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Abstract

When a tensile strain is applied to a film supported on a compliant substrate,

a pattern of parallel cracks can channel through both the film and substrate. A

linear-elastic fracture-mechanics model for the phenomenon is presented to ex-

tend earlier analyses in which cracking was limited to the film. It is shown how

failure of the substrate reduces the critical strain required to initiate fracture

of the film. This effect is more pronounced for relatively tough films. However,

there is a critical ratio of the film to substrate toughness above which stable

cracks do not form in response to an applied load. Instead, catastrophic failure

of the substrate occurs simultaneously with the propagation of a single chan-

nel crack. This critical toughness ratio increases with the modulus mismatch

between the film and substrate, so that periodic crack patterns are more likely

to be observed with relatively stiff films. With relatively low values of modulus

mismatch, even a film that is more brittle than the substrate can cause catas-

trophic failure of the substrate. Below the critical toughness ratio, there is a

regime in which stable crack arrays can be formed in the film and substrate.

The depth of these arrays increases, while the spacing decreases, as the strain

is increased. Eventually, the crack array can become deep enough to cause

substrate failure.
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1 Introduction

A coating, thin film, or surface layer supported on a substrate can fracture into a
pattern of parallel cracks when subjected to a tensile stress [1, 2, 3, 4, 5]. The cracks
are limited to the surface layer if it is more compliant than the substrate. However,
the cracks will penetrate the interface and propagate within the substrate if a stiff
film is supported on a compliant substrate [4, 6]. While there have been several
studies on the cracking of stiff coatings on polymers [7, 8, 9, 10, 11], the associated
analyses have generally assumed that only the coating fractures. Recent experimental
observations [12] on a system consisting of a thin metal film on an elastomeric sub-
strate demonstrated stable fracture patterns with cracks clearly propagating within
the substrate. This observation was the original motivation for the present analy-
sis to investigate how fracture of the substrate affects the formation of crack arrays
(Fig. 1). The results of the analysis show how the crack spacing and depth depend
on the ratio between the film and substrate modulus and on the ratio between the
film and substrate toughness. In particular, the results help delineate the regimes in
which substrate fracture may have a significant effect on the failure of coated systems
from those that do not. Finally, the results establish criteria for when stable fracture
patterns do not form, but the propagation of a single crack in the film induces catas-
trophic failure of the substrate.

The fracture behavior of stiff films on compliant polymeric substrates has rele-
vance for a number of applications. The level of modulus mismatch between the two
components for some of these applications can be as extreme as 104 to 1 when a
metal film is supported by an elastomer. For example, elastomeric actuators deform
in response to a high electric field between thin metal electrodes on the surfaces of
elastomeric dielectrics [13, 9, 14]. Oxide and metal coatings on a range of different
polymers, including elastomers, form the basis of flexible electronics such as organic
light-emitting diodes [15] or solar cells [16, 17]. Failure of the surface layer is one
of the limitations on the flexibility of such devices [18, 19, 20, 21]. More generally,
metal-polymer multilayers are commonly used for electronic packaging [22]. Metal
films have been used as permeability barriers for polymers in the food packaging in-
dustry for many years, and there have been recent studies on the use of oxide [23]
and diamond-like carbon films for this purpose [24]. Integrity of the permeability
barrier is compromised by cracking. A practical application in which cracking of stiff
layers on elastomers is desirable is in the fabrication of tunable biological devices and
nano-channels [25, 26, 27]. Finally, it is well known that a stiff surface layer on a
polymer, such as might result from the application of a paint film or from environ-
mental degradation, has a tendency to make the underlying polymer substrate fail in
a brittle mode [28, 29, 30]. The results of this paper may provide some insight into
this particular failure mode.
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By way of background, the mechanics of crack formation will be summarized for
systems in which the cracks are confined to a surface layer. Below a critical level of
strain, �c, no cracks can propagate. This critical strain depends on the thickness of
the film, h, the thickness of the substrate, H, the elastic constants of the film and
substrate, and the toughness of the film, Γf :

�c = f

�

α, β,
Γf

Ēfh
,
H

h

�

. (1)

The Dundurs parameters, α and β, are the non-dimensional parameters which define
the modulus mismatch in plane geometries; they are given by [31]

α =
Ēf − Ēs

Ēf + Ēs
(2)

and

β =
Ēff(νs)− Ēsf(νf )

Ēf + Ēs
, (3)

where Ē = E/(1 − ν
2) and f(ν) = (1 − 2ν)/[2(1 − ν)] in plane strain, E is Young’s

modulus, ν is Poisson’s ratio, and the subscripts f and s denote the film and substrate
respectively. In particular, the results of Beuth [4] give the critical tensile strain, �c,
for a single crack to channel across the film penetrating all the way to the interface.
For an infinitely thick substrate this is given by

�c

�
Ēfh

Γf

�1/2

=

�
2

πg(α, β)
, (4)

where g(α, β) is given in Ref. [4] for values of α up to 0.99; the effects of the substrate
thickness are incorporated in Refs. [32] and [33].

When the strain exceeds the critical value given by Eqn. 4, a periodic array of
cracks can channel across the system. These cracks relieve the strain energy locally
within the film, but the overall load-bearing capability of the system is maintained by
load transfer through the substrate under the broken film. While the spacing between
the cracks can be limited by the density of intrinsic flaws responsible for initiating
cracks, energy considerations suggest that, if the intrinsic flaw density is sufficiently
high, there is a characteristic or average crack spacing, S, that varies with the applied
strain, �o, and is of the non-dimensional form1

S

h
= f1

�

α, β,
�o

2
Ēfh

Γf
,
H

h

�

. (5)

1
The collapse of the strain into a single non-dimensional group with the toughness is justified

because the strain energy in a linear-elastic system scales with �o2.
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A number of studies have shown that this crack spacing decreases as the strain in-
creases [1, 2, 3, 5]. The development of detailed mathematical models for the spacing
is complicated by the approximations that need to be made to describe the sequence
in which the crack pattern evolves. The precise evolution of a crack pattern will
depend on the history of the pattern developed at lower strains; this will necessarily
be stochastic in nature. While recognizing the limitation that this issue imposes,
two modelling approaches have been developed to analyze the crack spacing. In one
approach, the minimum spacing between two cracks that just prevents a third crack
from propagating between them is taken to be the characteristic spacing [3]. In the
other approach, the characteristic spacing is assumed to be that which minimizes the
total energy of the cracked body [2, 5]. As an example, when the cracks are confined
to a thin surface layer of a system with no modulus mismatch, this latter approach
results in a characteristic crack spacing of [2]

S/h = 5.6
�
�o

2
Ēfh/Γf

�−1/2
, (6)

so that, consistent with experimental observations [2], the spacing is inversely depen-
dent on the applied strain. It is this energy-minimization approach that is used as
the basis for the calculations of the present paper.

The depth to which cracks penetrate the substrate depends on the level of the
applied strain and on the toughness of the substrate. The extent to which this, in
turn, affects the spacing is not currently known, but will become evident from the
results of this study. In non-dimensional terms, the spacing has a form that is very
similar to Eqn. 5, but includes an additional term involving the substrate toughness:

S

h
= f2

�

α, β,
�o

2
Ēfh

Γf
,
Γf

Γs
,
H

h

�

. (7)

Changes in the energy associated with the propagation of a crack, and hence the
characteristic spacing, can be calculated relatively easily if the crack depth is defined
by the film thickness. However, the present problem is complicated by the fact that
the crack depth is not known a priori, and needs to be determined simultaneously
with the crack spacing. This is the problem that provides the focus of the present
paper.

2 Equilibrium configuration of substrate cracks

The first issue to be addressed is why cracks that penetrate through a film and into the
substrate can be stable under a remote applied tension. It has long been recognized
that cracks can propagate in a stable fashion below the interface when they are driven
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by a residual tension in the film [34, 35]. For example, Ye et al. [34] have shown that
when a film of thickness h is subjected to a residual tensile strain, the energy-release
rate at the tip of a crack penetrating from the film into the substrate decreases with
crack depth, giving stable crack growth. The energy-release rate at the tip of a single,
crack of depth, a, much greater than the film thickness, h, tends to a limit of [36]

Ga

Ēsh�o
2
= 2.14

�
1 + α

1− α

��
a

h

�−1

. (8)

However, the present problem addresses the case of a strain being applied to the
substrate, as well as to the film. In this case, the corresponding energy-release rate
for a single, deep crack increases with crack depth, and is of the form [36]:

Ga

Ēsh�o
2
= 3.95

�
a

h

�
(9)

An applied load, as opposed to one arising from a residual stress in the film, is there-
fore expected to result in unstable crack propagation within the substrate. Stability
in this case is provided if there is a large mismatch in modulus between the film and
substrate. If the film is very stiff relative to the substrate, the stress in the film is much
larger than the stress in the substrate. Therefore, the stresses acting on relatively
shallow cracks are dominated by the film stresses, and the energy-release rate falls
with increasing crack depth as in Eqn. 8. If the crack is deep enough, the substrate
stresses dominate, and the behavior is unstable. These two regimes of stable and
unstable behavior are illustrated by the plots of Fig. 2 that show numerical solutions
for how the crack depth, a, affects the energy-release rate, Ga, at the tips of cracks
in a periodic and uniform array (Fig. 1a). The array is stable when the cracks are
shallow and the film is stiff, but it has a tendency to become unstable as the cracks
get deeper, or as α → 0.

The calculations used to obtain the results presented in Fig. 2 were performed us-
ing the commercial finite-element code ABAQUS. The substrate and surface layer
were modeled using linear-elastic, 4-node, bilinear, plane-strain quadrilateral ele-
ments. The substrate was modeled using hybrid, constant-pressure, hourglass-control,
reduced-integration elements, and the surface layer was modeled using incompatible-
mode elements. The calculations were done keeping the elastic properties of the
substrate fixed and varying the properties of the surface layer so that the magnitude
of β was kept to less than 0.04 as α was varied. The bottom surface of the substrate
and the top surface of the film were traction-free. Periodic boundary conditions were
used on either side of the crack; these boundaries represented the mid-points between
neighboring cracks in a periodic array. One boundary was held fixed, while the other
had a nodal displacement imposed on it to represent the applied strain. The J-integral
was calculated around the crack tip using a procedure embedded within the finite-
element code. A mesh-sensitivity study was conducted to assess the magnitude of the
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numerical uncertainties which are represented as error bars in the accompanying plots.

The equilibrium depth, ceq, for a periodic crack array can be deduced from re-
sults such as those shown in Fig. 2 by equating the crack-tip energy-release rate to
the toughness of the substrate. Figure 3 illustrates how this equilibrium depth can
vary with crack spacing for different strains. This figure emphasizes that there are
multiple equilibrium configurations, with different depths and spacings, for a given
value of strain. As a result, this type of calculation provides no indication as to how
an array of cracks in a coated system might develop. However, it should be noted
that the experimental observations clearly indicated that the crack arrays form by
channeling across the system as indicated in Fig. 1b. The appropriate driving force
for channeling is therefore the energy-release rate acting parallel to the interface, Gc,
not the one discussed above which acts in a direction perpendicular to the interface.
As will be shown in the subsequent sections, such a channeling analysis does provide
insights into how the crack arrays form.

3 Channeling cracks in the substrate

The basic concept behind the channeling analysis is a consideration of the energy
changes between material far ahead of the propagating array and material within the
cracked wake [37]. The geometry of Fig, 4a shows a slice of material (cut perpendicular
to the direction in which the cracks grow) far ahead of a crack array. The elastic
energy (per unit thickness) stored in this slice of width W is uo(W ). The geometry
of Fig. 4b shows the same slice of material, but in the wake of the crack array. The
elastic energy (per unit thickness) stored in this cracked slice is uc(a,W ). The energy
associated with the creation of crack surfaces, Γ, provides an additional contribution
to the total energy of the cracked geometry. For a thin-film geometry, the effective
toughness resisting channeling is given by Γ = Γs + (h/a)(Γf − Γs). The total loss in
energy, (per unit area of interface) between the uncracked and cracked configurations
is given by

∆Utotal

Ēsh�o
2
=

uo(W )− uc(a,W )

Ēsh
2�o

2

�
h

W

�

− Γ

Ēsh�o
2

�
h

W

��
a

h

�
. (10)

Channeling can occur if this loss in energy is greater than zero. Furthermore, it is
assumed that for a given geometry and set of material properties, the characteristic
depth, c, and spacing, S, are that develop at a given applied strain are the ones that
maximize this total energy loss.

The first step in the analysis was a numerical calculation of the difference between
uo(W ) and uc(a,W ), as a function of crack depth for a fixed crack spacing, using the
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commercial finite-element code ABAQUS. One approach was to compute uc(a,W )
numerically and subtract it from uo(W ) (for which a simple analytical expression
exists). However, this approach is very prone to numerical errors when the cracks are
relatively shallow and α is below about 0.9. The other approach (Fig. 4c) was to cal-
culate the energy difference directly by calculating the crack-opening displacements,
δ(y), and numerically integrating the expression:

uo(W )− uc(a,W ) = 0.5�oĒf

� h

0
δ(y)dy + 0.5�oĒs

� 0

−(a−h)
δ(y)dy (11)

Once this difference in energy was calculated, the total energy change was found from
Eqn. 10. The characteristic depth and spacing were then determined by finding the
coupled pair of a and W that resulted in the maximum change in total energy for a
given strain. Estimates of the numerical uncertainties were made by comparing the
results from different calculations and from mesh-sensitivity analyses. The influence
of these numerical uncertainties on the subsequent calculations were also studied, and
are reflected in the magnitude of the error bars on the accompanying plots.

The total energy loss calculated from Eqn. 10 exhibited different forms, corre-
sponding to different types of cracking behavior. These can be best understood by
reference to Fig. 5 which shows representative plots for the change in total energy
as a function of crack depth. These results are given for one specific modulus mis-
match ratio, but different values of strain and toughness ratio for an isolated single
crack channeling across the film and substrate. In this figure, positive energy losses
correspond to conditions for which it is thermodynamically possible for channeling to
occur. Furthermore, remembering that Ga = −∂uc(a,W )/∂a, it can be shown that
any long crack that has been formed will be drawn deeper into the substrate when
∂∆Utotal/∂a > 0, but that there is a thermodynamic barrier for crack extension into
the substrate when ∂∆Utotal/∂a < 0. Maxima and minima on this figure correspond
to equilibrium conditions where Ga = Γs.

There are a number of points to be noted from Fig. 5. First, as expected for α > 0,
any crack at a depth of a/h = 1 will be drawn into the substrate. As discussed in
more detail in the subsequent section, substrate fracture reduces the critical strain for
the onset of channeling below that given by Eqn. 4. Second, cracks that extend deep
enough into the substrate are always unstable; if deep cracks develop they will cause
catastrophic failure of the substrate, as discussed in the previous section. Third, there
are conditions for which stable cracks exist at equilibrium depths indicated by the
local maxima in ∆Utotal. Finally, there are conditions that result in there being no
stable depth at which an isolated crack can channel. There is a critical toughness
ratio, Γf/Γs at which the stable and unstable equilibrium depths coalesce at exactly
the strain required to permit channeling to occur. For toughness ratios greater than
this value, channel cracking can not occur; the only mode of crack propagation is
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catastrophic failure of the substrate.

The characteristic spacing, S, and depth, c, of an array are assumed to be the
values of W and a that maximize the energy loss of the system. This follows earlier
models [2, 5] in assuming that the crack spacing that will evolve can be approximated
as the one that will minimize the total energy of the system. The process by which
S and c were found is illustrated in Figs. 6 and 7. First, ∆Utotal was plotted as a
function of crack depth for a given spacing and normalized strain (Fig. 6). ∆Umax, the
maximum energy loss for a particular spacing and strain was identified from this plot.
The calculation was then repeated for different crack spacings, and the results used
to create a plot of ∆Umax against W/h for a given value of strain (Fig. 7). Finally, the
spacing that gave the largest value of ∆Umax at a given strain was obtained from this
plot, and equated to the characteristic spacing at that strain. (A corresponding depth
was also associated with this condition.) This process was repeated for a series of
strains, so that the characteristic spacing and depth could be obtained as a function
of strain.

4 Discussion

The behavior of a single crack channeling across a film and substrate is discussed first
as the results can be directly compared to the existing solutions of Beuth [4] for which
the channel crack is confined to the film. These calculations for the single crack were
conducted for a crack spacing of W/h = 104, which was large enough to avoid any
significant interactions between neighboring cracks for α ≤ 0.99. Figure 8 illustrates
how the critical toughness to induce catastrophic substrate failure rather than channel
cracking increases with modulus mismatch ratio. At low values of modulus mismatch,
substrate failure rather than channeling will occur if the substrate is more than twice
as tough as the film. This can be illustrated by a simple analytical result for α = 0.
The strain required to propagate a single channel crack across a film in a homogeneous
system is [37]

�c

�
hĒs/Γs

�0.5
= 0.7114 (Γf/Γs)

0.5
. (12)

The energy-release rate, Ga for a surface crack in a homogeneous system subjected to
a tensile strain of �o with its tip at the interface between the film and substrate is [36]

Ga = 3.951Ēs�
2
oh. (13)

Using the condition that the substrate will fail catastrophically if Ga ≥ Γs, it can
be shown that the condition for channeling can not be met without also meeting the
condition for substrate failure if Γf/Γs ≥ 0.500. It can be seen from Fig. 8 that
a film less tough than the substrate can induce catastrophic failure for a modulus
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mismatch ratio as high as α ≈ 0.71. At higher values of modulus mismatch, the
critical toughness increases with alpha according to

(Γf/Γs)critical ≈ 0.29(1− α)−1
. (14)

The critical strains required to propagate a single channel crack are plotted in
Fig. 9 as a function of modulus mismatch for different values of Γf/Γs. Superimposed
on these plots are the results from Beuth [4] for the critical strain required to channel
a single crack that remains confined to the:

�c

�
hĒs

Γs

�0.5

=

�
2

πg(α, β)

�
Γf

Γs

�0.5 �1− α

1 + α

�0.5

, (15)

where g(α, β) can be found in Ref. [4]. For low values of Γf/Γs and α, the crack
does not penetrate very far into the substrate, and Eqn. 15 provides the condition for
channeling. However, as the toughness and modulus of the film increase, the penetra-
tion of the crack depth into the substrate increases. The constraint provided by the
substrate is relaxed, and makes it easier for a crack to propagate. Therefore, Eqn. 15,
provides an upper bound to the critical strain required for channeling. However, if
the value of Γf/Γs is greater than 0.5 there are regimes of modulus-mismatch ratio for
which the Eqn. 15 becomes invalid, since catastrophic failure of the substrate occurs
rather than crack channeling. This regime is indicated in Fig. 9 by the limit line
which shows the maximum strain that can be applied to a coated system without
catastrophic failure of the substrate.

Figure 10a shows how the characteristic crack spacing varies as a function of the
normalized strain for different values of α and a fixed value of Γf/Γs = 1. The cor-
responding depths of the arrays are shown in Fig. 10b. Similar plots are shown in
Figs. 11a and 11b for a fixed value of α = 0.99 and different values of Γf/Γs. There
are three distinct regimes of crack propagation. At relatively low strains, no cracks
form in the system. At the critical strain required for a single crack to channel across
the film and substrate, an isolated crack can channel across the film and substrate
at an equilibrium depth that can be quite large for tough, stiff films. Above this
critical strain a periodic crack array can develop, with a characteristic spacing that
decreases with increasing strain. For very stiff films, the range of strains over which
these arrays can develop is large enough to permit a regime in which the spacing
decreases in an inverse linear fashion with applied strain. This behavior is consistent
with the experimental observations of Ref. [12] for a system with a modulus mismatch
of α ≈ 0.9999. In this regime the crack depth increases, and eventually the cracks
become unstable and the substrate fails. This is of particular significance if the film is
relatively tough compared to the substrate. Indeed when the toughness ratio is close
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to the critical value given in Fig. 8, the range of strain between the onset of channel
cracking and substrate failure becomes very narrow.

5 Conclusions

When a stiff film is supported on a compliant substrate, a pattern of stable periodic
cracks that can be induced by the application of a remote tensile strain will channel
through the substrate as well as the film. The stiffness of the film is responsible for
the stability of these arrays under a remote applied tension. If the modulus mismatch
is particularly extreme, for example, when a metal film is deposited on an elastomer,
and the toughness of the film is relatively large, stable cracks can channel at depths
that can be an order of magnitude or more deeper than the film thickness. However,
some degree of substrate cracking will occur for all values of modulus mismatch with
α > 0. Fracture of the substrate means that the onset of channeling occurs at strains
lower than is predicted by models that limit cracking to the film, although the effect
is more important for stiff, tough films. If the toughness of the film is too high rel-
ative to the toughness of the substrate, channel cracking cannot occur. Instead, the
substrate fails in a catastrophic fashion without the formation of a crack array. The
critical toughness value for this failure mode to occur increases with the film stiffness.
However, for relatively low values of α, below about 0.71, a film that is more brittle
than the substrate can trigger this failure mechanism. This may be related to the
phenomenon in which stiff films appear to embrittle polymeric substrates, Above the
critical strain to form a channel crack, the crack spacing decreases as the strain in-
creases. At very high values of α, there is an approximately inverse-linear relationship
between spacing and strain, as observed earlier for homogeneous systems. The depths
of the cracks in these arrays increase with strain, and eventually the substrate fails
in an unstable fashion.
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Figure Captions

Figure 1: The geometry considered in this paper. A stiff film of thickness h and
elastic constants Ef and νf is supported on a compliant substrate of
thickness H and elastic constants Es and νs. There is a uniform crack
array of deptha and spacing W . a) The two-dimesnional geometry,
appropriate for cracks propagating perpendicular to the interface and
into the substrate. b) The configuration for crack channeling (propa-
gation parallel to the interface).

Figure 2: The energy-release rate tending to drive the cracks of a uniform array
into the substrate, Ga, plotted as a function of crack depth. Ga exhibits
both stable and unstable behavior when loaded by a remote tensile
strain, if the surface layer has a higher modulus than the substrate.

Figure 3: The equilibrium depth for a uniform crack array depends on the ap-
plied strain, film thickness, substrate toughness, and crack spacing.

Figure 4: The basic geometries of unit thickness used for the calculations in this
paper. The substrate is of thickness H and the film is of thickness h.
(a) An uncracked slice of material of width W from which uo(W ) is
calculated. (b) The same element with a crack of depth a in the mid-
dle, from which uc(a,W ) is calculated. (c) A crack with an internal
pressure, corresponding to the stress field in the uncracked configura-
tion, from which uo(W )− uc(a,W ) is calculated directly.

Figure 5: An example of a non-dimensional plot of the total energy loss (per unit
area) ∆Utotal/Ēsh�o

2 against crack depth a/h for an isolated crack and
for different values of normalized strain and toughness ratio.

Figure 6: A non-dimensional plot of the total energy loss (per unit area)∆Utotal/Ēsh�o
2

against crack depth a/h for different values of normalized strain.

Figure 7: A non-dimensional plot of the maximum energy loss (per unit area)
∆Umax/Ēsh�o

2 as a function of crack spacing for different values of ap-
plied strain.

Figure 8: The critical toughness ratio for the formation of crack arrays plotted
as a function of modulus mismatch ratio. Catastrophic failure of the
substrate will occur, rather than the propagation of a channel crack, if

14



the toughness of the film relative to the substrate is greater than the
critical toughness ratio.

Figure 9: A plot showing how the critical strain required for channeling a single
crack across a film and substrate depends on the modulus mismatch
ratio. The limit line indicates the maximum strain that can be applied
to a coated system without catastrophic failure. Additionally, the re-
sults from Beuth [4] are superimposed on this plot.

Figure 10: A plot of the (a) characteristic crack spacing and (b) crack depth as
a function of normalized strain, for Γf/Γs = 1 and different values of
modulus mismatch. The non-dimensional group H/h has been fixed
at 104 for all the calculations in this paper, this is a reasonable ap-
proximation for a semi-infinite substrate. However, when α is as high
as 0.9999, a ten-fold increase in the substrate thickness increased the
crack spacing by about 10%.

Figure 11: A plot of the (a) characteristic crack spacing and (b) crack depth as
a function of normalized strain, for α = 0.99 and different values of the
toughness ratio. The ”X” on the plots indicates catastrophic failure of
the substrate.
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