strength of σ̂b = 79 MPa. The decreasing
portion on the right of the traction-separation law corresponds to fibre pullout, after
matrix cracking has occurred. Figure taken from Li, et al. (2005a).

by two parameters that describe the cohesive law: the area under the traction-separation
curve (the toughness), and a characteristic strength (typically, the cohesive strength) or a
characteristic displacement that represents the failure strain of the cohesive zone. Beyond
these two parameters, the details of the cohesive law are often not significant for practical
purposes.

Mixed-mode fracture can be accommodated within a cohesive-zone model if it is recognized
that each mode of the energy-release rate can be defined as the area traversed under the
appropriate traction-separation law, as shown in Fig. 9 (Yang and Thouless, 2001). The
phase angle can be described at any point along the fracture plane, at all stages during the
loading process, by comparing the appropriate ratio of the components of the energy-release
rate:

ψ = tan−1
[GII

GI

]
. (13)

Of particular interest is the energy-release rate at the tip of the crack, just when the crack
is about to advance. This is given by

ψo = tan−1

[
G∗II

G∗I

]

, (14)

where G∗II and G∗I are the values of the energy-release rate components at the crack tip
that satisfy Eqn. 4. As discussed above (Eqn 6), the sum of these two components (or
three components if a mode-III problem is being considered) is equal to the toughness at
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Fig. 8: (a) Comparison between load-displacement plot for a tensile specimen of width
25 mm, thickness 2.8 mm, and length 140 mm (gauge length of 25 mm), for different
initial crack sizes. (b) Energy dissipation as a function of crack length, showing
different regimes of stability predicted by the cohesive-zone model. Figures taken
from Li, et al. (2005b).

the corresponding value of phase angle. In this formulation of mixed-mode fracture, no
assumptions need to be made about the nature of the crack tip, and the definitions apply
through any arbitrary range of cohesive laws. The same formulation would be applicable
for different choices of mixed-mode failure criterion, or cohesive-laws.
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Fig. 9: Traction separation laws for mode-I and mode-II deformation, showing the
definitions of the mode-I and mode-II components of the energy-release rate. Figures
adapted from Yang and Thouless (2001).

A comparison between the predictions of the mixed-mode cohesive-zone model and the
equivalent linear-elastic fracture-mechanics (LEFM) predictions were explored using a sim-
ple centrally-cracked bar of modulus Ē with a normal and shear force, P and Q applied to
the crack (Parmigiani and Thouless, 2007). Cohesive elements with a traction-separation
law of the form shown in Fig. 9 were placed along the entire length of the interface. The ele-
ments were not embedded in any continuum elastic elements. The LEFM prediction for the
failure load, PLEFM , was computed using the form of the mixed-mode failure criterion given
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by Eqn. 8. Figure 10a shows how the load for failure, Pf tends to PLEFM at small values
of the fracture-length scale (defined as ĒΓI/σ̂2), when the toughness criterion dominates
over the strength criterion. The corresponding normal stresses ahead of the crack is shown
in Fig. 10b, where an approximation to the expected 1/

√
r stress field can be seen in the

limits where LEFM conditions apply. For large values of the fracture-length scale, the stress
is uniform across the uncracked ligaments, as would be expected when a strength-criterion
for fracture is appropriate.

Fig. 10: (a) Failure load for a mixed-mode tensile test. (b) Normal stresses ahead
of a crack in a mixed-mode tensile test. Figures taken from Parmigiani and Thouless
(2007).

3. DELAMINATION OF INTERFACES

Any arbitrary loading on a laminated structure can be decomposed into four sets of load
acting on an interface crack (Fig. 11): a set of axial forces, N ; a set of moments, M ; and
two sets of shear forces, Vs and Vu. Results from linear-elastic fracture mechanics (LEFM)
can be used to compute the combined energy-release rate and nominal phase angle from this
complete set of four loads (Suo and Hutchinson, 1990; Li, Wang and Thouless 2004). When
combined with a mixed-mode failure criterion such as Eqn. 8, the delamination strength can
be computed. In principle, it would be expected that these LEFM results should be accurate
in the limit when the stresses at the crack tip are controlled by a 1/

√
r stress field. In the

recent work of Parmigiani and Thouless (2007), the LEFM predictions for the phase angle
and delamination loads were compared to the results obtained using a cohesive-zone model,
to explore the regimes in which the LEFM equations can be used to describe fracture.

3.1 Mixed-mode delamination. Figure 12a shows how the phase angle, as defined from a
cohesive-zone calculation (Eqn. 13), varies with distance from the crack tip for a laminated
geometry with equal moduli across the interface. As can be seen in that plot, the phase
angle asymptotes to a constant value in the region near the crack tip. This constant value
is equal to ψ∞, the value based on LEFM predictions. While it is the phase angle at the
crack tip, ψo, that controls fracture, Fig. 12a shows there is nothing special about the crack
tip. This would be consistent with a constant value of the phase angle expected in the
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Fig. 11: Any arbitrary loading on a laminated structure can be decomposed into four
sets of load acting on an interface crack: a set of axial forces, N ; a set of moments,
M ; and two sets of shear forces, Vs and Vu.

immediate vicinity of a crack tip where the stresses are dominated by the singular stress
field in an a linear-elastic geometry. However, a plot of the normal and shear stresses along
the interface (Fig 12b) shows that there is nothing remotely resembling a 1/

√
r stress field for

this particular set of cohesive properties. Furthermore, the phase angle matches ψ∞ in the
region where the stresses are limited by the cohesive strengths.∗ LEFM calculations provide
accurate predictions of the phase angle and, hence, of the strength of elastic laminated
geometries, even when the actual fracture-length scales of the interface are far in excess
of what might have been expected to approximate LEFM conditions. An example of the
range of fracture length scales over which LEFM calculations appear to provide reasonably
accurate predictions for the strength are shown in Fig. 13a. In this context it should be
noted that when the toughness does not depend on phase angle, the energy-release rate
associated with the moment and axial components of the loading on the crack tip do not
depend on the nature of the interface, only the shear component is affected (Li, et al. 2004).
For this reason, the results for ΓII/ΓI = 1 tend to be particularly accurate even for very
large fracture length scales. The accuracy of the phase angle for this particular mixed-
mode geometry, which is more dominated by mode-II than the geometry shown in Fig 12,
is illustrated in Fig 13b.

3.2 Effects of crack-tip compression. One issue into which a cohesive-zone model gives par-
ticular insight is fracture under conditions when the crack tip is subjected to a closing
normal force. Experimentally, fracture is seen under these conditions (Thouless, Liniger
and Hutchinson 1992; Thouless, Liniger and Jensen 1994), but the concept of a negative
mode-I is generally rejected owing to the implication of crack-surface interpenetration. For
LEFM analyses, it is assumed that crack-surface contact enforces conditions of pure mode-II
on the crack tip, with the possibility of additional energy dissipation associated with friction
(Stringfellow and Freund 1992). However, the effects of friction do not seem to be great
enough to account for the rise in fracture resistance above the mode-II toughness that can
be seen (Thouless et al. 1992).

A cohesive-zone approach to fracture introduces the concept that all fracture planes (espe-
cially, laminates and joints with a compliant adhesive layer) have a non-zero value of equilib-
rium thickness, and can accommodate some normal compression. This normal compression
can store energy, beyond that associated with frictional effects, but will not contribute to
failure, which is expected to occur when GII = ΓII . If the interface is very thin, the contri-

∗In this regard, it is noted that a definition of phase angle based on shear-to-normal stress ratios, as the
phase angle is sometimes described in terms of, would fail in a cohesive-zone context, because it would just
give the ratio of the two cohesive strengths.
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Fig. 12: (a) Variation of phase angle with distance from crack tip in a cohesive-
zone model (b) Normal and shear stresses ahead of a crack. Figures adapted from
Parmigiani and Thouless (2007).

bution of the mode-I compression will be minimal. However, if the interface is thicker, the
mode-I compression can be more significant. This is demonstrated in Fig. 14. The load to
fracture a laminated geometry calculated from a cohesive-zone model was used to compute
a nominal toughness using the equations of linear-elasticity. The nominal phase angle was
changed by varying the ratio of the axial to transverse load, and the loading conditions
were taken over a range for which LEFM would predict a compressive normal stress on the
interface (corresponding to nominal phase angles with a magnitude greater than 90o). The
resultant plots of nominal toughness against nominal phase angle (both calculated from the
geometry and loads using LEFM calculations) are shown in Fig. 14 for three conditions: (i)
a thin interface with a thickness given by t = 0.00174h1, and no friction between the crack
surfaces; (ii) the same interface, but with a coefficient of friction µ = 0.5; (iii) an interface
ten times as thick, but with no friction. When the cohesive layer is very thin, the toughness
has a maximum value equal to ΓII if there is no frictional dissipation. Friction increases
the energy dissipated by fracture (and, hence, the nominal value of toughness). When the
thickness of the cohesive zone is large enough, energy can be stored by mode-I compression,
and the nominal toughness is enhanced, even in the absence of friction.

3.3 Effects of modulus mismatch. When there is a modulus mismatch across the interface,
such that β "= 0, the phase angle, as defined by linear-elasticity depends on the length scale
chosen to describe it (Rice, 1988). In particular, if the nominal phase angle is described by
the laminate thickness, h1, as indicated in Eqn. 11, then the phase angle can be shifted to
a new reference scale, ξ, by

ψ = ψ∞ + ε ln(ξ/h1). (15)

If ΓII/ΓI = 1, then the possible complications of a modulus mismatch are limited to fric-
tional dissipation if the surfaces of the crack are forced into contact by the oscillatory
displacement field. However, the general problem of mixed-mode fracture is complicated
by a lack of knowledge about the appropriate length scale with which to define the phase
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Fig. 13: (a) Variation of the strengths of a laminated geometry with the fracture length
scale, and a comparison with the LEFM predictions for the strength. (b) Associated
crack-tip phase angles. Figures adapted from Parmigiani and Thouless (2007).

angle. A cohesive-zone model incorporates a length scale naturally (Parmigiani and Thou-
less, 2007). As can be seen from Fig. 15a, the phase angle for a laminated geometry with a
non-zero value of β plateaus at the crack tip, in the same way that the phase angle plateaus
when β = 0. This crack tip value of ψo is the phase angle that controls fracture. It will be
noted from Fig. 15a that the cohesive-zone parameters chosen for the plot are such that the
fracture-length scale is sufficiently small for there to be a small region in which the phase
angle has a logarithmic dependence on distance from the crack tip, as predicted by LEFM
(Rice, 1988). Furthermore, a series of calculations using the same cohesive zone, but with
different elastic mismatches indicates that the appropriate length scale to describe the phase
angle in this particular case is 0.0018h1 (Fig. 15b). No obvious link has been found between
this length scale and any features of the cohesive zone.

4. CRACK DEFLECTION INTO AN INTERFACE

As described in Section 2.1, an LEFM calculation of whether a crack will kink into an
interface of a laminate (Fig. 16a) is done by comparing the energy-release rates for a small
kink of length k extending across the interface with the energy-release rate for the separate
problem of a small kink, also of length k, deflecting into the interface. If the modulus is the
same on both sides of the interface, and h1 << h2, the condition for crack deflection is (He
et al. 1994)

Γ2/Γ ≥ 3.83 + 5.77(k/h1)
1/2 + 2.18(k/h1). (16)

where Γ2 is the mode-I toughness of the material beneath the interface, and Γ is the appro-
priate mode-dependent toughness of the interface (which depends on ΓI and ΓII). Cohesive-
zone calculations for crack deflection introduce three additional parameters: the mode-I and
mode-II cohesive strengths for the interface, σ̂ and τ̂ , and the mode-I cohesive strength for
the substrate σ̂2. Cohesive-zone calculations for the two separate problems of deflection
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and propagation, with kink sizes much smaller than the relevant fracture-length scales of
ĒΓI/σ̂2 and ĒΓ2/σ̂2

2, result in excellent agreement with the expression given in Eqn. 16
(Parmigiani and Thouless, 2006).

However, significantly different results are obtained when cohesive elements are placed along
the interface and through the substrate simultaneously (Fig. 16b). Under these conditions,
the cohesive-zone calculations permit the crack to chose whether to propagate across the
interface or to deflect along it, rather than being set a priori. The conditions for deflection
or penetration in a homogeneous system with ΓII/ΓI = 1 are shown in Fig. 17a. This figure
shows that crack deflection is promoted by high values of both σ̂2/σ̂ and Γ2/ΓI . Conversely,
crack penetration is promoted by low values of these two ratios. There appears to be a
critical value of the strength ratio (σ̂2/σ̂) below which crack penetration is guaranteed,
irrespective of the toughness ratio. This limit was explored using fracture-length scales well
into the regime where LEFM is expected to be valid, and was determined to be about 3.2 for
elastically homogeneous laminates. This value is very consistent with the results of analyses
based on strength criteria (Cook and Gordon 1964; Gupta, et al. 1992). In contrast to
LEFM analyses, there does not appear to be a critical toughness ratio that ensures crack
penetration.

Similar results were obtained from calculations with a modulus mismatch. While, in general,
both the toughness and strength ratios determine whether crack deflection or penetration
takes place, there appear to be lower bounds for σ̂2/σ̂ below which crack penetration will
always occur (Fig. 17b). Mode-II effects for the interfacial cohesive zone become particularly
important when the crack resides in the stiffer material (Ē1 > Ē2). A relatively large value of
mode-II interfacial toughness impedes delamination under these conditions, thus increasing
the tendency for the crack to propagate through to the substrate. Conversely, when the
substrate is stiff (Ē1 < Ē2), mixed-mode effects are less important, and the possibility of
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Fig. 15: (a) Phase angles for a mixed-mode geometry with a modulus mismatch. (b)
Shift in phase angle between the crack tip phase angle and the nominal phase angle
defined in terms of h1 as a function of the mismatch parameter ε. This plot shows
that the characteristic length scale describing fracture for this particular cohesive law
is 0.0018h1. Figures taken from Parmigiani and Thouless (2007).

Fig. 16: (a) The geometry for crack deflection at an interface in a laminated geometry.
(b) Geometry for a cohesive-zone model for crack deflection. Figures adapted from
Parmigiani and Thouless (2006).

crack deflection is enhanced.

The apparent difference between the criteria for crack deflection from LEFM calculations
and from cohesive-zone calculations can be rationalized examining the magnitude of the
applied stress required to propagate the crack along the interface or into the substrate
(Fig. 18). If ΓII/ΓI = 1, the applied stress required to propagate a kink across an interface
of the elastically homogeneous laminate shown in Fig. 16a is

σa = 0.471
√

Ē1Γ2/h1 (17)

while the applied stress required to deflect the crack along the interface is

σa = 0.923
√

Ē1ΓI/h1 (18)
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These equations have been plotted on Fig. 18, from which the LEFM result of Γ2/ΓI = 3.83
for the transition between deflection and penetration can be seen graphically. In the limits
of very high and very low values of the ratio Γ2/ΓI , the cohesive-zone model agrees with the
two LEFM results for the stresses required to deflect or propagate the crack. However, in
general, the cohesive zones that develop in the substrate or along the interface shield each
other, and raise the required stresses for both mechanisms. This interaction between the two
cohesive zones is believed to be at the heart of the discrepancy between the LEFM results
of He and Hutchinson (1989), and the cohesive-zone results presented above. When the
fracture-length scales for the substrate and interface are comparable (or when the fracture-
length scale of the substrate is larger than that of the interface), interfacial crack growth is
shielded more strongly than crack penetration across the interface. This shifts the criterion
for the transition to higher values of Γ2/ΓI (or, equivalently, to lower values of σ̂2/σ̂). When
the fracture-length scale for the substrate is significantly smaller than that for the interface,
crack penetration across the interface is shielded more strongly than crack deflection. Under
these conditions, the critical toughness ratio decreases, and the critical stress ratio increases.

An estimate of the amount of shielding provided by the cohesive zones, can be obtained by
solving the LEFM problem for a crack impinging on an interface with simultaneous kinks
extending across the interface and along the interface. This problem has been solved by
finite-element methods. If the kinks are all of equal size (k/h = 10−5), the applied stress
required to propagate a kink across an interface in an elastically homogeneous laminate is

σa = 0.543
√

Ē1Γ2/h1. (19)

This is not significantly different from the result of Eqn. 17. However, the stress required to
propagate a kink along the interface is raised substantially by the presence of a substrate
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kink to

σa = 1.699
√

Ē1ΓI/h1 (20)

A comparison of these two equations indicates that a transition between the two modes of
crack growth would occur at a toughness ratio of Γ2/ΓI = 9.79. It will be observed that
this is very close to the critical ratio shown in Fig. 18a when the cohesive zones along the
interface and in the substrate are comparable. Furthermore, it can be seen from Fig. 18 that
the maximum stress, when the cohesive zone sizes are comparable, is almost identical to
that given by Eqn. 20. It is expected that repeating similar LEFM calculations for different
relative sizes of kinks would rationalize the range of deflection behavior observed in the
cohesive-zone analyses for different fracture-length scales. The relative cohesive strengths
affect the transitions between deflection and penetration behavior, even in the range of
cohesive parameters where LEFM results are expected to be valid, because the relative
strengths affect the relative lengths of the cohesive zones.
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Fig. 18: The applied stress to propagate a crack, either along the interface or across
it, for different fracture-length scales as a function of (a) toughness ratio, and (b)
strength ratio.

5. CONCLUSIONS

Cohesive-zone models of fracture provide a natural bridge between conditions in which
energy-based fracture criteria are appropriate and the conditions in which strength-based
fracture criteria are appropriate. A mixed-mode cohesive-zone model has been used to
explore the concepts of phase angle and mixed-mode failure criteria. It has been shown
that linear-elastic fracture mechanics (LEFM) analyses of mixed-mode delamination are
very robust, providing excellent predictions for the crack-tip phase angle and delamination
strength, even under conditions which might not seem to be appropriate for using the equa-
tions of LEFM. In particular, the notion of a phase angle calculated from LEFM seems
to be appropriate, even when the stress distribution along the interface has no relation-
ship to what would be expected from a linear-elastic analysis. A finite thickness that can
be associated with a cohesive zone, permits delamination to occur when the interface is
subjected to a compressive stress. This provides an additional contribution to the energy
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dissipation, beyond friction, that can raise the nominal toughness of an interface above the
mode-II toughness. Since they involve a fracture-length scale, cohesive-zone models allow
delamination in the presence of a modulus mismatch to be modelled naturally.

Crack deflection at interfaces can also be modelled by mixed-mode cohesive-zone models.
It has been shown that the interaction between competing cohesive zones fundamentally
changes the problem from existing LEFM models of crack deflection. In particular, the
relative magnitudes of the cohesive strengths of the interface and substrate play an important
role in determining the transition between crack deflection and penetration.
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