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Abstract 

Hot-pressed laminates with a [0/90]48 lay-up, consisting of 83% by volume of ultra high 

molecular-weight polyethylene (UHMWPE) fibres, and 17% by volume of polyurethane 

(PU) matrix, were cut into cantilever beams and subjected to transverse end-loading.  The 

collapse mechanisms were observed both visually and by X-ray scans.  Short beams deform 

elastically and collapse plastically in longitudinal shear, with a shear strength comparable to 

that observed in double notch, interlaminar shear tests.  In contrast, long cantilever beams 

deform in bending and collapse via a plastic hinge at the built-in end of the beam.  The plastic 

hinge is formed by two wedge-shaped microbuckle zones that grow in size and in intensity 

with increasing hinge rotation.  This new mode of microbuckling under macroscopic bending 

involves both elastic bending and shearing of the plies, and plastic shear of the interface 

between each ply.  The double-wedge pattern contrasts with the more usual parallel-sided 

plastic microbuckle that occurs in uniaxial compression.  Finite element simulations and 

analytical models give additional insight into the dominant material and geometric 

parameters that dictate the collapse response of the UHMWPE composite beam in bending.  

Detailed comparisons between the observed and predicted collapse responses are used in 

order to construct a constitutive model for laminated UHMWPE composites.   
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1. Introduction 

Ultra High Molecular-weight Polyethylene (UHMWPE) fibres in a polyurethane or 

polyethylene matrix have extremely high specific stiffness and strength, and are used in a 

wide range of applications from ropes to blast resistant armour.  The fibres have been 

commercialised by DSM Dyneema® NL under the trade name Dyneema®.  Commonly, 

Dyneema® laminated plates are hot pressed to a 0/90 cross-ply configuration.  Materials tests 

on 0/90 UHMWPE composites have recently been reported by Russell et al. (2013), and by 

Iannucci and Pope (2011); these studies highlight the extreme anisotropic nature of the 

composite.  For example, in uniaxial tension, the fibres dictate the tensile strength of the 

composite, and the tensile strength of the 0/90 laminate is about 800 MPa.  In contrast, the in-

plane shear strength of the 0/90 laminate is on the order of 1-2 MPa.  However, surprisingly 

little is known about these laminates under simple loading states, such as bending.  The 

purpose of the present study is to develop and make use of a cantilever bend test for 

Dyneema® laminated beams, and thereby to determine the constitutive parameters associated 

with beam bending.   

 

The cantilever beam test contrasts with the more commonly used test methods of 3-point 

bending and 4-point bending as described in the following ASTM standards: 

(i) ASTM Test Method D 2344/D 2344M-00 gives a protocol for short beam test to 

interrogate longitudinal shear properties; and  

(ii) ASTM D7264 / D7264M – 07 gives a protocol for long beam tests to measure the 

bending strength. 

Preliminary 3-point bend tests by the authors on Dyneema® beams indicate that the beams 

collapse in one of the two arms in an asymmetrical manner, and this complicates 

interpretation of the subsequent collapse response.  To obviate this, a cantilever beam 

arrangement is employed in the present study. 

 

There is a clear need to develop physically-based micromechanical models of deformation 

and failure for UHMWPE laminates, and to then use these models to obtain appropriate 



3	  
	  

material descriptions for finite element implementation.  Such an approach requires direct 

observation of the physical collapse mechanisms for a range of stress states, from uniaxial 

straining, to bending, and to more complex, 3D stress states.  The cantilever beam tests 

reported here are a first step in this direction.  

 

The lack of materials data and of validated constitutive models for Dyneema® laminates has 

led to empirical approaches to modelling the performance of Dyneema®/UHMWPE laminates 

in practical applications.  For example, the penetration resistance of UHMWPE composites 

for armour applications have concentrated on developing continuum damage-mechanics 

models (Utomo and Ernst (2008); Iannucci and Pope (2011); Iannucci and Willows (2006)) 

and softening-plasticity models (Grujicic et al. (2009)).  These models are calibrated against 

projectile penetration data for both thin sheet and back-supported blocks, and are able to 

predict some of the observed penetration mechanisms such as delamination and inter-laminar 

shear.  However, the dynamic penetration tests are too complex for the derivation of basic 

constitutive properties, and a set of independent simple structural tests are required to achieve 

this.  The materials data accrued from idealised structural tests, such as the cantilever beam 

test, are an important first step in the measurement of relevant materials data for the 

construction of constitutive models. 

 

The scope of this paper is as follows.  The transverse elastic deflection and collapse response 

of end-loaded Dyneema® composite beams are measured as a function of beam length, and 

the associated collapse mechanisms are observed both visually and by X-ray scans.  A 

detailed finite element model is then used to predict the collapse response. 

 

2.   Experimental investigation of UHMWPE composite cantilever beams 

 

2.1 Geometry of UHMWPE composite cantilever beam 

Hot-pressed Dyneema® laminate plates, of commercial designation HB26, were obtained 

from DSM.  The laminates were of a [0/90]48 lay-up, and consisted of 83% by volume of 

UHMWPE fibres, and 17% by volume of polyurethane (PU) matrix.  The plates were of 
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dimensions 400x400x6 mm, and were taken from the same batch of material as that used by 

Russell et al. (2013) to measure the in-plane tensile properties and shear properties.  

 

Beams of height h =6mm, length L =6mm to 300mm and width W=20mm were cut from the 

HB26 plates and one end of each beam was clamped between two thick steel plates of the test 

fixture, as sketched in Fig. 1.  The free end of the beams was loaded via a steel cylinder of 

diameter d=6.4mm using a screw-driven testing machine.  Unless otherwise stated, a cross-

head speed of 2mm/min was employed in all tests.  The overhang s between the end of the 

beam and the roller was 10mm.  In preliminary tests, this overhang was increased to 20mm 

and the width of the beams was increased to 35mm; there was no observable effect of these 

changes in geometry on the response of the beam in terms of the load per unit width P versus 

roller displacement δ . 

 

Two sets of beam tests were performed.  In the first, the applied loads were kept sufficiently 

small for the beams to behave in an elastic manner, avoiding permanent deformation; these 

tests were used to extract the elastic properties.  And, in a second set of tests, the beams were 

loaded to plastic collapse. 

 

2.2 Elastic properties of the composite beams 

For all beam lengths and loading rates, the initial portion of the P versus δ curve is linear.  

The measured unloading compliance  C = δ/P  is plotted as a function of beam length L in 

Fig. 2 for three applied loading rates.  Typically, a specimen was subjected to a load of 10% 

peak load and then unloaded; the initial unloading slope was measured and used to define the 

elastic compliance of the specimen.   

 

Two distinct regimes of deformation were observed, depending on the beam length.  Short 

beams deformed in, shear, and the compliance being proportional to the beam length 

according to the approximate relationship (assuming the shear coefficient for the beam is 

unity): 

     LC
P Gh
δ

= =      (1) 

where G is the shear modulus of the beam.  On fitting (1) to the measured response for beam 

lengths below 50mm, the slope of the compliance curve suggests that G = 60 ± 10 MPa.   
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The response of the long beams, with L greater than about 100, was dominated by flexure, 

with the compliance is proportional to the cube of the beam length  L, according to the usual 

beam formula 

     
3

3

4LC
P Eh
δ

= =      (2) 

where E is the axial modulus of the beam. The constant of proportionality for the compliance 

curve suggests that E = 34 GPa.  Note the large contrast in axial and shear moduli of the 

HB26 laminate: the axial modulus exceeds the shear modulus by three orders of magnitude.  

This can be traced to the highly drawn nature of the Dyneema® fibres.  Consequently, a beam 

of short or moderate length (up to 5 times the beam height) deforms predominantly in shear.  

The transverse modulus of a unidirectional layer of the HB26 composite is also several orders 

of magnitude less than the axial modulus; upon making use of this assumption, the above 

bending tests on a [0/90]48 beam suggest that the axial modulus of a unidirectional layer is 

68 GPa. 

 

It is instructive to compare the above values for axial and shear moduli with the recent 

measurements by Russell et al (2012).  The axial modulus of a 0/90o laminate is 25-50 GPa 

for strain rates in the range of 10-4 – 10-2 s-1 (by direct measurement of the loading slope of 

the data shown in Fig. 5a of Russell et al (2012));  the present value of 34 GPa lies within this 

range.  Russell et al (2012) measured the in-plane shear modulus of HB26 composite via 

tension tests on a ± 45o lay-up, see Fig. 5b of their paper.  They found that the shear response 

is rate sensitive due to visco-elastic effects and, at a strain rate of 10-4 s-1, the measured in-

plane shear modulus is 60 MPa, in good agreement with the present measurements of 60 ± 10 

MPa.  Note that we do not expect exact agreement as the shear directions are different in the 

two studies: the beam tests of the present study give the longitudinal shear modulus whereas 

the tests reported by Russell et al (2012) give the in-plane shear modulus. 

 

2.3 Plastic collapse of composite beams 

A second set of clamped HB26 composite beam tests was conducted with the beams loaded 

monotonically to collapse.  Typical load versus displacement responses are given in Fig. 3 for 

a short beam (L=10mm) and a long beam (L=100mm).  In both cases, the initial response was 

followed by a peak load, hereafter referred to as the ‘plastic collapse load’.  Strong softening 

followed the peak load for the short beam tests while only a small load drop accompanied 

continued plastic collapse for the long beams.   
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The localised nature of the deformation accompanying the post-peak response was probed 

using optical microscopy and 3D X-ray tomography (C-scan machine, operating at 45kV).  

These images are included in Fig. 3, and reveal that the short beam collapsed by longitudinal 

shear along several interlaminar planes whereas the long beam collapsed by the formation of 

a plastic hinge.  The hinge was located at the root of the beam, or in some cases 1-2mm from 

the root.   

 

Additional insight into these two collapse mechanisms is gained by plotting the plastic 

collapse load per unit width  Pmax  against beam length  L  in Fig. 4.  For short beams, the 

collapse load was almost independent of beam length.  Our interpretation is as follows.  

Assume that the beam behaves as a linear-elastic Timoshenko beam up to peak load, such 

that the shear stress at mid-plane is given by ( )3 / 2P hτ = .  A peak load per unit width of 12 

N/mm and a beam height of h =6 mm implies an interlaminar shear strength of 3.0 MPa.  In 

contrast, long beams collapse at a constant end moment, with the collapse load scaling 

inversely with beam length.  The collapse moment/unit width for the longer beams is 

calculated from the slope of the load against beam length plot, and equals 200±40 N.   

 

The plastic hinge at the root of the long beams was in the form of a kink-band, as sketched in 

Fig. 5a.  An optical image of the kink band for a representative beam of length L = 100 mm is 

shown in Fig. 5b.  In this image the black lines are markings that were initially parallel and 

placed on the side of the beam by a marker pen approximately 1 mm apart to aid visualisation 

of the collapse mechanism.  Fig. 5c-d are scanning-electron microscope (SEM) images of the 

kink band at two different magnifications.  It is clear from these images that the plastic hinge 

gives rise to rotation of the cross-section, while the images at higher magnification reveal two 

wedge-shaped kink zones as sketched in Fig. 5a.  At any instant, the rotation of the plies 

within each zone is uniform, but as the hinge rotation increases, the hinge broadens and the 

degree of ply rotation increases within each zone.  We parameterise the hinge size by the 

angle !  subtended at the apex of the wedge as sketched in Fig. 6a:  the measured !  is 

plotted as a function of the hinge rotation !  in Fig. 6b for the   L = 100 mm  beam.  We note 

from Fig. 5b that the deformation mode comprises plies shearing past each other as the plies 

rotate collectively.  Thus, the deformation mode is almost incompressible, and is reminiscent 

of ‘kink band folds’ in geological formations, see for example Faill (1973) and Price and 
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Cosgrove (1990).  Note too that the microbuckling is at the ply level rather than on the scale 

of individual fibres.  An analytical model to describe the kinematics of the wedge-shaped 

kink is presented in Appendix A. 

 

This description of a plastic hinge suggests the following strength-of-materials approach.  

Assume that the composite behaves in a linear elastic manner in tension, and ‘yields’ in 

compression in an elastic, ideally plastic manner with a compressive strength of bσ .  Then, 

deep in the plastic range, the neutral section of the beam is close to the top fibre, and the 

collapse moment per unit thickness of beam is   Mb = ! bh( )h / 2 =! bh
2 / 2 .  Upon substituting 

bM =200N from Fig. 4, and h = 6mm, we obtain an average microbuckling strength of bσ =

11 MPa.   

 

3.  Finite element analysis of the HB26 composite cantilever beam 

The above experiments motivate a numerical challenge: what level of fidelity is required in a 

finite element simulation in order to reproduce the dependence of cantilever beam strength 

and collapse mode upon beam length?  Both of the observed collapse modes involve inter-ply 

plastic shear and elastic deformation of the plies.  We shall simulate these aspects within a 

finite element (FE) model by making use of cohesive zones between elastic plies.  The details 

are as follows. 

 

3.1 Description of the finite element model 

A two dimensional finite element analysis was performed out using the explicit version of the 

commercial finite element software ABAQUS (version 6.8).  The HB26 composite beam 

consists of 98 unidirectional plies with alternating 0o and 90o fibre orientations, see Fig. 7.  

Our focus is on the prediction of the shear mode of collapse at short beam lengths and plastic 

hinge formation at long beam lengths.  Detailed calculations were performed on beams of 

length L=10mm in order to simulate the shear mode, and on beams of length L=100mm in 

order to simulate the bending mode.  

 

Preliminary calculations revealed that the microbuckling mode for the plastic hinge observed 

in the long beam (L=100mm) requires the presence of an initial geometric imperfection in the 

form of waviness of the plies.  To achieve this, the end portion of the beam (adjacent to the 
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built-in end) was rotated through an imperfection angle ( )o0 10φ≤ ≤ .  This rotated portion 

extended over a length of 80tλ =  where t=60µm is the ply thickness.  A parametric study is 

given below in order to determine the sensitivity of the deformation and collapse mode upon 

( ),φ λ . 

 

Each ply was modelled by four-noded plane strain elements with reduced integration (CPE4R 

in ABAQUS notation).  A mesh sensitivity analysis revealed that two elements per ply 

sufficed for the depth direction of the beam, with suitable grading of the mesh along the 

length of the beam to make it finest near the built-in end.  Orthotropic properties were 

assigned to the elements, as detailed below.  Four-noded cohesive elements (COH2D4 in 

ABAQUS notation) were placed between adjacent plies to allow for delamination; 

consequently, the mesh was comprised of 97 layers of cohesive elements connecting 98 plies.  

In the simulations, the beam was subjected to an increasing transverse displacement near its 

free end via a rigid, frictionless circular roller of diameter d=6.4mm, see Fig. 7.  Contact 

between the roller and the beam was modelled by the hard, frictionless contact option in 

ABAQUS.  The displacement rate of the roller was chosen to be sufficiently small for inertial 

effects to be negligible. 

 

3.2 Material properties of the solid and cohesive elements 

Take the 1, 2 and 3 directions to lie along the longitudinal axis of the beam, depth direction 

and width direction, respectively.  The plane strain elements are endowed with orthotropic 

elastic properties as listed in Table 1;  the moduli of the elements and the stiffnesses of the 

interface elements (that is, the cohesive zones) are chosen in order to give the measured 

effective moduli of the cross-ply composite.  For the 0o plies, E1 equals twice the measured 

flexural modulus of the beam; E2 equals three times the shear modulus; and G12 equals twice 

the shear modulus of the laminate.   

 

An elastic-plastic traction-separation law was used for the cohesive elements, such that the 

elastic separation el
nU  in the normal direction and el

sU  in the shear direction are linear in the 

normal traction nT  and shear traction sT , respectively, according to 

  el
nU = nT / nk   and  el

sU = sT / nk   (3) 
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where nk  is the prescribed stiffness of each cohesive layer.  The value of nk  is adjusted to 

ensure that the effective elastic shear modulus of the cross-ply composite equals 50MPa:  the 

choice was made that the solid and cohesive elements contribute equally to both the elastic 

shear compliance and the normal compliance.  (Preliminary simulations show that the 

response is insensitive to the shear modulus, over the range of 50 MPa to 70 MPa.) 

 

The total separation rates for the elastic-plastic traction-separation law is written as the sum 

of an elastic part and a plastic part, 

 

     
!! = !!!" + !!

!"

!! = !!!" + !!
!"    (4) 

 

A visco-plastic power law relation is used to describe the plastic separation rates: 

 

    
!!
!" = !!

!!
!!

!!! !!
!!

!!
!" = !!

!!
!!

!!! !!
!!

   (5) 

 

where !!  and ! are a reference separation rate and exponent, respectively, and the effective 

traction is defined as !! = !! ! + !!!.  The use of the Macaulay bracket 〈〉 implies that 

compressive separation rates vanish.  !!(!!
!")   is the cohesive zone law in terms of the flow 

traction at an equivalent plastic separation  !!
!".  Note that the plastic separation is specified in 

rate form by !!
!" = !!

!" !
+ !!

!" !
.  In order to simulate a rate-insensitive quasi-static 

response, a small value of reference separation rate (!!=0.001m/s) and a large value of 

exponent (! =10) were used in the FE analyses.  The assumed softening cohesive law 

!!(!!
!")   is shown in Fig. 8 and this was implemented for the cohesive elements. This choice 

of traction-separation curve was determined via an independent set of shear tests on Dyneema 

specimens, see Appendix B.  

 

3.3 The predicted response for the short beam 
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The predicted collapse response of a short beam (L =10 mm) is given in Fig. 9a for an 

imperfection length of λ =40t and selected values of imperfection angle φ .  Similarly, the 

response is given in Fig. 9b for φ  = 5o and for selected values of λ.  For comparison 

purposes, the measured collapse response is included in both figures.  It is clear that the 

predicted response is only mildly sensitive to the presence of an imperfection, and the 

observed strength is adequately modelled by the perfect geometry, φ =0o.  In all cases the 

predicted response is almost linear elastic followed by a peak load and then a mild drop in 

load with ensuing displacement.  The deformed shape of the beams at a deflection of 3.4mm 

is given in Fig. 9c for the values of imperfection reported in Fig. 9a (with λ =40t);  likewise, 

the deformed shapes are shown in Fig. 9d for the imperfections reported in Fig. 9b (with 
o5φ = ).  The predicted deformed shape of the short beam is only mildly sensitive to the 

magnitude of initial imperfection, and the predictions are in reasonable agreement with the 

observed shape. 

 

3.3 The predicted response for the long beam 

A similar parametric study on imperfection sensitivity has been performed for the bending 

collapse of a long beam (L=100mm), see Fig. 10.  Again, the measured response is included 

in the plots.  In contrast to the shear response of the short beam, the bending response of the 

long beam is sensitive to the misalignment angle φ , as shown in Fig. 10a.  The peak load is 

significantly over-estimated for the ideal geometry,  ! = 0o , whereas an imperfection on the 

order of o5φ =  brings the prediction into approximate alignment with the measured collapse 

response.  For this value of misalignment angle, the peak load is almost insensitive to the 

imperfection wavelength, see Fig. 10b.  However, the precise location of the plastic hinge 

shifts as λ  is increased from 40t to 80t: the longer wavelength causes the hinge to move 

along the beam and away from the root, see Fig. 10d.  The experiments revealed that the 

precise location of the hinge varied randomly in support of the notion of random 

imperfections.  The rotational nature of the hinge, along with the local bulge formed on the 

compressive face of the beam due to the wedge-shaped microbuckles are evident in Fig. 10c, 

regardless of the choice of initial imperfection. 
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The sensitivity of peak load to the imperfection angle φ  is compared for the short and long 

beams in Fig. 11, for λ =40t.  As already remarked, the collapse mode of kinking of the long 

beam is much more imperfection sensitive than the mode of longitudinal shear in the short 

beam.  In order to bring the predicted failure loads into alignment with the measured loads for 

both short and long beams, an imperfection angle of 2o-5o is appropriate.  In subsequent 

calculations, we shall assume φ  =5o and λ  =40t  unless otherwise stated.  

 

4. Sensitivity of predicted kinking pattern in long beams to constitutive 

assumptions 

In the above finite element study, the composite beam is discretised into its constituent 0o and 

90o plies and interfaces, and the appropriate orthotropic elastic constants are ascribed to each 

of the plies.  It is instructive to determine the sensitivity of the collapse load and collapse 

mode to the interlaminar shear strength.  Recall that the overall effective shear compliance of 

the laminate is the sum of the compliances of the plies and interfaces.  We shall also show 

below that the microbuckling response of the long beam is sensitive to the partitioning of the 

shear compliance between plies and interfaces, at fixed overall, effective value. 

 

For present purposes, it suffices to replace the end-loaded long beam by a short beam 

subjected to pure bending.  In this manner, the size of the finite element mesh is significantly 

decreased.  An increasing end rotation ψ   is applied to the free end of an encastre beam of 

length 20mm, and the work-conjugate moment M is determined.  In order to trigger the 

observed microbuckling mode an initial ply misalignment was introduced near the fixed end 

with an imperfection angle of φ =5o and imperfection length λ =40t.   

 

A sensitivity analysis has been performed in order to determine the sensitivity of the bending-

collapse response of the beam to the longitudinal shear modulus G12 of the plies and to the 

peak interlaminar strength  0τ .  As mentioned above, the idea is to hold the overall, effective 

shear modulus of the combined plies and interfaces fixed at 50 MPa, and to vary the shear 

stiffness of the interfaces to compensate for any change in shear modulus of the plies.  The 

shear modulus of the plies was perturbed to the values of 50 MPa and 1000 MPa, in addition 

to the reference value of 100 MPa.  Likewise, the shear strength of the interfaces was 

perturbed from the reference value of 0τ =2 MPa, such that 0τ =0.2 MPa and 20 MPa. 
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4.1 Predictions  

The moment versus rotation collapse responses and the deformed mesh at a rotation of ψ=10o 

are given in Fig. 12 for selected values of interlaminar shear strength 0τ , and in Fig. 13 for 

selected values of shear modulus of the plies.  We conclude that the peak collapse moment, 

and the collapse mode are sensitive to both the interlaminar shear strength (Fig. 12) and ply 

shear modulus (Fig. 13), as follows. 

(i)  A drop in the shear strength leads to a drop in the collapse moment and to an increase in 

wavelength of the hinge.  An increase in the shear strength results in an increase in the 

collapse moment and to a change in the deformation mode: the wedge-shape kink band is 

now replaced by a kink at root of the beam on the compressive side more reminiscent of the 

usual parallel-side microbuckle.  On the other hand, a drop in shear modulus of the plies (at 

fixed effective shear modulus of the composite comprising plies and interfaces) also leads to 

a drop in the collapse moment and the bulge on the compressive side of the beam is no longer 

sinusoidal.   

(ii)  An increase in shear modulus of the plies increases the collapse moment, and switches 

the collapse mechanism to a diffuse, sinusoidal buckling pattern rather than the wedge-

shaped kinks.  We conclude that continuum elements of appropriate shear modulus (or, 

equivalently, a Timoshenko beam or Mindlin plate description with the correct shear 

modulus) is needed in order to capture the observed kinking mode. 

 

The wedge-shaped kink bands of the present study is in sharp contrast to the more usual 

parallel-side microbuckle bands that form in composite laminates under uniform 

compression.  The parallel-sided microbuckle bands have been exhaustively studied in the 

literature, see for example the reviews of Fleck (1997), Kyriakides  and Ruff (1995), 

Kyriakides et al (1997), and Schultheisz and Waas (1996).  In conventional plastic 

microbuckling, the fibres bend elastically in a co-operative manner and the intervening 

matrix shears plastically.  The resulting microbuckle band typically has a width on the order 

of 20 fibre diameters, see for example Fleck (1997) and Fleck et al (1995).  In contrast, the 

wedge-shaped kink bands of the present study involve both bending and longitudinal shear of 

the elastic plies, and plastic shear of the intervening inter-ply interfaces.   

 

5.  Concluding remarks 
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The present study highlights the collapse mechanisms for a Dyneema® laminated plate in 

bending.  It is observed that short beams collapse by interlaminar shear, whereas a long beam 

collapses by a wedge-shaped kinking mechanism.  The double-wedge mechanism is 

kinematically admissible as it gives rise to a rotational hinge, and is strikingly different from 

the more common case of a parallel-sided kink band, for a long fibre composite under remote 

compression.  We have demonstrated that the wedge-shaped kinking mechanism requires 

both a low shear strength and a low shear modulus, in order to promote a narrow hinge at the 

apex of the wedge.  Further studies are required in order to map out the competing kinking 

mechanisms as a function of material and geometric properties as well as the loading 

conditions. 

 

The finite element analysis of the present study has demonstrated that the wedge-shaped 

double kink mechanism involves interlaminar shear, along with elastic shear and elastic 

bending of the intervening plies.  Independent measurements of the interlaminar shear 

response are used in order to make the finite element predictions, by making use of a new 

form of shear test.   
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Tables 

 

Table1. Elastic properties of the solid elements 

 

 E1 (GPa) E2 (GPa) v12 G12 (GPa) 

0o ply 

90o ply 

68 

0.15 

0.15 

0.15 

0.3 

0.3 

0.1 

0.1 
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Appendix A.  Analytical model for hinge formation by plastic kinking 

 

An analytical model is now detailed for the plastic hinge in a laminated or unidirectional fibre 

composite: the hinge comprises two wedge-shaped kink bands, see Fig. A1.  Consider a 

beam, with each arm bent through an angle ψ  about a central hinge.  The beam is idealised 

as a smeared-out stack of inextensional rigid layers, and intervening rigid, ideally plastic 

matrix of shear yield strength k.  We shall assume that kinking is by plastic shear of the layers 

in a volume-conserving manner.   

 

At any instant, the beam comprises the following zones of uniform deformation: 

(i)  Each end of the beam undergoes rigid-body rotation by ψ±  

(ii)  In two wedge-shaped zone of the active hinge, the layers rotate though an angle of φ± .   

In order for hinge rotation to conserve volume, the boundaries OB, OC and OD behave like 

twin-boundaries in a crystalline solid (Hull and Bacon, 2011), such that  ( )2φ β ψ= + , 

where β  is the wedge angle as defined in Fig. A1.  Additionally, conservation of volume 

dictates that the angles β  and ψ are related via 

 ( ) ( ) ( ) ( )cot cos 2 cot sin 2 cos 2β ψ β ψ β β ψ β ψ+ = + + + +⎡ ⎤⎣ ⎦  (A1) 

The moment-rotation M ψ−  collapse response is determined by the following work 

argument.  Consider the left-hand side of the beam.  Then, the external work is 

( )
0

PW M d
ψ

ψ ψʹ′ ʹ′= ∫  while the internal work done within the wedge OBC of area 

( )21 tan
2

A h β ψ= +  involves the shear stress k working through the uniform shear strain of 

magnitude ( )2 β ψ+  within the wedge, to give 

    ( )2PW kAβ ψ= +      (A2) 

Now equate the external and internal work rates to obtain 

    
   
!W P = M !! = 2 " +!( )k !A+ 2 !" + !!( )kA   (A3) 

Since   !A  and  
!!  are linear in  !! , the above relation (A3) gives the bending moment M for 

any assumed value of beam rotation ψ .  To see this, first note that (A1) is an implicit 

function for β  in terms of ψ .  Time differentiation of (A1) gives 

      f1 ! ,"( ) !! + f2 ! ,"( ) !" = 0      (A4) 
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where 

 ( ) ( ) ( )2 2
1 , 2cosec cosec 1 cos 4 2f β ψ β ψ β β ψ= − + + + +⎡ ⎤⎣ ⎦  

        ( ) ( )4cot sin 4 2 4cos 4 2β β ψ β ψ+ + − +     (A5a) 

and 

 ( ) ( ) ( ) ( )2
2 , 2cosec 2cot sin 4 2 2cos 4 2f β ψ β ψ β β ψ β ψ= − + + + − +  (A5b) 

 

Likewise, the rate form of ( )21 tan
2

A h β ψ= +  reads: 

   
   
!A = 1

2
h2 sec2 ! +"( ) !! + !"#$ %&      (A6) 

Substitution of (A4) and (A5) into (A3) then gives 

  ( ) ( ) ( )2 21 2

1

sec tanf fM kh
f

β ψ β ψ β ψ
⎡ ⎤−

⎡ ⎤= + + + +⎢ ⎥ ⎣ ⎦
⎣ ⎦

  (A7) 

 

Comparison with finite element simulations 

It is instructive to compare the predictions (A1) and (A7) of the analytical model with those 

of the full numerical simulations.  To make the comparison, an end rotation ψ  was applied to 

the beam in the finite element simulations, and the work-conjugate end moment M was 

determined.  A ‘softening law’ for the cohesive zones between plies was assumed, with initial 

peak value 2.0MPa, as shown in Fig. 8.  Additionally, a ‘perfectly plastic’ cohesive zone law 

was assumed, such that 0T  is held constant at 2.0MPa.  The results for these two simulations 

are compared with the analytical predictions in Fig. A2; to make contact between finite 

element simulation and analytical model we take the shear strength in the finite element 

simulations k to equal 0T  (since this is the longitudinal shear strength of the beam).   

 

It is clear that the simple analytical model captures the kinematics of the kink bands 

(Fig. A2a), except for the early stage of kink band nucleation.  Moreover, the comparison 

between the measured kink kinematics and the predictions of this model are included in 

Fig. 6b and again show that the model captures the kinematics to a high degree of accuracy 

except during the early stages.  However, the kink band model neglects the elastic bending 

energy of the layers at the kink boundaries, and thereby underpredicts the moment ( )M ψ ; 

see Fig. A2b.  
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Appendix B:  The traction-displacement bridging law across an interply delamination 

under remote shear 

 

B1. Shear tests 

Double-notch shear tests were performed on the HB26 laminates, of geometry shown in 

Fig. B1, in order to measure the interlaminar shear properties.  A three hole arrangement was 

employed in order to generate delamination on two planes as marked by the dotted lines in 

Fig. B1.  The specimen height h was 6mm (see Fig. B1) and the width w (into the page of 

Fig. B1) was set at 20 mm.  The length s of the delamination plane was set at 30 mm.  

(Preliminary tests confirmed that the shear strength was independent of w and s provided they 

each exceeded about 10 mm.) 

 

Tests were conducted in a screw-driven test machine by gripping the ends of the specimen in 

wedge grips.  The relative shear displacement across each delamination is measured using a 

clip gauge; the clip gauge, of span (s=10mm), is mounted on the side face of the specimen 

and spans the holes, see Fig. B1.  As such, it is a remote measure of the interlaminar 

displacement jump.  The average shear traction, acting on the shear planes between the inner 

large hole and the outer small holes, is determined from the applied load per unit width F and 

length of ligament s according to 

     τ = F/2s     (B.1) 

We emphasise that the shear tests do not give directly the traction versus displacement 

characteristic across the delamination, as the displacement measurement is remote from the 

delamination plane, and only the average traction is measured.  To aid interpretation, a finite 

element analysis is performed with an assumed interface law (local shear traction versus 

shear displacement jump) for the delamination plane, and the predictions are matched against 

the measured average traction versus displacement from the measured clip gauge response. 

 

B2. Measured response 
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The average shear traction versus displacement jump across one of the delamination planes is 

plotted in Fig. B2a for a cross-head displacement rate of 1 mm/min.  Additional insight into 

the collapse mode was obtained by post-test observation in a 3D X-ray CAT scanning 

machine, see Fig. B3.  Delamination occurs on two distinct shear planes.  The magnitude of 

displacement jump across these shear planes was measured during the tests using Digital 

Image Correlation (DIC) in addition to use of the clip gauge.  To achieve this, a speckle 

pattern was painted onto the front face of the specimen and the face of the specimen was 

videoed during testing.  Contour maps of the axial displacement field are shown in Fig. B4 at 

salient points in the test.  The displacement jump between the contact points of the clip gauge 

is extracted from the DIC measurements and used to construct a plot of shear traction versus 

displacement jump in Fig. B4.  The measured load versus clip gauge response is included in 

the figure and good agreement is noted for the two methods of displacement measurement.  

(Note that the measured curve included in Fig. B4 differs slightly from that in Fig. B2 as 

these are different tests and there is some scatter associated with these shear experiments.)  

Post peak load, shear localization occurs and two shear bands of intense deformation emerge, 

as witnessed by the DIC contour plots.   

	  

B3. Finite element simulations of the triple notch shear test 

A two dimensional, plane strain finite element analysis was conducted to calibrate the shear 

traction versus displacement response of a delamination between plies.  Each ply was 

modelled by four-noded solid elements and cohesive zones placed between all plies similar to 

the model described in Section 3 of the main text.  The elastic properties of the solid and 

cohesive elements were the same as those used in Section 3 above: each ply was modelled 

explicitly by an anisotropic elastic layer.  

 

A parametric study was conducted in order to calibrate the cohesive law: three elastic-

softening plastic cohesive laws were used with post-peak slope of -40, -20 and -13.3GPa/m 

(Fig. B2b).  Motivated by the observed response as shown in Fig. B2a, a residual strength 

(0.2MPa) remains after the softening in each cohesive law.  The peak cohesive strength was 

taken to be 2MPa, as set by the collapse load in the short cantilever beam tests.   

 

The predicted average traction versus clip gauge response is given in Fig. B2a.  The finite 

element simulations give delamination on a plane tangential with the edge of the small holes, 
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in agreement with the observed collapse mode.  It is found that the cohesive law II, with post-

peak stiffness of -20GPa/m, gave the best fit to the observed response.  Accordingly, we 

make use of this cohesive law in the body of the paper, recall Fig. 8.  
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Figure Captions 

 

Fig. 1:  Sketch of the clamped HB26 composite beam geometry. 

 

Fig. 2:  Plot of the measure compliance  of the HB26 composite beam versus beam length 

 for 3 loading rates . 

 

Fig. 3:  (a) Load per unit width  versus displacement  responses of short (L=10mm) and 

long (L=100mm) HB26 composite beams.  (b)  X-ray and photographs showing the 

deformation of the short and long beams at applied displacements  mm and 25 mm, 

respectively.   

 

Fig. 4:  Collapse load  (per unit width) versus HB26 composite beam length , showing 

the transition between shear and bending dominated collapse modes. 

 

Fig. 5:  Plastic hinge formation by microbuckling in the long beam (L=100mm):  (a) Sketch 

of the double-wedge kind band.  In this illustrative sketch, chain lines denote the 0o plies, and 

the dotted lines denote the 90o plies; (b)-(d) images of the kind bands at different 

magnifications. 

 

Fig. 6:  (a)  Definition of the kink wedge angle  and beam rotation .  In this illustrative 

sketch, chain lines denote the 0o plies, and the dotted lines denote the 90o plies. (b) 

Measurements of the wedge angle as a function of the beam rotation for the L=100mm HB26 

composite beam.  Predictions of the model from Appendix A are also included. 

 

Fig. 7:  Sketch illustrating the details of the finite element model of the HB26 composite 

beams.  In this illustrative sketch, chain lines denote the 0o plies, and the dotted lines denote 

the 90o plies. 

 

Fig. 8:  The softening cohesive zone law used to model the interlaminar of the HB26 

composite beam. 
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Fig. 9:  Sensitivity of the response of the short beam (L=10mm) HB26 composite beam to the 

choice of initial imperfection.  The load  per unit width versus displacement  response 

for (a) λ =40t, and (b) .  Top and bottom surface profiles of the beam are shown for an 

end displacement of 3.4mm and choices λ =40t and  in (c) and (d), respectively. 

 

Fig. 10:  Sensitivity of the response of the long beam (L=100mm) HB26 composite beam to 

the choice of initial imperfection.  The load  per unit width versus displacement  

response for (a) λ =40t, and (b) .  Top and bottom surface profiles of the beam are 

shown for an end displacement of 15mm and choices λ =40t and  in (c) and (d), 

respectively. 

 

Fig. 11:  Collapse load  (per unit width) versus imperfection angle , for the choice of 

imperfection length λ =40t. 

 

Fig. 12:  Finite element calculations to illustrate the sensitivity of the response of long beams 

to the interlaminar strength .  (a)  The applied moment  versus rotation . (b) The 

predicted deformed configurations for three choices of interlaminar strength: (i)  

MPa; (ii)  MPa  and (iii)  MPa.  The overall deformed shapes of the 

beams and magnified views of the bending hinge are shown for an applied rotation . 

 

Fig. 13:  Finite element calculations to illustrate the sensitivity of the response of long beams 

to the shear modulus G of the plies.  (a)  The applied moment  versus rotation . (b) The 

predicted deformed configurations for three choices of interlaminar modulus: (i)  

MPa; (ii)  MPa  and (iii)  MPa.  The overall deformed shapes of the beams 

and magnified views of the bending hinge are shown for an applied rotation . 

 

Fig. A1:  The assumed plastic hinge:  two wedge-shaped kink zones.  In this illustrative 

sketch, chain lines denote the 0o plies, and the dotted lines denote the 90o plies. 
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Fig. A2:  Comparison of finite element predictions with analytical model for (a) the hinge 

kinematics and (b) load carrying capacity of the hinge.  The FE calculations are show for two 

choices of the cohesive relation. 

 

Fig. B1:   The double-notch geometry for measuring the interlaminar shear response of the 

HB26 composite. 

 

Fig. B2:  (a) Nominal shear traction versus displacement jump across the interply shear band 

as measured via the clip gauge.  Finite element calculations using three choices of cohesive 

relations are included.  (b)  Sketch illustrating the 3 cohesive relations used in the FE 

calculations included in (a). 

 

Fig. B3:  X-ray image of the double-notch shear specimen in a plane perpendicular to the 

shear plane. The image was taken after loading the specimen until the clip gauge measured a 

displacement of 1mm and then unloading.  The bands of intense shear between the plies 

results in some delamination that is clearly seen in this image. 

 

Fig. B4:  Measured traction versus displacement relation from the double notch shear 

specimen.  The displacement is measured via both a clip gauge and using digital image 

correlation (DIC).  (b) Contours of displacement in x-direction on one side of the specimen 

(perpendicular to the shear planes).  
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	  Fig. 1:  

Sketch of the clamped HB26 composite beam geometry. 
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Fig. 2:  Plot of the measure compliance  of the HB26 composite beam versus beam length 

 for 3 loading rates . 

	   	  

C

L  !!



27	  
	  

	  

	  

	  

Fig. 3:  (a) Load per unit width  versus displacement  responses of short (L=10mm) and 

long (L=100mm) HB26 composite beams.  (b)  X-ray and photographs showing the 

deformation of the short and long beams at applied displacements  mm and 25 mm, 

respectively.   
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Fig. 4:  Collapse load  (per unit width) versus HB26 composite beam length , showing 

the transition between shear and bending dominated collapse modes. 

	   	  

Pmax L
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Fig. 5:  Plastic hinge formation by microbuckling in the long beam (L=100mm):  (a) Sketch 

of the double-wedge kind band.  In this illustrative sketch, chain lines denote the 0o plies, and 

the dotted lines denote the 90o plies; (b)-(d) images of the kind bands at different 

magnifications. 
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Fig. 6:  (a)  Definition of the kink wedge angle  and beam rotation .  In this illustrative 

sketch, chain lines denote the 0o plies, and the dotted lines denote the 90o plies.  (b) 

Measurements of the wedge angle as a function of the beam rotation for the L=100mm HB26 

composite beam.  Predictions of the model from Appendix A are also included. 

	   	  

! !
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	  Fig. 7:  

Sketch illustrating the details of the finite element model of the HB26 composite beams.  In 

this illustrative sketch, chain lines denote the 0o plies, and the dotted lines denote the 90o 

plies. 
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Fig. 8:  The softening cohesive zone law used to model the interlaminar of the HB26 

composite beam. 
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Fig. 9:  Sensitivity of the response of the short beam (L=10mm) HB26 composite beam to the 

choice of initial imperfection.  The load  per unit width versus displacement  response 

for (a) λ =40t, and (b) .  Top and bottom surface profiles of the beam are shown for an 

end displacement of 3.4mm and choices λ =40t and  in (c) and (d), respectively. 
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Fig. 10:  Sensitivity of the response of the long beam (L=100mm) HB26 composite beam to 

the choice of initial imperfection.  The load  per unit width versus displacement  

response for (a) λ =40t, and (b) .  Top and bottom surface profiles of the beam are 

shown for an end displacement of 15mm and choices λ =40t and  in (c) and (d), 

respectively. 
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Fig. 11:  Collapse load  (per unit width) versus imperfection angle , for the choice of 

imperfection length λ =40t. 
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Fig. 12:  Finite element calculations to illustrate the sensitivity of the response of long beams 

to the interlaminar strength .  (a)  The applied moment  versus rotation . (b) The 

predicted deformed configurations for the three choices of interlaminar strength: (i) 

 MPa; (ii)  MPa  and (iii)  MPa.  The overall deformed shapes 

of the beams and magnified views of the bending hinge are shown for an applied rotation 

. 
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Fig. 13:  Finite element calculations to illustrate the sensitivity of the response of long beams 

to the shear modulus G of the plies.  (a)  The applied moment  versus rotation . (b) The 

predicted deformed configurations for three choices of interlaminar modulus: (i)  

MPa; (ii)  MPa  and (iii)  MPa.  The overall deformed shapes of the beams 

and magnified views of the bending hinge are shown for an applied rotation . 
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Fig. A1:  The assumed plastic hinge:  two wedge-shaped kink zones.  In this illustrative 

sketch, chain lines denote the 0o plies, and the dotted lines denote the 90o plies. 

	   	  



39	  
	  

	  

	  

Fig. A2:  Comparison of finite element predictions with analytical model for (a) the hinge 

kinematics and (b) load carrying capacity of the hinge.  The FE calculations are show for two 

choices of the cohesive relation. 

	   	  



40	  
	  

	  
 

Fig. B1:   The double-notch geometry for measuring the interlaminar shear response of the 

HB26 composite. 
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Fig. B2:  (a) Nominal shear traction versus displacement jump across the interply shear band 

as measured via the clip gauge.  Finite element calculations using three choices of cohesive 

relations are included.  (b)  Sketch illustrating the 3 cohesive relations used in the FE 

calculations included in (a). 
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Fig. B3:  X-ray image of the double-notch shear specimen in a plane perpendicular to the 

shear plane. The image was taken after loading the specimen until the clip gauge measured a 

displacement of 1mm and then unloading.  The bands of intense shear between the plies 

results in some delamination that is clearly seen in this image. 
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Fig. B4:  Measured traction versus displacement relation from the double notch shear 

specimen.  The displacement is measured via both a clip gauge and using digital image 

correlation (DIC).  (b) Contours of displacement in x-direction on one side of the specimen 

(perpendicular to the shear planes).  

	  

 

 

 


