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Abstract

Cohesive-zone models have been used to study the effects of strength and
toughness on the delamination of beam-like geometries. The conditions un-
der which linear-elastic interfacial mechanics provide a good frame-work for
predicting failure of such systems have been studied. It has been determined
that the phase angle derived from LEFM calculations provides an excellent
description of the partitioning between the mode-I and mode-II energy-release
rates over a wide range of fracture-length scales. In particular, the nominal
phase angle can be a useful parameter, even when the fracture-length scale is
so large that the interface stresses do not exhibit the expected inverse-square-
root dependence. The analysis has also shown that nominal phase angles with
a magnitude greater than 90o can have physical significance, provided the inter-
face layer is thick enough to accommodate compression without crack-surface
contact. Finally, the role of modulus mismatch has been studied. A length
scale introduced by the cohesive strength allows a crack-tip phase angle to
be established, when LEFM predicts oscillating stress fields at the crack tip.
This crack-tip phase angle is shifted from the nominal phase angle based on a
characteristic geometrical length by an amount that depends on the cohesive
parameters of the interface and the modulus mismatch. It has been shown that,
as a result of this shift, both modulus mismatch parameters can influence the
strength of an interface.
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1 Introduction

1.1 General background

Historically, two distinct approaches for analyzing the fracture of interfaces and de-
lamination of layered materials have been developed. One, based on the Inglis ap-
proach to fracture [1], uses a strength-based failure criterion. The stress (or traction)
distribution along an interface is computed, and delamination is assumed to occur
when the stress at the crack tip reaches a critical value of the cohesive strength
(e.g., [2]). The other, based on the Griffith approach to fracture [3], has become
universally adopted during the last two decades, and is the basis of interfacial frac-
ture mechanics with its assumptions of linear elasticity and pre-existing flaws. The
energy-release rate (or crack-driving force) is computed for the body. This quantity
can be considered to be the energy density at the crack tip, and delamination is as-
sumed to occur when this quantity reaches a critical value of the toughness (e.g., [4]).

The bonding across an interface in an engineering, physical or biological system
can be regarded as a set of tractions that varies as a function of the separation be-
tween the two adherends, and that can be characterized by an appropriate traction-
separation law. For fracture to occur, the local stress across the interface must exceed
the cohesive strength of the interface (the peak stress in the traction-separation law),
and the energy density supplied to the crack tip must be greater than the toughness of
the interface (the area under the traction-separation law). In other words, the failure
criterion for the strength-based approach and the failure criterion for the toughness-
based approach must be met simultaneously. While strength-based approaches tend
not to include considerations of energy-release rate, energy-based approaches of frac-
ture mechanics do have an implicit assumption that the strength criterion is always
satisfied, because the stress field at a crack tip in an elastic material is singular.

The tractions across an interface may be formed by direct chemical bonding be-
tween the adherends; the traction-separation law then represents the atomic bond-
ing. The tractions may also be formed by physical bonding arising from van der
Waals forces, electrostatic or magnetic attraction. Bonding at an interface may also
be caused by an interphase. This interphase could consist of individual bonding
molecules, such as proteins or other organic chains, or it could consist of a bulk
second phase chemically bonded to the adherends, such as a metal or an adhesive
layer. Depending on the nature of the interphase, the traction-separation law would
either be associated with uncoiling the molecules and breaking any ligand-receptor
bonds [5], or with the deformation of the bulk layer up to the point of fracture. Ob-
viously, in the latter case, the characteristics of such a traction-separation law might
be expected to change with geometrical parameters [6, 7]. Traditional approaches
of interfacial fracture mechanics also have to accommodate the issue of a geometry-
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dependent toughness when used for the analysis of adhesive joints. The toughness can
depend on the thickness of the adhesive layer, so that the use of fracture mechanics
for design purposes is limited to adhesive layers of comparable thicknesses to those
for which the toughness was assessed. Another form of interphase that can be con-
sidered for interfaces is a bulk second phase physically bonded to the adherends. For
example, stiction in MEMS devices may be caused by capillary condensation at the
interface between an actuator and a substrate [8]. The capillary pressure provides
tractions across the interface, and crack advance along the interface involves fluid
flow within the condensate. Lubricated interfaces can also be regarded as fracturing
in a similar fashion. Model experiments have shown that when the liquid phase is
very thin, crack advance is dependent on the difference in surface energy between the
wetted interface and the unwetted interface [9, 10].

A particularly coherent body of literature, based on an implicit assumption of
singular stresses at the crack tip, has been developed for the interfacial fracture me-
chanics of layered materials [11]. However, there are many practical applications in
which the stresses across the interface are sufficiently limited in magnitude to justify
concerns as to whether analyses based on linear elasticity are appropriate. There-
fore, the goal of this paper is to explore the range of interfacial properties for which
interfacial fracture mechanics can be expected to provide a good approach for engi-
neering design and prediction, and how deviations from this range might affect the
fracture behavior. In the next section of this paper, interfacial fracture mechanics is
reviewed, with a particular focus on the implicit assumptions and approaches used in
design. In the following section, the rationale behind using cohesive-zone models to
examine this problem is discussed, along with some details of the associated numer-
ical modeling. In the subsequent sections, various aspects of interfacial fracture are
examined, with particular foci on the role of finite cohesive strengths, the interpre-
tation of mixed-mode fracture, delamination in the presence of compressive stresses
across the interface, and the effects of modulus mismatch across the interface. All the
analyses presented in this paper are for geometries in which the adherends on either
side of the interface remain elastic. While the issue of plasticity in the adherends has
been addressed elsewhere [12, 13], it is not considered here.

1.2 Issues related to the use of interfacial fracture mechanics

In quasi-static interfacial fracture mechanics (ignoring time-dependent aspects of
crack propagation), a pre-existing crack is assumed to propagate when the energy-
release rate for the crack, G, exceeds the appropriate toughness of the interface, Γ.
In a linear-elastic system, the energy-release rate is calculated in terms of the loads,
elastic constants and geometry, from a general consideration of the changes in the
elastic energy and work done as the crack advances. Fracture mechanics is gener-
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ally thought of as requiring the presence of sharp cracks with singular stress fields
at their tips. However, linear-elastic layered systems loaded by moments and axial
loads (Fig. 1a) exhibit the useful characteristic of having steady-state solutions for
the energy-release rate [14], valid when the ligament ahead of the crack tip is sig-
nificantly longer than the thickness of the thinnest layer. These solutions are not
predicated on any assumptions about the nature of the stress field at the crack tip.
Therefore, the concept of an energy-release rate for crack propagation is rigorously
correct for these geometries, even in the absence of a sharp crack tip and for any
type of interface bonding.1 This has a practical effect of adding immensely to the
utility of interfacial fracture mechanics, and some of this generality will be mani-
fested in the results presented in this paper. However, there is one caveat about these
steady-state solutions. Often interface cracks in layered materials are loaded normal
to the interface (Fig. 1b). This results in a transverse shear acting at the crack tip, in
addition to a moment. The energy-release rate associated with this transverse shear
component of the load is dependent on the details of the stress field at the crack tip,
as implied by the fact that a steady-state energy balance can’t be used to obtain the
energy-release rate associated with shear [15]. This complication results in a loss of
the rigorous generality that is appropriate with only bending moments or axial loads
acting at the crack tip, and means that there are important geometries for which the
energy-release rate may depend on the nature of the stress field at the crack tip.

Generally, the toughness of an interface cannot be determined by calculations; it
needs to be determined experimentally for the particular system of interest. Within
the context of linear-elastic fracture mechanics (LEFM), this is generally done by
calculating the nominal energy-release rate for crack propagation based on a macro-
scopic geometry (without reference to geometrical features at the crack-tip scale),
elastic properties, the residual stresses, and the applied loads at which the crack
propagates. This critical energy-release rate is then equated to a nominal toughness
of the interface. Although, in an elastic system, the energy-release rate is constant
down to the scale at which any energy dissipation may occur, the term “nominal” is
used to emphasize that there may be a difference between the “actual” energy-release
rate at the crack-tip scale and the energy-release rate computed at the macroscopic
scale. Indeed, the fact that the nominal toughness of an interface may be different
from the toughness at the crack-tip scale is a well-established axiom in LEFM, and
serves as the basis for concepts of toughening following the initial insight of Irwin [16].
For example, there may be plasticity in the interphase [17], frictional effects associ-
ated with contact of the crack surfaces [18], or a lack of alignment between the crack
tip and the macroscopic plane of the interface [19]. All these effects can be used
as the basis of micromechanics models to relate the nominal toughness to the local
toughness at the crack tip. Exploring these relationships is a valid mode of scientific

1The nature of the interfacial bonding affects the energy-release rate only if the ligament length
is sufficiently short that the boundaries interact with the crack-tip stress field.
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inquiry, and it is certainly of interest to be able to provide a physical basis to explain
phenomena such as how the nominal toughness of an adhesive interface may depend
on bond-line thickness. However, with the exception of friction, these issues are not
addressed in this paper. A discrepancy between “nominal” and “actual” values for the
toughness of an interface can also arise because of departures from strict conditions
of LEFM. Again, this is well-recognized, with some acceptable level of discrepancy
forming the basis for determining whether LEFM is an appropriate tool for charac-
terizing fracture. This is one of the issues addressed in this paper.

In a homogeneous material, the crack grows along a path in which no shear stresses
act at the crack tip. However, a crack growing along an interface is generally sub-
jected to both normal and shear modes of deformation, depending on the geometry
and the nature of the loads. Therefore, fracture along an interface introduces an ad-
ditional complication to the mechanics in the form of a phase angle, ψ, that measures
the relative amounts of shear and normal deformation at the crack tip. This is of
importance because there is considerable experimental evidence indicating that the
fracture of an interface depends on the phase angle [20, 21, 22].

In a plane geometry containing an interface between two different isotropic ma-
terials, with moduli E1 and E2, and with Poisson’s ratios ν1 and ν2, the mechanics
depends on two non-dimensional groups of these elastic properties. These two Dun-
durs parameters are given by [23]

α =
Ē1 − Ē2

Ē1 + Ē2

(1)

and

β =
Ē1f(ν2)− Ē2f(ν1)

Ē1 + Ē2

, (2)

where Ē = E/(1−ν2) and f(ν) = (1−2ν)/[2(1−ν)] in plane strain, and Ē = E and
f(ν) = (1 − 2ν)/2 in plane stress. The usual definition of the phase angle requires
the assumption of a sharp crack, so that the stresses along an interface are of the
form [24, 25]

σyy + iτxy =
Kriε

√
2πr

, (3)

where r is the distance ahead of the crack tip,

ε =
1

2π
ln

(1− β)

(1 + β)
, (4)

and K is a complex stress-intensity factor, whose real and imaginary parts reduce
to the well-known mode-I and mode-II stress-intensity factors in the special case of
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ε = 0. Furthermore, the crack-opening displacements are given by [24, 25]

δyy + iδxy =
8
√

1− β2

1 + 2iε

K

Ē∗

√
r

2π
riε, (5)

where Ē∗ is an average modulus defined by 1/Ē∗ =
(
1/Ē1 + 1/Ē2

)
/2. The riε factor

indicates that the displacements oscillate near the crack tip.

The phase angle is defined in terms of the ratio between the imaginary and real
parts of the stress-intensity factor. This is often identified as a measure of the ratio
between the shear and normal stresses, or as a ratio between the shear and normal
displacements. However, Eqns. 3 and 5 indicate that this ratio varies along the
interface when β 6= 0. Under these conditions, the definition of the phase angle needs
to include a length scale. In a layered material, the layer thickness, h1 (Fig. 1), is the
most convenient length scale to use, and a general definition of the “nominal” phase
angle becomes

ψ∞ = arctan
=(Kh1

iε)

<(Kh1
iε)
. (6)

The choice of layer thickness as the length scale obviously divorces the definition
from the facture process occurring at the crack tip, and emphasizes that this is the
definition of a “nominal” phase angle when β 6= 0. However, even when β = 0 and
a length scale is not needed to define the phase angle by LEFM, significant discrep-
ancies can occur between the nominal phase angle and the actual phase angle that
might describe conditions at the crack tip. For example, the relationship between
the two phase angles is governed by issues such as a modulus mismatch between the
interphase and substrate [26], the precise location of a crack within an interphase or
adhesive layer [27] or next to an interface [28], or the orientation of the crack tip
relative to the interface [29, 18].

When using interfacial fracture mechanics for design purposes, the normal practice
is to produce a curve of nominal toughness against nominal phase angle, and then to
assume that this relationship can be used as a general design criterion for the inter-
face in other geometries. Obviously, in the ideal case of a crack-tip stress field being
embedded within a singular field, the approach would seem to be rigorously valid, as
the local conditions at the crack tip would always be controlled by the singular field.
While many experimental studies on mixed-mode fracture limit themselves to mea-
suring how the toughness varies with nominal phase angle, a few studies do indicate
that there are conditions under which nominal mixed-mode fracture properties can
indeed be used in a predictive fashion [30, 31, 32]. However, the relative paucity of
these types of studies leave open the question of how universally useful this design
approach is, and whether it becomes limited for tough interfaces when the crack-tip
stress field may not be embedded in a singular elastic field. Given the difficulty of
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doing experiments in this area, a key component of this paper is a set of numerical
experiments that examine this question and show how mixed-mode fracture can be
accommodated within an intellectual framework that recognizes the reality and role of
finite cohesive strengths on the fracture of interfaces. The philosophy behind the work
presented in this paper is that the cohesive-zone analyses provide what are essentially
numerical experiments conducted on systems with known interface properties. Of
particular interest will be the extent to which LEFM analyses can be used to predict
the results of these numerical experiments, following the identical approaches that
would be used to apply LEFM techniques to predict and analyze “real” experiments
- namely, if a nominal energy-release rate and phase angle are computed for a par-
ticular geometry, and if they are combined with an appropriate mixed-mode failure
criterion, will the correct strength be predicted?

1.3 Issues related to the use of cohesive-zone models

Cohesive-zone models provide a coherent analytical framework for fracture along in-
terfaces that naturally incorporates both strength and energy criteria [33, 34]. By
incorporating traction-separation laws in a finite-element model, the physical basis
of interfacial fracture can be captured within a numerical analysis. In particular,
the physical requirement for a dual failure criterion of exceeding both a critical stress
level and a critical energy density at the crack tip is naturally met with this approach.

The concept of cohesive-zone modeling came from the original work of Dugdale [35]
and Barenblatt [36], where tractions were introduced across a crack surface to remove
the singularity at a crack tip in an elastic body. If the cohesive tractions are embed-
ded along a finite length within a perfectly elastic material, the length of region over
which cohesive tractions are applied is prescribed by the requirement to remove the
singularity [37], and the approach becomes a numerical tool rather than an attempt
to connect fracture to physical phenomena. The cohesive-zone approach can be made
considerably more powerful by taking the traction-separation law to represent the
physical bonding across an interface or the deformation of an interphase between two
adherends. In this approach, the entire interface is represented by cohesive tractions
with no need for an a priori definition of the extent of the cohesive zone. If the
interface bonding derives from atomic, molecular or physical bonding, well-described,
exact forms of the traction-separation law could be used. If the interface is bonded
by means of an interphase, then the traction-separation law can be taken as a char-
acteristic representative of the effective tractions exerted by the interphase on the
adherends [12, 38].

There are two key questions that are addressed in this paper. (i) To what extent
can interfacial fracture mechanics be used to quantify the delamination of layered
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materials when the interface has a finite strength? Of particular interest is whether
the concept of a nominal phase angle, as defined by interfacial fracture mechanics,
provides a useful measure of the mode-mixedness of the fracture process. (ii) How
do finite cohesive strengths affect the fracture of an interface under conditions when
interfacial fracture mechanics may not be valid?

These questions were considered by using a simple cohesive-zone model to describe
the bonding across an interface, based on the mixed-mode formulation by Yang and
Thouless [13]. The numerical simulations were run using the commercial finite element
package, ABAQUS. The adherends were modeled using two-dimensional plane-strain
continuum elements. The cohesive-zone was implemented as two-dimensional, plane
strain elements defined with the user-defined element feature of ABAQUS using a
FORTRAN subroutine. An example of the subroutine is listed in [39]. Trapezoidal
laws, as shown in Fig. 2, were chosen as representative forms for both the nominal and
shear stresses across the interface. The normal strength of the interface is σ̂ and the
shear strength of the interface is τ̂ . The mode-I toughness (area under the normal
traction-separation curve) is ΓI , and the mode-II toughness (area under the shear
traction-separation curve) is ΓII . While some aspects of fracture can depend on the
details of the traction-separation laws used, often only the strengths and toughnesses
are required to describe many of the important aspects of interfacial fracture. In
particular, sensitivity analyses indicated that the major conclusions of this paper are
not significantly affected by the shape of the traction-separation law assumed in this
study (including the choice of the displacement ratios indicated in Fig. 2). The de-
tails of some of the results presented in this paper depend on the specific assumptions
made about about the properties of the interface, but the fundamental conclusions
that are emphasized in this work are not.

Since two independent traction-separation laws have been used for normal and
opening displacements, they need to be linked by a mixed-mode failure criterion.
The criterion used in this study is given by [13]

GI

ΓI

+
GII

ΓII

= 1, (7)

where GI is the mode-I energy-release rate (or mode-I energy density at the crack tip),
GII is the mode-II energy-release rate (or mode-II energy density at the crack tip), and
the energy density is defined as the area under the appropriate traction-separation
law at any instant and location on the interface of interest (Fig. 2). This failure crite-
rion is a simple one that appears to work well in predicting experimental results [13].
However, related calculations conducted as part of this investigation showed that the
fundamental results presented in this paper are not sensitive to the precise form of
the mixed-mode failure criterion. Other forms, such as non-linear combinations of the
contributions from the two modes, give essentially similar conclusions to those that
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will be presented here. This failure criterion allows a wide variety of different types of
interfaces to be considered. Interfaces that fail by what we term “mode-independent”
failure, in which the shear and normal energies contribute equally to fracture, can be
modeled by setting ΓII/ΓI = 1. An interface that fails only in response to the mode-I
loading can be modeled by setting ΓII/ΓI � 1. An extreme example of the latter case
might be an interface that slips, rather than fractures, in response to shear loading.
For such an interface, the magnitude of the shear strength could be considered to
represent the frictional stress (for a constant friction assumption), or the flow stress
of a ductile interphase. For example, a lubricated interface (with a liquid interphase),
could be modeled by a very low values of τ̂ /σ̂ coupled with a very high value of ΓII/ΓI .

As discussed in the previous section, interfacial fracture mechanics incorporates
mixed-mode fracture by assuming that the toughness of an interface can be expressed
as a function of the nominal phase angle, which is defined in terms of the stress-
intensity factors, as indicated in Eqn. 6. However, an alternative definition of mode-
mixedness is needed when the concept of finite cohesive stresses is introduced. Alter-
native definitions in terms of stress or displacement ratios are not generally useful, as
these ratios are often liable to be simple measures of the shear and normal cohesive
parameters, since both the critical crack-tip displacements and stress levels at the
crack tip are fixed by the fracture properties of the interface. An alternative defini-
tion of the phase angle, that makes an immediate connection to LEFM concepts and
that will be shown to be very powerful within a cohesive-zone context, is to regard it
as a measure of how the energy density on the interface is partitioned into shear and
normal components. The definition of the phase angle then becomes [13]

ψ = tan−1(
√
GII/GI), (8)

with GII and GI defined earlier as the area under the traction-separation laws at the
point of interest. If GII and GI are taken to be the nominal values of the mode-I
and mode-II energy-release rates (as defined from an LEFM analysis for β = 0), the
nominal phase angle, ψ∞, results from the definition of Eqn. 8. This nominal phase
angle can then be used in conjunction with the mixed-mode failure criterion of Eq. 7,
to determine how the mixed-mode toughness varies as a function of nominal phase
angle:

Γ = ΓI
λ(1 + tan2 ψ∞)

λ+ tan2 ψ∞
, (9)

where λ = ΓII/ΓI . The form of this equation is very similar to various forms of a
mixed-mode failure criteria that have been used in interfacial fracture mechanics to
analyze mixed-mode phenomena [11], and is used as the LEFM mixed-mode failure
criterion in this paper.

In a cohesive-zone analysis, Eqn. 8 can be used to calculate the phase angle at
any point along the interface, since GII and GI can be determined at any node of the
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user-defined elements describing the cohesive law along the interface. In particular, it
is useful to define a “crack-tip phase angle”, ψo, which is the phase angle calculated
at the first node of the cohesive zone ahead of the crack tip. It is recognized that,
in the absence of the singular stress field that is associated with cracks in linear-
elasticity, the definition of a crack tip is somewhat arbitrary. Those who think of
cohesive tractions across an interface in terms of bridging will associate the crack tip
with a different point from those who think in terms of damage [40]. In this paper,
the crack tip is defined as being located at the first node along the interface that
supports no tractions. However, it will be demonstrated that the reported values of
the crack-tip phase angle represent the mode-mixedness of the interface over some
extent from the crack tip. In addition, mesh sensitivity analyses have demonstrated
that the crack-tip phase angle, as calculated in this paper, has physical significance,
and is not mesh-dependent.

1.4 Mode-I fracture with a cohesive zone

Some of the issues associated with a cohesive-zone model of fracture, and how it
provides a smooth transition between an Inglis and a Griffith approach to fracture,
can be demonstrated by a simple mode-I geometry. For these purposes, a simple
two-dimensional tensile bar subjected to a uniaxial load with a central crack aligned
perpendicular to the sides of the bar, and a fracture plane extending from the crack
tip to the specimen boundaries can be used. Since the geometry is purely mode-I,
the fracture load, Pf is a function of

Ē, a, L,ΓI , σ̂,

where Ē is the modulus of the bar, 2a is the crack length, L is the length of the
ligament from each crack tip to the free surface, ΓI is the mode-I toughness and σ̂
is the normal cohesive strength. From standard LEFM solutions [41], the fracture
load predicted by LEFM depends only on the geometry, modulus, and the interfacial
toughness. It is given by

PLEFM =

√
4ĒΓIa

π
f(a/L), (10)

where,

f(a/L) =
(1 + a/L)5/2

0.826(a/L)3 + 1.5(a/L)2 + (a/L)
.

A strength-based failure criterion would predict that fracture occurs when the average
stress supported by the ligaments is equal to the cohesive strength of the interface. In
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other words, the failure load depends only on the geometry and the cohesive strength.
It is given by

Pstrength = 2Lσ̂ (11)

Figure 3(a) shows how the strength for this mode-I geometry varies with fracture-
length scale. The strength is normalized in two different ways. One plot shows the
ratio of the fracture load to the fracture load that would be predicted using tough-
ness only as a fracture parameter, Pf/PLEFM . The other plot shows the ratio of
the fracture load to the fracture load that would be predicted using strength only as
a fracture parameter, Pf/Pstrength. For the purposes of comparison with these two
ratios, plots of PLEFM/Pstrength and Pstrength/PLEFM are superimposed on this figure.
This figure makes it very clear how a cohesive-zone model permits a smooth transi-
tion between a strength-based failure criterion and an energy-based failure criterion.
Both criteria provide upper bounds to the actual fracture load and, as would be ex-
pected, the lowest upper bound dominates the failure mechanism. At low values of
the fracture-length scale, the toughness criterion for fracture dominates, and LEFM
provides an excellent model for fracture. At higher values of the fracture-length scale,
the strength criterion dominates, and strength models provide excellent predictions
for the maximum load that can be supported before fracture.

The observations of the previous paragraph would suggest that the tractions along
the interface should tend to two limits. At very low fracture-length scales, where an
energy-balance can be used to predict the strength, the tractions along the interface
should follow the the inverse-square-root dependence on distance from the crack tip,
r which is given by

σ =
√
ĒΓI/(2πr). (12)

With a cohesive zone at the crack tip, this singular field would be expected to exist
only in an intermediate region. It would encompass a crack-tip region where the
stresses are limited by the cohesive strength of the interface. Remote from the crack
tip, the tractions would tend to the far-field distribution. At large fracture-length
scales, where a force-balance can be used to predict the strength, the stresses should
be uniform along the interface. These concepts can be explored by examining how
the tractions resulting from the cohesive elements vary along the interface. It can
be seen from Fig. 3(b) that the two limiting behaviors are observed as expected. A
very small fracture-length scale of ĒΓI/σ̂

2a = 0.055 means that fracture is accurately
predicted by the LEFM solution. Under these conditions, there is a limited region of
the interface, between r/L = 0.06 and r/L = 0.12, over which the tractions follow an
inverse-square-root singular form. At very large fracture-length scales, the tractions
along the interface are essentially uniform. It is in this regime that the strength of
the cracked body is determined only by the cohesive strength of the interface. These
observations are consistent with earlier descriptions of how fracture-length scales are
associated with flaw-tolerant behavior and flaw-sensitive behavior [42].
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1.5 Mixed-mode fracture with a cohesive zone

The effects of mixed-mode loading can be explored with the same center-cracked
geometry used in the previous section, but with the addition of a shear force per unit
width, Q, in addition to the normal force, P . Both the phase angle and energy-release
rate for this mixed-mode geometry can be computed using a continuum finite-element
calculation. WithQ/P = 1, a/L = 0.9, H/L = 20 andHo/L = 7.4, the energy-release
is

G = (0.169± 0.001)P 2/Ēa, (13)

and the phase angle is
ψ∞ = 46.0± 0.5o. (14)

For a mode-independent failure criterion, the fracture load predicted by LEFM,
PLEFM , is given by equating G in Eqn. 13 to the mode-I toughness ΓI .

The cohesive strengths are parameters in a cohesive-zone analysis, so that the
failure load, Pf , normalized by the mode-I toughness, and the crack-tip phase angle,
ψo, for this geometry both depend on the following non-dimensional parameters:

ΓI

Ēa
,
ĒΓI

σ̂2a
,
Q

P
,
a

l
,
H

L
,
Ho

L
,
ΓII

ΓI

,
τ̂

σ̂
.

Figure 4(a) shows how the strength varies with the fracture-length scale, ĒΓI/σ̂
2a for

mode-indpendent failure (ΓII/ΓI = 1). It will be observed that the LEFM calcula-
tions give excellent predictions (to within about 95%) for the results of the numerical
experiments, provided the fracture-length scale is less than about 1. The predicted
strength is accurate to within 98% for fracture-length scales of ĒΓI/σ̂

2a < 0.4 (which
corresponds to the conventional fracture-length scale taken to indicate the validity
of LEFM). Figure 4(b) indicates that the crack-tip phase angle (calculated from the
node immediately ahead of the crack tip) is identical within numerical uncertainties
to the nominal phase angle predicted by LEFM at small fracture-length length scales.
The agreement between the two phase angles is within 5% at fracture-length scales
up to about 3. This agreement is significant, because it means that one should expect
LEFM predictions of strength to be accurate for mode-dependent failure criteria in
this range of fracture-length scales. Furthermore, this agreement suggests that it is
appropriate to regard the nominal phase angle as a measure of how the shear and
normal energy-release rates along the interface are related, rather than as a measure
of displacement or stress ratios that must be sensitive to definitions of interfacial
tractions. These points will be revisited in more detail in the subsequent sections.
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As in the previous section, the tractions along the interface can be extracted from
the results of the numerical experiments. It should be noted again, that in these cal-
culations, cohesive elements were placed along the entire length of the ligament, from
the crack tip to the free surfaces. There were no continuum elements along the inter-
face, so the tractions that arise are dictated only by the interaction of the geometry
and the traction-separation law. Figure 5 shows how the normal and shear tractions
at fracture vary along the interface for different values of the fracture-length scale. Su-
perimposed on these plots are lines corresponding to the singular tractions predicted
from LEFM. When the fracture-length scale is very small, the stress distribution ex-
hibits the expected intermediate region in which the interfacial tractions follow an
inverse-square-root law. As in the earlier example, the tractions in this region are
slightly higher than those expected from linear-elasticity, because the tractions are
limited to the cohesive strengths at the crack tip. At very large values of the fracture-
length scale, where one might expect the failure load to be determined by the cohesive
strength of the interface, rather than by the interfacial toughness, the tractions along
the ligament are essentially uniform. A fracture length scale of ĒΓI/σ̂

2a = 1 appears
to be close to the point above which the stresses do not exhibit any inverse-square-
root characteristics. However, it is interesting to note from Fig. 4(b) that the nominal
phase angle still provides a good prediction for the mode-mixedness of the crack tip,
even at fracture-length scales between 1 and 3, when the tractions (particularly the
shear component) don’t really exhibit any inverse-square-root behavior.

2 Numerical results for beam-like geometries

Beam-like geometries (Fig. 1) were chosen to form the major focus of this study.
Becker et al. [43] explored the elastic crack-tip stress field for these geometries, and
concluded that the extent of the singular field was limited to less than about one
hundredth of the layer thickness. This is so small that concerns were raised about
the appropriateness of linear-elastic fracture mechanics to describe these geometries.
These issues are addressed in the next four sections. In the first section, mode-
independent fracture is considered. In the following section, mode-dependent fracture
is considered. In the third section, issues associated with fracture under a compres-
sive interfacial stress are addressed. Then in the final section, the effects of modulus
mismatch are addressed very briefly.

For beam-like geometries being analyzed by a cohesive-zone analysis, the non-
dimensional failure loads and crack-tip phase angles are dependent on the following
dimensionless groups:

ΓI

Ē1h1

,
Ē1ΓI

σ̂2h1

,
a

h1

,
L

h1

,
h1

h2

.
ΓII

ΓI

,
τ̂

σ̂
, α, β.

In general, other dimensionless groups associated with issues such the shape of the
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cohesive law and the failure criterion would enter this list. The details of some of
the results that are presented in the following sections can be affected by the val-
ues chosen for these parameters. However, as discussed earlier, sensitivity analyses
showed that the essential results and trends that have been high-lighted as being the
major conclusions of this study were not affected. In a similar vein, the effects of
mesh-dependency were also explored. The results presented are mesh independent
to within what was considered to be an acceptable range of numerical uncertainty
(indicated by error bars on the accompanying plots).

2.1 Mode-independent fracture

As discussed earlier, the crack-tip stress field makes no contribution to the energy-
release rate for the steady-state configuration of a laminated geometry subjected to
a combination of pure moments and axial loads (Fig. 1a). Therefore, under these
conditions, the energy-release rate must be valid no matter how large the fracture-
length scale is. The only requirement on the geometry required for a steady-state
configuration is that the crack and ligament must be long enough to ensure a region
of a uniform stress state ahead and behind the crack tip. If these conditions are met,
the details of the cohesive law have no influence on the energy-release rate. Then,
if the interface toughness is mode-independent, the conditions for crack growth will
be rigorously defined by equating the energy-release rate to the toughness for all
fracture-length scales.

A different situation arises if a laminated geometry is loaded by a transverse force
(Fig. 1b). The energy-release rate for this loading condition cannot be determined
from a steady-state energy-balance, and the details of the crack-tip stress field are
always important [15]. Therefore, the strength (and other characteristics) of the
interface can affect crack growth. However, the effects of such a transverse load can
often be hidden because, in practice, the shear load gives rise to a moment acting
at the crack tip. This moment can often dominate the driving force for fracture.
The work of Li et al. [15] gives insight into the effects of a transverse shear and
its associated moment. For a homogeneous double-cantilever beam, with a crack of
length a and h2 = h1, the critical transverse shear force required for fracture is given
by

Ff

ΓI

= 0.289

√√√√Ēh1

ΓI

(
a

h1

+ 0.674
)−1

. (15)

The first term in the bracket corresponds to the result for a pure moment, while the
second term in the bracket corresponds to the shear term. (In this special symmetrical
case only, the two terms add. In general, they don’t add in this fashion [15]). An
analytical result for the effects of a triangular cohesive zone was also derived for this
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geometry.2 The fracture load in the presence of a triangular cohesive law is given by

Ff

ΓI

= 0.289

√√√√Ēh1

ΓI

 a
h1

+ 0.674

(
1 + 1.62

ĒΓI

σ̂2h1

)1/4
−1

. (16)

As expected from the discussion above, the finite strength of the interface affects the
shear term, but not the moment term. As a result, it can be seen from this equation
that when the moment term is directly associated with a transverse shear load term,
the effect of the cohesive zone depends on how the fourth root of ĒΓI/σ̂

2h1 compares
to the normalized crack length a/h1. This general form of relationship will also be
apparent from the results of the numerical analysis that are presented next.

The concepts discussed above are illustrated by numerical experiments for an
asymmetric double-cantilever beam of the form shown in Fig. 1b, loaded by a trans-
verse shear force, and using the cohesive law of Fig. 2. For the calculations of this
section, a homogeneous geometry, with Ē1 = Ē2 = Ē, and mode-independent co-
hesive properties, τ̂ /σ̂ = 1 and ΓII/ΓI = 1, were assumed. Figure 6(a) shows how
the failure load depends on both the ligament size and the fracture-length scale, for
a crack length of a/h1 = 20. Superimposed on this plot is the steady-state LEFM
prediction for the fracture load appropriate for long ligaments, calculated from the
results of Refs. [14] and [15]. Separate continuum finite-element calculations were
used to compute mode-independent LEFM predictions for the failure load away from
steady-state, for small ligaments. These were essentially indistinguishable from the
cohesive-zone results shown in Fig. 6(a) for a fracture length scale of ĒΓI/σ̂

2h1 = 1.43.
Even when the fracture-length scale is as large as 100, the LEFM prediction is correct
to within 5%. However, the relative error associated with a fracture-length scale this
large becomes more significant away from steady-state, as the ligament size decreases.
The dramatic increase in the accuracy of LEFM predictions expected as the crack-tip
loading becomes increasingly dominated by bending is shown in Fig. 6(b), in which
a/h1 = 400. Now, it can be seen that the mode-independent LEFM predictions are
accurate for fracture-length scales greater than about ĒΓI/σ̂

2h1 = 105. As indicated
in the previous paragraph, mode-independent fracture is not affected by the cohesive
strength of the interface in steady-state geometries. A compliant interface, associated
with a large fracture-length scale, results in a lower failure load only when steady-
state solutions are not applicable.

2There is a typographical error in Eqn. 20 of Ref. [15]. It should be corrected to read k =[
1.615(Ē/h)

] [
1 + 1.615(ĒΓIo/σ̂2h)

]−1. The other equations appear to be correct.
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2.2 Mode-dependent fracture

2.2.1 Effects of mode-II toughness

The existence of steady-state solutions for the energy-release rate gave a strong basis
for expecting that mode-independent delamination of beam-like geometries is rela-
tively insensitive to any properties of the interface other than toughness. However,
the energy-balance arguments that underpin the steady-state solutions provide no
information about phase angles, and it is clear from experiments that mixed-mode
effects play a key role in many delamination phenomena. For example, the finite
widths of buckle-driven delaminations [11, 30] and crack-front instabilities [44, 45]
are dependent on a mode-dependent toughness. At the heart of the analyses of these
phenomena are calculations of a nominal phase angle based on the assumptions of
linear-elasticity and the use of stress-intensity factors. Therefore, there might be
concerns as to whether these solutions should be valid, except under very restrictive
conditions for which the cohesive stresses are embedded within an inverse-square-root
field [43]. To explore this issue, the cohesive-zone analyses are extended to examine
how mixed-mode fracture is affected by mode-dependent cohesive properties of the
interface. In the results that follow, LEFM predictions based on the mixed-mode fail-
ure criterion of Eqn. 9 are compared to the failure loads obtained from the numerical
experiments, so as to investigate how the accuracy of the predictions depends on the
fracture-length scale. In addition, crack-tip phase angles, ψo, are compared to the
nominal phase angles, ψ∞, calculated from LEFM analyses.

Figures 7(a) and (b) show how the failure loads obtained from the numerical
experiments for two different loading configurations depend on the fracture-length
scale for different ratios of ΓII/ΓI . Figure 7(a) shows the results for a homogeneous,
asymmetrical double-cantilever beam loaded only by a transverse shear load. Fig-
ure 7(b) shows the same type of specimen, loaded by a transverse shear load and a
fixed axial load. Superimposed on these plots are the associated predictions for the
failure load calculated from LEFM, using the mixed-mode failure criterion of Eqn. 9
and based on the nominal phase angles obtained from Refs. [14] and [15]. As can be
seen, these LEFM results provide excellent predictions for mixed-mode failure over a
significant range of fracture-length scales. (In this context, it should be noted that
the appropriate non-dimensional group to define the fracture-length scale changes to
one containing ΓII , rather than ΓI , when ΓII > ΓI .) These results indicate that
mixed-mode LEFM analyses, based on nominal phase angles, are useful for predic-
tive purposes over ranges of fracture-length scales that would seem to include many
practical applications such as tough adhesive joints, provided no plasticity occurs in
the adherends.

The results of Fig. 7 indicate that the nominal phase angle provides information
about the mode-mixedness at the crack tip. This concept is explored in Figs. 8(a)
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and (b), in which the crack-tip phase angle at the point of crack advance, computed
from Eqn. 8 for the first node ahead of the crack tip, is plotted as a function of
fracture-length scale for the two geometries considered in the previous paragraph.
Superimposed on these plots are the nominal phase angles calculated from LEFM. In
the specimen loaded by a transverse shear load and a fixed axial load, the nominal
phase angle at fracture is dependent on ΓII/ΓI , because this ratio determines the
failure load. It will be noted from these plots that the phase angle at the crack tip
and the nominal phase angle are essentially identical at the smaller length scales, and
are in excellent agreement over the range for which the failure loads are correctly
predicted. Once again, it should be noted that this identity between the nominal
phase angle and the crack-tip phase angle indicates that the nominal phase angle is
best thought of as a relative measure of the shear and normal energy-release rates,
rather than as a ratio of stresses or displacements.

Figure 9(a) shows how the normal and shear tractions vary as a function of dis-
tance along the interface ahead of the crack tip for a non-dimensional fracture-length
scale of ĒΓI/σ̂

2h1 = 1.43. Superimposed on this plot are lines corresponding to
the normal and shear tractions associated with the inverse-square-root field of linear
elasticity. As can be seen from Fig. 8(a), the actual phase angle is in excellent agree-
ment with the nominal phase angle under these conditions. However, Fig. 9(a) shows
that there is no part of the stress field, either for the shear or normal stresses, that
can be identified as following the inverse-square-root dependence associated with a
stress-intensity factor at this fracture-length scale. This complete divorce from any
singular field is much more apparent in this beam-like geometry than it was for the
central-crack problem considered earlier. These results indicate very dramatically
that the nominal phase angles based on LEFM calculations can accurately describe
mixed-mode fracture of beam-like geometries, and there appears to be no require-
ment for the cohesive zone to be embedded within a linear-elastic singular field. This
is a surprising but extremely important result implying a very general utility of the
interfacial fracture mechanics results for these geometries.

The physical significance of the crack-tip phase angle as defined earlier for cohesive
models is demonstrated in Fig. 9(b). In this plot, the phase angle is calculated from
Eqn. 8 for a succession of nodes in the cohesive zone away from the crack tip. It will
be seen that the phase angle asymptotes to the crack-tip phase angle at a distance of
about r/h1 = 0.01 from the crack tip, which is two orders of magnitude larger than
the size of the elements used to describe the cohesive zone at the crack tip. Within
experimental uncertainty, this crack-tip phase angle is identical to the nominal phase
angle obtained from LEFM solutions.
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2.2.2 Effects of interfacial shear strength

There are many types of interfaces that can support normal stresses quite readily, but
are weak in shear. Examples include lubricated interfaces, interfaces between MEMS
components that are susceptible to stiction, and interfaces formed by electrostatic,
magnetic or other physical bonds. The normal cohesive strength of the interface is
generally associated with the bonding, but the shear strength corresponds to a flow
stress or to a frictional resistance of the interface. The response of these slipping
interfaces can be modeled using a cohesive-zone approach. The results of calculations
to explore what happens as the shear strength of the interface is decreased and the
mode-II toughness is increased3 are presented in Fig. 10 for an asymmetrical-double-
cantilever beam geometry loaded by a transverse load. Figure 10(a) shows how the
failure load for a system with such an interface can vary with the ratio of the shear
to normal strength. Figure 10(b) shows how the crack-tip phase angle depends on
this ratio. Superimposed on these two plots are the nominal phase angle, and the
predicted failure loads based on this nominal phase angle. In these plots, the non-
dimensional fracture-length scale based on mode-I parameters is only 0.143, which
is sufficiently small that LEFM predictions are expected to be accurate. However,
the mode-II parameters are allowed to vary over a range that moves the failure load
and the phase angle away from the LEFM predictions, when τ̂ /σ̂ < 1. As the shear
strength drops, the magnitude of the crack-tip phase angle drops to zero; i.e., the
crack tip tends to a state of pure mode-I. Associated with this decrease in phase
angle, the failure loads all tend to the mode-independent value.

These results are in agreement with experimental observations of mixed-mode frac-
ture of a lubricated interface reported by Thouless [10]. In those experiments a bonded
interface between two glass plates was formed in an asymmetrical-double-cantilever
beam geometry using the capillary force exerted by a thin film of diffusion-pump oil.
The specimen was loaded by means of a wedge, and the toughness of the interface was
computed as a function of the nominal phase angle (based on LEFM calculations). It
was found that the toughness was independent of the nominal phase angle and equal
to the change in surface energy associated with de-wetting the glass/oil interface. It
was also noted that the usual implication of such a phase-angle independent toughness
would be that the energy dissipated by fracture under mode-II deformation should
be equal to the energy dissipated by fracture under mode-I deformation. However,
it was noted that such an interpretation would be paradoxical for such a system in
which slip, not fracture, is expected to occur in response to mode-II deformation. It
was conjectured that the results demonstrated the difference between a nominal and
crack-tip phase angle. The results of Fig. 10 show clearly that in a system with a
lubricated interface, the deformation at the crack tip is essentially pure mode-I, and

3At a simple level, one might envision the limit of an interface that can slip but not fracture in
mode-II, as being an interface with an infinite value of ΓII and a finite value of τ̂ .

18



that a mixed-mode fracture experiment of the sort described in Ref. [10] would indeed
result in a nominal toughness that was independent of the nominal phase angle.4

2.3 Compressive stresses at crack tips

Fracture under conditions in which the crack tip is closed by compressive stresses is
of significance in a number of delamination phenomena. For example, it occurs in
the edge delamination of layers with residual compression if the edge defect is too
small to permit buckling [31]. It also accompanies buckling-driven delamination once
the buckle reaches a critical size [11, 30, 46]. For example, in experimental studies
using mica bonded to aluminum [30], it was shown that delamination can occur under
conditions associated with negative nominal mode-I stress-intensity factors (nominal
phase angles with a magnitude greater than 90o). In Ref. [30], experimental observa-
tions for buckling-driven delamination were used to compute a nominal toughness as
a function of nominal phase angle. In that paper, the resulting plots were terminated
when the nominal phase angle reached -90o. However, using the data provided in
Ref. [30], the plots can be extended up to a nominal phase angle of almost -130o.
In the classical approach of linear elasticity, such nominal phase angles would cor-
respond to interpenetration of the two crack surfaces. Since this violates physical
reality, analyses of buckling-driven delamination have been limited to the assumption
that contact of the crack surfaces suppresses any negative component of the mode-I
stress-intensity factor, so that fracture occurs under pure mode-II conditions. This
contact of the crack surfaces can lead to frictional dissipation. Models of Coulomb
friction [46] and constant friction [30] have been used to calculate the extent to which
the toughness may be elevated above the intrinsic mode-II value under conditions of
crack-tip contact, with particular application to buckling-driven delamination.

Interfacial fracture mechanics models do not incorporate the concept of a finite in-
terfacial thickness associated with the equilibrium separation between two adherends.
There will always be a finite thickness at some scale, whether the bonding plane is
limited to a single atomic bond or to a more macroscopic interphase. Cohesive-zone
models allow this physical concept to be incorporated. Furthermore, an interface
that has a finite thickness can accommodate some negative mode-I deformation be-
fore contact of the crack surfaces occurs. This means that the notion of a phase angle
with a magnitude greater than 90o can have physical significance. Within this view of
an interface, it seems reasonable to assume that negative mode-I deformations do not
contribute to failure. Therefore, the compressive mode-I cohesive energy is stored,
and then lost when the condition GII = ΓII is met. The failure criterion of Eqn. 7

4The asymmetric double-cantilever-beam geometry doesn’t exhibit large-scale slip when the in-
terface is weak in shear. If axial loads were applied to this geometry, large-scale slip would occur.
If LEFM were used to analyze the geometry, the nominal toughness would increase.
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can then be modified to the following form:

Γ

ΓI

=
λ(1 + tan2 ψ∞)

λ+ tan2 ψ∞
, |ψ∞| ≤ 90o

Γ

ΓI

=
λ(1 + tan2 ψ∞)

tan2 ψ∞
, |ψ∞| ≥ 90o. (17)

A limit on the magnitude of the nominal phase angle depends on the thickness of the
interface, as it is set by any crack-surface contact that might occur.

To investigate the issues associated with compressive stresses across the interface,
a set of numerical experiments were conducted on an asymmetrical-double cantilever-
beam geometry with fixed cohesive properties. The specimen was clamped at one
end, and loaded by various combinations of applied axial load, P , and transverse
load, F , until failure occurred. For these specimens, contact elements with Coulomb
friction were used along the crack surfaces to prevent interpenetration. Two of the
specimens had relatively low values for the equilibrium separation of the interface,
t, so that t/h1 = 0.00174. One of these specimens had a coefficient of friction along
the crack surfaces given by µ = 0; the other had a coefficient of friction given by
µ = 0.5. The third specimen had a much thicker interface thickness of t/h1 = 0.0174,
and µ = 0.5

Having prescribed the interface properties and frictional characteristics, the nu-
merical experiments were conducted in an exactly analogous fashion to how physical
experiments would be conducted to deduce the mixed-mode failure criterion of an
interface. The axial and transverse loads were varied independently, and the mag-
nitudes of the loads required for fracture were determined (Fig. 11a). The values of
these loads were then used to calculate the appropriate crack-tip moments, axial loads
and transverse shear loads for the fundamental LEFM problems [14, 15]. Once these
had been determined, the nominal energy-release rate at fracture and the associated
nominal phase angle were computed. The resultant plot of the nominal energy-release
rate versus nominal phase angle at fracture (Fig. 11b) is then analogous to an exper-
imentally determined mixed-mode failure criterion. For the purposes of comparison,
the LEFM failure criterion for the interface (which would permit interpenetration)
has been superimposed on Fig. 11b. As in the earlier sections, additional insight
into the physics of the problem is provided by comparing the nominal phase angle
from these LEFM calculations with the crack-tip phase angle (calculated from the
numerical output of the crack-tip values of GI and GII at fracture). This comparison

5The displacements ahead of the crack tip were monitored to ensure that the compressive de-
formations never exceeded the equilibrium thickness of the interface. However, this requirement
could have been accommodated by the physical approach of modifying the traction-separation law
to prevent this possibility.
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is shown in Fig. 11c.

The results presented in Fig. 11 have been obtained for a system with a fracture-
length scale small enough for LEFM to be an appropriate way of characterizing frac-
ture, up to the point at which the magnitude of the nominal phase angle equals 90o.
(Although, a discrepancy of a few degrees in the phase angle translates to a relatively
larger discrepancy in the nominal toughness close to 90o.) Once compression occurs at
the crack tip, the discrepancy between the nominal phase angle and the actual phase
angle increases. In particular, for the thinnest interfaces (t/h1 = 0.00174), crack-
surface contact immediately eliminates any significant mode-I compression, leaving
the crack-tip under pure mode-II conditions (Fig. 11c). This situation, is then identi-
cal to existing LEFM analyses of the problem [30, 46]. If there are no other dissipative
processes (e.g., µ = 0), the nominal toughness is identical to the mode-II toughness
under these conditions. Frictional dissipation (e.g., µ = 0.5), can cause the nominal
toughness to rise above this pure mode-II level. Both of these effects are very clear
from the plot of Fig. 11b. If the interface is thicker, compression in the interface can
be accommodated without crack-tip contact. Under these conditions phase angles
greater than 90o have physical significance, as shown in Fig. 11c. Accommodation of
a compressive component of the mode-I energy-release rate, without it contributing
to fracture, may then allow the nominal toughness to continue tracking the LEFM
failure criterion of Eqn. 17 (Fig. 11b). Similar calculations to those presented here
were also done for much larger fracture-length scales. The observations were very
similar, with the expected drops in both the nominal toughness (for a given nominal
phase angle) and the crack-tip phase angle. This latter effect delayed the onset of
crack-tip contact to larger values of nominal phase angle.

2.4 Modulus mismatch

The final section of this paper explores the effects of modulus mismatch. There are
two inherent difficulties associated with the use of LEFM to analyze fracture when
the modulus-mismatch parameter β does not equal zero. In the first place, LEFM
predicts crack-surface interpenetration. It is recognized that this implies contact of
the crack surfaces [47]. This certainly would be expected if the equilibrium thickness
of the interphase or interface is relatively small. But, as discussed above, crack-surface
contact need not occur if the interface is thick enough. A more fundamental problem
is that when β 6= 0, it is not possible to partition the energy-release rate into mode-I
and mode-II components. The ratio between the two modes is not fixed, but varies
with distance from the crack tip. The parameters associated with LEFM do not con-
tain enough information about the fracture process to permit the introduction of a
length scale which is required to establish a phase angle when β 6= 0. While this is
not an issue for mode-independent fracture, a phase angle does need to be defined for
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mode-dependent fracture. However, a major advantage of recognizing that interfaces
should be described by both a strength and a toughness is that a length scale associ-
ated with the cohesive parameters is introduced naturally. As will become apparent
in this section, this length scale makes the phase angle at the crack tip well defined.
It is this phase angle that then controls fracture through the appropriate mixed-mode
failure criterion.

LEFM solutions do not exist in the literature for loading by means of a transverse
shear load with non-zero values of β. Therefore, attention in this section is restricted
to a geometry that has only moments and axial loads acting at the crack tip. The
geometry chosen consists of an asymmetrical double-cantilever beam, clamped at one
end, and subjected to a couple formed by axial loads. Non-zero values of β result in
stress oscillations along the interface [24, 25], as can be seen in Fig. 12 which shows
how the normal and shear stresses vary with distance ahead of the crack tip for a rel-
atively small fracture-length scale. These oscillations indicate that unloading of the
interface will occur during crack growth. In the present study, the cohesive elements
were completely reversible. However, it will be appreciated that there are physical sit-
uations for which one might expect hysteresis (caused by damage or plasticity within
the cohesive layer); the extra energy dissipation would then be expected to influence
the failure criterion and result in R-curve behavior. This aspect of the problem has
not been addressed here. While contact elements were used for the crack surfaces
and the thickness of the cohesive elements was maintained at t/h1 = 1.736 × 10−4,
neither crack-surface contact nor inter-penetration ahead of the crack tip occurred for
any of the results presented in this section. It was noted that details of the traction-
separation law such as the shape, did influence some of the details of the results
presented in this section. However, the general conclusions that are emphasized are
not dependent on these details. Finally, issues of mesh sensitivity were explored to
ensure that the meshes used in this study were fine enough to avoid the the mesh size
being a significant parameter for the results. Any effects of mesh size are within the
levels of quoted uncertainty.

In Fig. 13, the normalized fracture load, Pf/ΓI , and the crack-tip phase angle at
failure, are plotted as functions of the elastic modulus mismatch. Figure 13(a), shows
the results for β = 0, and a range of α; Fig. 13(b) shows the results for β = α/2, and
a range of α; Fig. 13(c) shows the results for α = 0.8 and a range of β. The results
for this set of figures were calculated with a small fracture-length scale, and with
mode-independent fracture properties for the interface. Under these conditions the
strength is expected to be independent of β and given by LEFM predictions, because
β does not affect the energy-release rate (for a geometry loaded by axial loads and
moments), and the phase angle does not affect the fracture load (unless there is some
compression at the crack tip). Figure 13 confirms that, while the crack-tip phase
angle is shifted from the nominal phase angle when β 6= 0, the fracture load is not
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influenced by this shift for mode-independent cohesive properties.

Although the shift in crack-tip phase angle induced by non-zero values of β is
essentially of only academic interest for mode-independent fracture, this is not the
case for mode-dependent fracture. When ΓII/ΓI 6= 1, a shift in the crack-tip phase
angle from its nominal value affects the strength of the interface. This is illustrated
in Fig. 14 which shows the effect of β on the nominal phase angle, the crack-tip phase
angle, the LEFM predictions for strength based on ψ∞, and the strength calculated
by the cohesive-zone model. The systematic discrepancy between the LEFM predic-
tions for strength and the cohesive-zone results arises because of the absence of any
information that permits the appropriate shift between the nominal phase angle and
the crack-tip phase angle to be incorporated into the LEFM predictions. At negative
values of β, the crack-tip phase angle is lower than the nominal value, so the strength
decreases. At positive values of β, the crack-tip phase angle is higher than the nomi-
nal value, so the strength increases. If the phase shift were known, the fracture load
could be correctly predicted from the LEFM analysis, when the fracture-length scale
is small. Unfortunately, this information is not contained within a pure LEFM anal-
ysis; it has to be calculated from the cohesive-zone analysis.

It will have been observed from Figs. 13 and 14 that the shift in phase angle is
approximately proportional to β. This is of significance, because the phase angle
depends on a length scale, ξ, such that [24, 48]

ψ = ψ∞ + ε ln(ξ/h1). (18)

If the appropriate length scale for describing the shift in phase angle is independent
of modulus mismatch, a plot of the difference between the crack-tip phase angle, ψo,
and the nominal phase angle, ψ∞, against ε should give a straight line with a slope
of ln ξ/h1. The length scale for describing the shift in phase angle can be determined
from this slope. Such a plot of the data from the preceding two figures is given in
Fig. 15. From the slope, the length scale is given by ξ/h1 = 0.0018 ± 0.0004 for
the cohesive model used here. This length does not appear to be obviously related
to some well-defined aspect of the cohesive-zone, although it does appear to be well
within the range that might be considered to be part of the cohesive zone from Fig. 12.

Figure 16 shows how the phase angle (defined by Eqn. 8) varies with distance
from the crack-tip, r, for α = 0.4, and β = 0.0 and 0.2. It can be seen that the
phase angle plateaus at a value of ψo in the vicinity of the crack tip. For this figure,
the fracture-length scale is relatively small, and further from the crack tip is a region
in which the phase angle appears to match the LEFM value. When β = 0, this is
represented by a second plateau given by ψ = ψ∞. When β 6= 0, the LEFM result
corresponds to a straight line given by

ψ = ψ∞ + ε ln(r/h1). (19)
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This contrasts with the results of Fig. 9(b) in which there was only a single plateau
near the crack tip, because the fracture length scale was relatively large. From the
present figure it appears that, when the fracture-length scale is relatively small, there
are four regimes for the phase angle: (i) a plateau near the crack tip corresponding to
ψo; (ii) a transition region at the boundary of the cohesive zone; (iii) an intermediate
region where the phase angle agrees with the LEFM result; and (iv) a far-field region
away from the crack.

3 Conclusions

For beam-like geometries, the energy-release rate associated with axial loads and
bending moments is unaffected by the nature of the bonding at the interface or by
the properties of any interphase. The energy-release rate associated with transverse
shear loading is affected by the crack-tip stress field and, hence, by the nature of the
interfacial bonding. For most practical beam-like geometries, the effect of transverse
shear at the crack tip is relatively small, and fracture is dominated by moments and
axial loads. Provided the interface has mode-independent failure parameters, frac-
ture for these geometries is governed only by toughness, and LEFM analyses provide
excellent predictions for the strength even at very large fracture-length scales.

If an interface has mode-dependent properties, then LEFM invokes the notion of
a nominal phase angle to describe mixed-mode fracture. This nominal phase angle,
obtained by the use of stress-intensity factors, provides an excellent description of the
partition of the energy-release rate into normal and shear components at the crack tip
for fracture-length scales that encompass the range that would generally be expected
in practical situations. The partition of the energy-release rate into normal and shear
components using the nominal phase angle is valid, even when there is no inverse
square-root singular stress field anywhere along the interface. The generality of this
partition has the important consequence of indicating that failure loads of elastic
beam-like geometries can be predicted accurately using the concepts of mixed-mode
LEFM and a phase-angle-dependent toughness. If an interface is weak in shear, the
mode-mixedness at the crack tip tends to a state of pure mode-I, so that the fracture
behavior appears to be mode-independent, even when there is a difference between
ΓI and ΓII .

There are loading conditions for which the crack tip in a beam-like geometry is
predicted to be under a compressive normal stress, when the nominal phase angle
has a magnitude of greater than 90o. Conventionally, in LEFM analyses, these condi-
tions are dismissed as being physically unreal, because they would be associated with
interpenetration of the crack surfaces. Instead, contact of the crack surfaces is as-
sumed, with fracture occurring under pure mode-II conditions. The use of a cohesive
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zone in fracture introduces the physical reality that interfaces and interphases have a
finite equilibrium thickness. When the cohesive zone is relatively thin, crack-surface
contact prevents compression ahead of the crack tip, and fracture does occur under
pure mode-II conditions. Consistent with existing LEFM solutions in the literature,
the nominal toughness can be elevated slightly above the pure mode-II toughness
because of frictional dissipation along the crack surfaces. Thicker cohesive layers can
accommodate compression without crack-surface contact. If it is assumed that this
compression does not contribute to fracture, but is lost when the mode-II failure con-
dition is met, then the toughness can increase significantly above the mode-II value,
without frictional effects occurring. This increase in toughness could be described
by an LEFM failure criterion predicated on a nominal phase angle with a magnitude
greater than 90o.

The discussions of the preceding paragraphs are valid when there is a modulus
mismatch, such that α 6= 0. However, there are additional complications associated
with non-zero values of the other modulus mismatch parameter, β, which introduces
oscillations in the stress and displacement fields. It is well-recognized in the litera-
ture that the predictions of crack-surface interpenetration must lead to crack-surface
contact in an LEFM analysis. However, as described in the previous paragraph, the
finite thickness associated with a cohesive-zone analysis allows for the possibility of
fracture occurring without contact of the crack surfaces, and accommodation of com-
pressive stresses along the interface. When β 6= 0, an additional length scale, that
does not exist in LEFM analyses, is required to partition the energy-release rate into
normal and shear components at the crack tip so that mixed-mode fracture can be
analyzed. Cohesive-zone analyses introduce a cohesive strength into the description
of the interface, and this naturally provides a length scale that allows an appropriate
phase angle to exist at the crack tip. The length scale provides a relationship between
the nominal phase angle (defined by LEFM in terms of a geometrical length) and the
crack-tip phase angle, and is dependent on the values of the cohesive parameters.
As this length scale is reduced, the shift between the nominal phase angle and the
crack-tip phase angle increases. This shift can be relatively large and, therefore, β
can have a significant influence on the strength of interfaces.
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Figure Captions

Figure 1: (a) A layered material loaded by an axial load and moment. (b) A
layered material loaded by a transverse shear load.

Figure 2: Schematic illustration of the (a) mode-I, and (b) mode-II traction-
separation laws used for the cohesive-zone model in this paper. Through-
out this paper the values of δn1/δnc = δt1/δtc and δn2/δnc = δt2/δtc were
kept at fixed values of 0.01 and 0.75 respectively.

Figure 3: (a) Plot of normalized strength as a function of normalized fracture-
length scale, ĒΓI/σ̂

2a, for a mode-I geometry with a central crack of
length 2a, a ligament length L, and subjected to a tensile load P .
The non-dimensional parameters are ΓI/Ēa = 9.1 × 10−7, a/L = 0.9,
H/L = 20 and Ho/L = 7.4. One set of data shows the strength nor-
malized by the fracture load predicted by LEFM, PLEFM . The other
set shows the strength normalized by the fracture load predicted from
the cohesive strength of the interface, Pstrength. For the purposes of
comparison, PLEFM/Pstrength and Pstrength/PLEFM are superimposed
on this figure to illustrate the asymptotic limits for the strength based
on the two models of fracture. (b) Plots of the normal traction distri-
bution along the interface of the mode-I central cracked geometry, for
two extreme values of the fracture-length scale, ĒΓI/σ̂

2a.

Figure 4: (a) Fracture load, Pf , normalized by the strength predicted by LEFM,
PLEFM , for a mixed-mode geometry consisting of a tensile plate with
a central crack of length 2a, ligaments of length L, and subjected to
a tensile load P and a shear load Q. (b) The crack-tip phase an-
gle at fracture for this mixed-mode geometry, plotted as a function of
fracture-length scale. The non-dimensional groups for these two figures
are ΓI/Ēa = 9.1 × 10−7, ΓII/ΓI = 1, σ̂/τ̂ = 1, Q/P = 1, a/L = 0.9,
H/L = 20 and Ho/L = 7.4.

Figure 5: Plots of the (a) normal and (b) shear traction distribution along the
interface of the mixed-mode central-cracked geometry, for different val-
ues of the fracture-length scale, ĒΓI/σ̂

2a.

Figure 6: (a) The fracture load for an asymmetrical double-cantilever beam plot-
ted as a function of ligament length for three different values of the
fracture-length scale, ĒΓI/σ̂

2h1, and with other non-dimensional pa-
rameters given by ΓI/Ēh1 = 9.1 × 10−7, ΓII/ΓI = 1.0, τ̂ /σ̂ = 1.0,
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h1/h2 = 0.1, and a/h1 = 20. (b) A plot of the fracture load for
an asymmetrical double-cantilever beam plotted as a function of the
fracture-length scale for ΓI/Ēh1 = 9.1 × 10−7, h1/h2 = 0.1, ΓII/ΓI =
1.0, τ̂ /σ̂ = 1.0, a/h1 = 400, and L/h1 = 130. The results presented
in both figures are compared to the LEFM results for an asymmetrical
double-cantilever beam with h1/h2 = 0.1.

Figure 7: The failure load plotted as a function of fracture-length scale and dif-
ferent values of the ratio of the mode-II to mode-I toughness for an
asymmetrical-double-cantilever beam loaded by (a) a transverse shear
load only and (b) a transverse shear load in conjunction with a fixed ax-
ial load of P/ΓI = 833. The LEFM predictions for the failure loads are
indicated by dashed lines on both plots. The non-dimensional groups
for these plots are ΓI/Ēh1 = 9.1 × 10−7, τ̂ /σ̂ = 1.0, h1/h2 = 0.1,
a/h1 = 20, and L/h1 = 130.

Figure 8: The crack-tip phase angle at fracture plotted as a function of fracture-
length scale and different values of the ratio of the mode-II to mode-I
toughness for an asymmetrical double-cantilever beam loaded by (a) a
transverse shear load only and (b) a transverse shear load in conjunc-
tion with a fixed axial load of P/ΓI = 833. The LEFM predictions for
the nominal phase angles are indicated by dashed lines on both plots.
The non-dimensional groups for these plots are ΓI/Ēh1 = 9.1 × 10−7,
τ̂ /σ̂ = 1.0, h1/h2 = 0.1, a/h1 = 20, and L/h1 = 130.

Figure 9: Plots of how (a) the normal and shear tractions at fracture, and (b) the
phase angle vary with distance along the interface of an asymmetrical-
double-cantilever with ĒΓI/σ̂

2h1 = 1.43, ΓI/Ēh1 = 9.1×10−7, ΓII/ΓI =
1.0, τ̂ /σ̂ = 1.0, h1/h2 = 0.1, a/h1 = 20, and L/h1 = 130. The tractions
are compared with the expected LEFM singular field at fracture.

Figure 10: Plots of (a) the fracture load and (b) the crack-tip phase angle for an
asymmetrical-double-cantilever beam plotted as a function of the ratio
of the shear strength to the normal strength for different values of the
ratio of the mode-II to mode-I toughness. The LEFM results for both
figures are indicated by dashed lines. The non-dimensional groups for
these plots are ĒΓI/σ̂

2h1 = 0.148, ΓI/Ēh1 = 9.1× 10−7, h1/h2 = 0.1,
a/h1 = 15, and L/h1 = 135.

Figure 11: (a) The results of a numerical experiment conducted on an asymmet-
ric double-cantilever geometry, showing the values of axial and trans-
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verse shear loads required for fracture. (b) Plots of nominal toughness
against nominal phase angle, with the LEFM mixed-mode failure cri-
terion superimposed. (c) A comparison between the crack-tip phase
angle at fracture and the nominal phase angle calculated from LEFM.
The non-dimensional groups for these plots are ĒΓI/σ̂

2h1 = 0.055,
ΓI/Ēh1 = 9.1× 10−7, ΓII/ΓI = 5, τ̂ /σ̂ = 0.5, h1/h2 = 0.1, a/h1 = 20,
and L/h1 = 130. Results for different values of the cohesive-zone thick-
ness, t, and the coefficient of fraction µ, are shown on all the plots.

Figure 12: The (a) normal and (b) shear stresses ahead of a crack tip at fracture
for an asymmetric double-cantilever geometry subject to axial loads,
with a modulus mismatch of α = 0.8 and β = 0.4, 0.3, 0.2, 0.1, and
0. The corresponding LEFM stresses are superimposed on this figure.
The non-dimensional groups for of these plots are ĒΓI/σ̂

2h1 = 0.1,
ΓI/Ēh1 = 10−6, ΓII/ΓI = 1, τ̂ /σ̂ = 1, h1/h2 = 0.1, a/h1 = 20, and
L/h1 = 130.

Figure 13: The effects of modulus mismatch on the fracture load and the crack-
tip phase angle at fracture for an asymmetric double-cantilever geom-
etry subjected to a couple formed by axial loads with (a) β = 0, (b)
β = α/2 (c) α = 0.8. The non-dimensional groups for these plots are
ĒΓI/σ̂

2h1 = 0.1, ΓI/Ēh1 = 10−6, ΓII/ΓI = 1, τ̂ /σ̂ = 1, h1/h2 = 0.1,
a/h1 = 20, and L/h1 = 130.

Figure 14: The effects of modulus mismatch on the fracture load and the crack-
tip phase angle at fracture for an asymmetric double-cantilever ge-
ometry subjected to a couple formed by axial loads with α = 0 and
various values of β. The non-dimensional groups for these plots are
ĒΓI/σ̂

2h1 = 0.1, ΓI/Ēh1 = 10−6, ΓII/ΓI = 5, τ̂ /σ̂ = 1, h1/h2 = 0.1,
a/h1 = 20, and L/h1 = 130.

Figure 15: The shift in phase angle at fracture between the nominal value, ψ∞,
defined by LEFM at a length scale of h1, and the crack-tip phase angle,
ψo, determined from the cohesive-zone model, plotted as a function of
modulus-mismtach parameter ε = (1/2π) ln(1 − β)/(1 + β). All the
data from Figs. 13 and 14 have been included on this figure.

Figure 16: The phase angle defined by Eqn. 8 plotted as a function of distance
ahead of the crack for an asymmetric double-cantilever geometry sub-
jected to a couple formed by axial loads. Two plots are shown: one for
a modulus mismatch of α = 0.4 and β = 0.2; the other for a modulus
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mismatch of α = 0.4 and β = 0.0. The LEFM predictions for the phase
angle are superimposed on this plot. The non-dimensional groups for
these plots are ĒΓI/σ̂

2h1 = 0.1, ΓI/Ēh1 = 10−6, ΓII/ΓI = 1, τ̂ /σ̂ = 1,
h1/h2 = 0.1, a/h1 = 20, and L/h1 = 130.
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