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Abstract 

In this paper, the use of a cohesive-zone approach to model the mode-I 

fracture of adhesive joints made from a polymer-matrix composite is 

demonstrated.  Cohesive-zone parameters were obtained by matching numerical 

results to experimental observations.  It is shown that there is a distinction 

between the characteristic strength of the interface associated with the toughness, 

and the intrinsic cohesive strength of the interface.  While the characteristic 

strength and toughness are often sufficient to describe fracture in the presence of 

a crack, the intrinsic cohesive strength is also required to analyze some 

geometries that have very small characteristic dimensions or crack lengths.  It is 

shown that cohesive-zone models accurately predict the behavior of the joints 

studied.  In particular, not only are the strengths and deformations accurately 

described, but the transition between failure of the composite and failure of the 

interface can also be predicted.  This mode-I transition cannot be predicted by 

conventional fracture mechanics as it depends on both the energy-based and 

strength-based failure parameters associated with cohesive-zone models. 

(June 2004) 
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1. Introduction 

 The mechanical performance of structural assemblies containing 

adhesively-bonded components are generally analyzed using finite-element-

based commercial codes. These codes do not have built-in procedures that are 

robust and well-tested for the purpose of modeling the failure of adhesively-

bonded joints.  Therefore, a strong need exists to develop techniques that can be 

used in conjunction with standard finite-element procedures to analyze 

structures containing adhesively-bonded joints.   

The field of linear-elastic fracture mechanics (L.E.F.M.) provides one 

theoretical framework by which the strength of adhesive bonds can be 

characterized.  In principle, the toughness of a bonded interface can be 

determined as a function of the phase angle (which is a measure of the relative 

amounts of shear and opening at the crack tip [Hutchinson and Suo, 1992]).  

Provided the geometry of the bonded system, including characteristic 

dimensions such as the crack length, and the applied loads are known, it is 

possible to calculate the energy-release rate and phase angle for a crack.  A 

comparison of the calculated energy-release rate with the experimentally-

determined value of toughness at the appropriate degree of mode-mixedness 

then permits an assessment of whether a crack will propagate.  In principle, it is 

possible to determine values of toughness for a variety of crack trajectories (in 

the adhesive, along the interface, or through the adherend), and to use the 

concepts of mixed-mode fracture mechanics to predict the appropriate crack path 

[Drory et al., 1988; He and Hutchinson, 1989; Chen and Dillard, 2001; 2002]. 
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 Unfortunately, predicting the behavior of a joint can require a fairly expert 

interpretation of the fracture mechanics involved, especially if multiple crack 

paths are possible, or if a modulus mismatch complicates the definition of the 

phase angle [Hutchinson and Suo, 1992]. Furthermore, while the mechanics and 

the methods of analysis are fairly-well established, there has been relatively little 

effort in the adhesion community to demonstrate quantitative predictability.  

Work has generally concentrated on the experimental determination of 

toughness using established test configurations, with a limited demonstration of 

predictive capabilities.  Additional complicating factors fundamentally limit the 

use of L.E.F.M. in practical applications.  The first of these is that the implicit 

assumptions about the stress fields are not rigorously correct.  For example, with 

laminated structures, it is easy to induce large-scale plasticity in the adherends.  

A second factor is that well-fabricated joints may not have macroscopic defects 

large enough to be considered cracks for the purposes of fracture mechanics.  

These issues negate the utility of a single energy-based parameter to describe 

fracture, which is the basis of L.E.F.M. design, and alternative approaches need 

to be sought. 

 Recent developments in the mechanics community have led to a renewed 

interest in the concepts of cohesive-zone models to characterize failure 

[Needleman, 1987; Ungsuwarungsri and Knauss, 1987; Tvergaard and 

Hutchinson, 1992].  These models are refinements of concepts first discussed by 

Dugdale [1960] and Barenblatt [1962].  At their core is the introduction of a 

second fracture parameter in addition to the toughness, Γ.  This second 

parameter is a characteristic strength, 

! 

ˆ " , that relates the toughness to the critical 
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crack-tip opening required for crack advance. 1  Typically, this is often taken to be 

the cohesive strength of the interface.  But, as discussed later, it is possible to 

have traction-separation laws for which the cohesive strength is not coupled to 

the toughness.  Under these conditions, the characteristic strength might more 

appropriately  be thought of as a measure of the average strength of the interface, 

rather than as a measure of the maximum strength.  The two fracture parameters 

of characteristic strength and toughness lead to a length scale for fracture given 

by 

! 

E" / ˆ # 2 , where E is the modulus of the material.  A comparison of this length 

scale to the characteristic dimensions of the geometry indicates whether the 

assumptions of linear-elastic fracture mechanics are met.  If all characteristic 

geometrical lengths are significantly bigger than the fracture length scale, then Γ 

alone can be used for failure analyses (Li et al., 2004a).  Otherwise, a cohesive-

zone model using both the toughness and characteristic strength must be used to 

analyze fracture.  Not only does the cohesive-zone approach eliminate the 

length-scale restrictions imposed by conventional fracture-mechanics, but 

situations in which conventional fracture mechanics is appropriate are easily 

solved as special cases of the more general cohesive-zone framework.  Moreover, 

the nature of the implementation of cohesive-zones into numerical analyses 

results in essentially automatic predictions of fracture, providing a smooth 

transition between different failure regimes. 

Failure of adhesive joints subjected to both linear and non-linear 

deformations of the adherends has been studied using these techniques [Yang et 

al., 1999; Yang and Thouless, 2001; Kafkalidis and Thouless, 2002; Swadener et al., 

                                                
1 An appropriate crack opening that is related to the toughness can also be used as the second 
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2002], as have the fracture and delamination of laminated composites [Shahwan 

and Waas, 1997; Song and Waas, 1994; 1995].  In particular, it has been 

demonstrated that it is possible to determine the appropriate cohesive-zone 

parameters of an adhesive layer experimentally, and to incorporate them into 

numerical analyses that have excellent predictive capabilities [Yang and 

Thouless, 1999; Kafkalidis and Thouless, 2002; Sørensen, 2002; Sørenson and 

Jacobsen, 2003].  It has also been demonstrated that cohesive-zone models have 

the potential to be used to predict arbitrary crack trajectories [Xu and 

Needleman, 1994; Camacho and Ortiz, 1996; Zavattieri and Espinosa, 2001].   

Establishing a framework for the development of cohesive-zone models 

for adhesively-bonded composite joints was the overall goal of this work.  

Meeting this goal will eventually require the incorporation of mixed-mode 

effects on fracture.  However, while this is the focus of related work [Li et al., 

2004c], attention is limited to mode-I fracture in this initial paper.  Particular 

issues that are addressed in this paper are (i) how to determine the mode-I 

cohesive parameters of a bonded interface and what the physical significance of 

these parameters might be, and (ii) to verify the predictive capabilities of the 

model, with a focus on predicting the failure mechanism of a bonded joint.  

2.  Specimen fabrication and characterization of the materials 

The adherends were a polypropylene-based thermoplastic composite 

reinforced with 19% (by volume) glass fibers, in the form of a randomly-oriented 

mat.2  Coupons of the composite with the desired dimensions were cut from 

                                                                                                                                            
parameter, instead of the characteristic strength. 
2 Azdel R401 provided by Azdel, Inc.. 
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plaques that were re-molded from the as-received material using a hydraulic 

press at 70 °C and 13 MPa for about 1.5 minutes.  These coupons were bonded 

using an experimental, two-part adhesive,3 that cures at room temperature and 

was specially formulated to bond low-surface-energy materials such as 

polypropylene. During bonding, the adhesive layer was kept at a uniform 

thickness of 0.6 ~ 0.8 mm by using glass beads as spacers.  Where required, a 

strip of Teflon tape was inserted into one of the adhesive/composite interfaces 

before applying the adhesive, so as to define the limit of the adhesive.  The 

tensile constitutive properties of the adhesive were determined from cast 

coupons of the adhesive (Fig. 1a), and are shown in Fig. 1(b). 

The constitutive properties of the adherends always need to be known 

when developing and using cohesive-zone models for the interface between 

them.  Furthermore, cohesive-zone models for the adherends need to be known if 

there is a possibility of the crack branching out of the interface.  The 

characterization of the composite used in these studies and the development of 

an appropriate cohesive-zone model for it, have been described elsewhere [Li et 

al., 2004b].  A summary of the important points is provided here.  The 

constitutive properties of the composite used in this study were determined 

using uniaxial tensile tests and Iosipescu shear tests [Li et al., 2004b].  While the 

mechanical properties varied considerably between specimens, it was found that 

the composite could be characterized as being transversely isotropic with 

approximately linear-elastic / perfectly-plastic properties.  The in-plane tensile 

modulus showed considerable specimen-to-specimen variation, lying in the 

                                                
3 Provided by Dow Chemical Company. 
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range of 4.5 to 7.5 GPa.  Poisson’s ratio was determined to be 0.30 ± 0.03, and the 

shear yield strength varied between 50 and 80 MPa.  Crack propagation 

perpendicular to the fibers was accompanied by a significant amount of fiber 

pull-out.  The mode-I fracture properties of the composite could be described by 

a cohesive law of the form shown in Fig. 2, which captures the observed behavior 

of matrix cracking followed by fiber pull-out.  The three important parameters 

that describe the mode-I cohesive law for the composite are the matrix-cracking 

strength,4 

! 

ˆ " 
m

 =100 ± 20 MPa, the fiber-bridging strength, 

! 

ˆ " 
b
 = 79 ± 8 MPa, and 

the toughness, ΓΙc = 40 ± 4 kJm-2.  It was shown that good quantitative predictions 

for the fracture of the composite could be obtained by incorporating this traction-

separation law into a commercial 2-D finite-element code (ABAQUS version 6.3), 

through the use of 4-node, user-defined elements [Li et al., 2004b]. 

3.  Determination of the mode-I interfacial cohesive parameters 

3.1 Two-parameter model 

The two characteristic mode-I cohesive properties of an interface, the 

characteristic strength, 

! 

ˆ " 
i
, and the toughness, ΓIi, can be obtained quite easily 

from plots of applied load versus displacement for a bonded double-cantilever 

beam (Fig. 3).  The cohesive zone reaches its fully-developed state at the peak 

load, and then the load decreases with increasing displacement as the crack 

begins to propagate.  Provided that bending of the arms occurs in a linear 

fashion, a simple relationship exists between the applied load (per unit width), F, 

and the displacement, δ, [Li et al., 2004a] during this stage: 

                                                
4 This value of matrix cracking strength is a lower bound to the actual strength.  It is an effective 
value useful for predictive purposes that amalgamates the toughness and intrinsic 
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where h is the thickness of the arms, and   

! 

E  is the modulus of the arms.5  The 

crack length and the characteristic interfacial strength do not affect the 

relationship between the applied load and displacement after the peak load has 

been reached.  Therefore, the toughness of an interface can be determined by a 

simple graphical interpretation of the decaying portion of load-displacement 

curves for a double-cantilever beam.  After the toughness has been determined, 

the characteristic strength of the interface can be found from a full cohesive-zone 

analysis in which the initial crack length has an important role.  By running 

successive numerical simulations with the known toughness and different values 

of strength, numerical predictions of the rising portion of the load-displacement 

curve and, in particular, of the peak load can be compared to the experimental 

load-displacement curves.  The best fit between the numerical predictions and 

the experimental results gives the characteristic strength of the interface.  Of 

course, if the fracture length scale is too small, 

! 

ˆ " 
i
 does not affect the failure load.  

Under these conditions, the characteristic strength cannot be determined, and the 

geometry may need to be changed. 

Double-cantilever-beam specimens with the geometry shown in Fig. 3 

were fabricated by cutting coupons of the composite and bonding them with the 

adhesive, as described in the previous section.  A region of the interface had no 

adhesive applied to it, so as to create an initial debond region.  The end of this 

                                                                                                                                            
inhomogeneities in the composite.  The precise value of the matrix cracking strength does not 
generally affect the numerical analyses, except for nominally uncracked materials. 
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region was delineated by a piece of Teflon tape.  The specimens were loaded in a 

screw-driven mechanical testing machine by a pin joint through steel tabs 

bonded to the surface of the composite.  The nominal displacement rate for all 

studies was maintained at 1 mm/minute.  Figure 4 shows examples of the 

relationship between the applied load and its displacement for specimens with 

an arm thickness of h = 7.6 ± 0.2 mm, and initial crack lengths in the range of 67 

to 75 mm.  Optical micrographs of the fracture region at the crack tip are shown 

in Fig. 5.  From these it can be seen that, although the geometry is mode-I, the 

crack grows in the interfacial region rather than through the middle of the 

adhesive.  In the specimens used in this initial study, the crack always ran 

parallel to the interface with no tendency to break the arms.  However, the 

fracture process did leave a small amount of the composite material on the 

adhesive, and fiber pull-out was observed.  This indicates that the toughness for 

interfacial fracture, ΓIi, and the associated characteristic strength, 

! 

ˆ " 
i
, may be 

controlled by fiber bridging, rather than by the intrinsic properties of the 

adhesive itself. 

 Owing to the toughness of the interface and the compliance of the arms, 

the deformations were sufficiently large for non-linear effects to affect the rigor 

of Eqn. 1.  Therefore, both the interface toughness and the cohesive strength were 

found by full cohesive-zone analyses using the ABAQUS finite-element program 

(version 6.3) [Li, 2004].  The entire adhesive layer was replaced by four-noded, 

user-defined elements with an initial thickness of 0.7 mm.  The adherends were 

                                                                                                                                            
5 

    

! 

E = E/ 1 " #
2( )  in plane strain and   

! 

E = E  in plane stress, where E is Young’s modulus and ν is 
Poisson’s ratio. 
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modeled by a continuum, finite-element model of the double-cantilever 

geometry using the appropriate constitutive properties for the composite.  To 

reduce the uncertainty in the calculated values of the cohesive parameters that 

would otherwise be caused by the variability in the modulus of the specimens, 

the numerical analyses were done separately for each specimen, using the 

appropriate value of modulus determined from the initial slope of the load-

displacement curve and the measured crack length.  The user-defined, interfacial 

elements were assumed to deform according to a simple triangular law (Fig. 6a), 

and the area under this traction-separation law was adjusted until the numerical 

predictions for the decaying portion of the load-displacement plot matched the 

experimental results shown in Fig. 4.  This resulted in a value of toughness of 

ΓΙi = 7.3 ± 1.8 kJm-2.  Once the toughness had been obtained, the associated 

characteristic strength was found by varying the maximum stress in the traction-

separation law, while maintaining the toughness at the appropriate value, until 

the full load-displacement curve could be fitted to the experimental data.  This 

analysis resulted in a value of 

! 

ˆ " 
i
 = 5.0 ± 1.5 MPa.  It is noted that the density of 

fibers pulled out of the adhesive interface appeared to be about 10% of that 

observed for fracture of the bulk composite, so a characteristic interfacial 

strength of 5 MPa being associated with fiber bridging is not inconsistent with 

the value of 79 MPa that had previously been determined as the fiber-bridging 

strength for the bulk composite.  A comparison between the load-displacement 

curves obtained from the double-cantilever beams and the numerical predictions 

based on this two-parameter cohesive law is shown in Fig. 6(b).   
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3.2 Three-parameter model 

 Numerical studies showed that the results of Fig. 6(b) are not sensitive to 

details of the traction-separation law chosen to model the fracture, provided that 

the law has a toughness of 7.3 ± 1.8 kJm-2 and a characteristic strength 

corresponding to the 5.0 ± 1.5 MPa that was used for the triangular law.6  

However, the observations of fiber bridging indicated that, as with the bulk 

composite material (Fig. 2), a second strength parameter associated with the 

intrinsic cohesive strength of the interface, 

! 

ˆ " 
io

, that is distinct from the 

characteristic strength of the interface, 

! 

ˆ " 
i
, might be physically appropriate.  To be 

of practical significance, this intrinsic cohesive strength would have to be 

substantially greater than the characteristic strength, and the characteristic 

dimensions of the specimen would have to be small enough to cause fracture at 

an average stress greater than 

! 

ˆ " 
i
. 

To investigate the intrinsic cohesive strength of the interface, butt joints of 

the form shown in Fig. 7 were fabricated.  Two coupons of the composite were 

bonded together using the experimental adhesive under the bonding conditions 

described earlier.  This interface was then machined to leave a short ligament 

between the two coupons.  In order to provide structural support, the composite 

coupons were bonded to steel tabs using the same adhesive.  The average 

interfacial strength, defined as the maximum applied load divided by the 

bonded area, is shown for two different ligament lengths in Fig. 8.  It will be 

observed that the average strength of the interface in these studies is 

considerably higher than the characteristic strength of the interface determined 
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in the previous section.  Furthermore, it is impossible to match these tensile data 

with any two-parameter cohesive law that describes the propagation of 

macroscopic cracks properly.  Conversely, it is also impossible to match the data 

of Fig. 4 using any two-parameter cohesive law that describes the data of Fig. 8.  

The two sets of data can only be rationalized by a cohesive law that identifies 

two separate strengths.  This confirms the conjecture that a cohesive strength can 

be associated with interface failure that may be distinct from the characteristic 

strength associated with the primary toughening mechanism.  It also illustrates a 

potential problem with determining strength parameters for cohesive laws by 

what might seem to be the direct approach of using tensile tests with short 

bonded ligaments.  However, it should be noted that these issues associated with 

the shape of the cohesive law may not always be significant.  It is to be expected 

that in many systems, the cohesive strength and the characteristic strength are 

intimately connected.  Under these conditions, one strength parameter would be 

expected to suffice to predict the behavior of different geometries, as illustrated 

by Mohammed and Liechti [2000]. 

A schematic cohesive law that captures the physics of interfacial cracking 

followed by fiber bridging is shown in Fig. 9.  The displacements corresponding 

to the points of maximum stress were chosen so as to mimic an initial elastic 

behavior followed by a sudden drop in strength without causing extensive 

numerical difficulties.  Based on the double-cantilever beam results, the 

characteristic strength, 

! 

ˆ " 
i
, was set equal to 5.0 ± 1.5 MPa, and the toughness, ΓIi 

was set equal to 7.3 ± 1.8 kJm-2.  The cohesive strength of the interface, 

! 

ˆ " 
io

 was 

                                                                                                                                            
6 In other words, different laws that had an average strength in the range of 2.3 to 4.0 MPa and a 
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then determined by matching numerical predictions based on this cohesive law 

to the experimental results of Fig. 8.  By varying 

! 

ˆ " 
io

 until agreement with the 

experimental results were obtained, it was determined that 

! 

ˆ " 
io

 = 24 ± 3 MPa.  

After deducing this value of 

! 

ˆ " 
io

, complete numerical curves of how the strength 

is expected to vary with ligament length were calculated and added to Fig. 8.  

Continuum finite-element calculations for the geometry of Fig. 7 were done 

using the known constitutive properties of the composite, steel tabs and 

adhesive.  These calculations showed that, at a load corresponding to the 

experimentally-observed peak load, the maximum normal stress within the 

adhesive reached a level that was consistent with the interfacial cohesive 

strength determined by cohesive-zone modeling.  Furthermore, it is interesting to 

note that this cohesive strength is essentially identical to the tensile strength of 

the adhesive (Fig. 1b). 

3.3 Verification of cohesive-zone parameters 

The full 3-parameter cohesive-zone model fits the tensile data of Fig. 8 and 

also the data from the double-cantilever beam tests.  Figure 10 shows a plot of 

the predicted load-displacement curves for the D.C.B. tests, and compares them 

to the range of the experimental results.  As implied by the earlier discussion, 

this figure is actually indistinguishable from Fig. 6 (b).  However, it is included to 

emphasize the point that only the two parameters of the interfacial toughness, ΓIi, 

and the associated characteristic strength, 

! 

ˆ " 
i
 are generally required to describe 

crack propagation in an adhesive bond.  A second point of comparison between 

the numerical predictions and the D.C.B. results is the evolution of the crack and 

                                                                                                                                            
toughness of 7.3 ± 1.8 kJm-2 were equally good at describing the results of Fig. 4. 
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bridged region.  This was done by monitoring how the location of a point at 

which the crack-opening had a specified value moved as a function of the 

displacement (Fig. 11).  Specifically, a scale was fixed to the side of a double-

cantilever beam that allowed the distance from the crack mouth to be measured.  

A C.C.D. camera was used to record images of the bridged region of the crack.  

As the load increased and the crack advanced, these images were used to 

determine the distance from the crack mouth where the crack opening was equal 

to a specific value, arbitrarily set at 1.2 mm.  This distance from the crack mouth 

was then plotted as a function of displacement of the applied load.  Numerical 

calculations were performed for the geometry using the three-parameter 

cohesive-zone model.  The results of these calculations were analyzed in the 

same way as the experiments to produce a plot of distance from the crack mouth 

at which the crack opening reached 1.2 mm as a function of displacement.  A 

comparison between the experimental data and the numerical predictions is 

shown in Fig. 12.  While there is a fairly large range of experimental uncertainty, 

the numerical predictions lie well within the experimental band, supporting the 

values of the cohesive-zone parameters deduced for this adhesive.  Again, it 

should be noted that the two-parameter and the three-parameter cohesive laws 

give equally good fits to the data, as the evolution of the bridging zone in the 

wake of the crack is dominated by the toughness and characteristic strength.  

4. Transitions in fracture mechanisms  

4.1 Numerical predictions and experimental observations 

It has already been shown that a cohesive-zone model accurately predicts 

the behavior of a metal joint in which plastic deformation of the adherends can 
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occur [Yang et al., 1999; Yang and Thouless, 2001; Kafkalidis and Thouless, 2002].   

While yield of the adherends is not an issue in the present study, the possibility 

of the composite fracturing does need to be considered.  Therefore, it is 

appropriate to include the cohesive laws for both the interface and the composite 

in full analyses of these joints.  In this section, the results of such an analysis are 

described and compared to experimental observations.  Since only a mode-I 

model has been developed in this paper, attention is focused on the double-

cantilever-beam geometry, with different thicknesses of arm.  The performance 

of mixed-mode geometries will be the focus of a companion paper [Li et al., 

2004c].  Two additional sets of double-cantilever-beam specimens were made 

following the procedures described earlier.  The initial crack length for both sets 

was 40 ± 1.5 mm; one set had arms that were 2.8 ± 0.2 mm thick, while the other 

had arms that were 5.0 ± 0.2 mm thick.  The specimens were tested at a 

displacement rate of 1 mm/minute.   

A calculation in which both the composite and interface are fully modeled 

by cohesive elements would be computationally intensive.  A less intensive 

approach was used in this study by doing the numerical calculations in several 

stages.  In the first stage, the composite was modeled by its continuum 

properties, and the adhesive layer was replaced by the appropriate 3-parameter 

cohesive-zone model of the interface (Fig. 9).  These initial calculations were used 

to identify the direction in the arms for which the normal stress was a maximum.  

In the present case, this direction was approximately perpendicular to the 

interface.  In the second stage of the calculations, additional user-defined 

elements, describing the cohesive properties of the composite (Fig. 2), were 
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embedded in the composite around the initial crack tip, and aligned 

perpendicular to the interface.  To keep the numerical model to a reasonable size, 

the region in which cohesive-zone elements were embedded was limited to 

10 mm in length.  Once the calculations had begun, the propagation of the crack 

was monitored and the program terminated if the interfacial crack tip passed the 

region in which cohesive-zone elements were embedded in the composite.  The 

model was then re-meshed with a new region of composite cohesive-zone 

elements, and the analysis re-started.  This process was repeated until the crack 

had either grown completely along the interface or had caused failure of the 

composite.  No attempt was made to analyze the crack path within the 

composite.  The analysis was focused on the conditions required to initiate a 

crack within the composite.  The numerical calculations were done allowing 

large-scale, non-linear deformations to occur (although all strains were small), 

and the effects of uncertainty and variation in the cohesive parameters, the 

constitutive properties of the composite, and in the geometry were all explored.   

Numerical calculations with combined cohesive elements for the 

composite and interface were first done for specimens with arms that were 

7.6 mm thick.  The results indicated that these specimens should always fail 

along the interface, with no tendency for the arms to break.  This dominance of 

interfacial fracture was consistent with the experimental observations shown in 

Fig. 4.  The predicted load-displacement plots were unaffected by the inclusion of 

cohesive-elements within the composite.  Therefore, comparisons between the 

numerical predictions and experimental observations for the load-displacement 

curves are identical to those already given in Figs. 10 and 6(b). 
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The predictions for specimens with arms that were 5.0 mm thick showed 

the possibility of a transition between interfacial fracture and composite fracture, 

depending on the material and cohesive properties.  Figure 13(a) shows how the 

predicted load-displacement plot depended on the cohesive parameters when 

the modulus of the composite arms was 6.0 GPa, and the loading was assumed to 

be perfectly symmetrical.  When the interfacial cohesive parameters were at the 

weakest end of their range, and the composite parameters were at the strongest 

end of their range, an interfacial crack propagated without deviating into the 

composite.  At the other extreme, with a “weak” composite and a “strong” 

interface, the crack deviated into the composite after a limited amount of crack 

growth.  These predictions were consistent with experimental observations 

where both stable interfacial crack growth (Fig. 13b), and composite failure were 

observed (Fig. 13c).  The experimental load-displacement plots obtained for a set 

of data for which the composite arms had a modulus of 6.0 GPa have been 

superimposed on the numerical predictions plotted in Fig. 13(a).   

The predictions for the 2.8 mm specimens indicated a much more marked 

tendency for composite fracture.  Generally, these calculations indicated that the 

arms would fracture after the crack had propagated between about 10 and 

18 mm along the interface.  The precise distance that the interface crack was 

predicted to propagate depended on the properties of the specimen.  It was 

observed from the numerical simulations that a fully-bridged crack always 

propagated some distance along the interface before the adherends failed.  This 

indicated that the transition to composite fracture was triggered by non-

linearities in the deformation of the arms; otherwise, once steady-state had been 
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achieved there would have been no effect of crack length on the failure 

mechanism.  Extensive interfacial crack propagation could be obtained only with 

a “strong” composite, a “weak” interface and a relatively low value of composite 

modulus.  At higher values of the composite modulus, the composite failed even 

when the cohesive parameters were in the range that would otherwise have 

favored interfacial fracture.  Comparisons between the predicted load-

displacement curves and experimentally observed curves are shown in Fig. 14(a).  

The specimens used for the experimental observations exhibited a wide range of 

moduli.  Since the predicted results are very sensitive to the modulus, the 

numerical results shown in this plot have been selected to illustrate the effects of 

both modulus and cohesive parameters.  Although the numerical predictions 

suggest that stable interfacial fracture might be observed occasionally for this 

geometry, it was not actually seen experimentally.  All the samples exhibited 

catastrophic failure of the composite (Fig. 14b).   

The micrographs of Figs. 13(c) and 14(b) indicate a clear asymmetry in the 

fracture.  One arm breaks catastrophically, the other does not.  The numerical 

predictions of Figs. 13(a) and 14(a) were done assuming perfect symmetry for the 

properties and geometry of both arms.  Therefore, symmetrical failure in both 

arms evolved from the calculations.  The asymmetry in failure that was observed 

could arise from variations in the fracture properties of the two arms. However, 

it could also arise from asymmetrical loading.  As can be seen from Fig. 5(a) there 

was some misalignment of the steel tabs during the fabrication of the specimens, 

and hence the load was not always applied symmetrically.  The effect of this 
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misalignment was explored numerically.7  It did not significantly affect the 

predicted behavior of the 7.6 mm thick specimens which always failed by 

interfacial failure, even with significant asymmetry in the loading   However, it 

did have an influence on the fracture of the 2.8 mm specimens.  Not only did 

asymmetry of loading cause one composite arm to fail before the other, even 

when the cohesive properties of both arms were identical, but the asymmetry 

could trigger a transition from interfacial failure to composite fracture.  This is 

illustrated in Fig. 15, where a transition to composite fracture occurred solely as 

the result of introducing asymmetrical loading.  This effect of asymmetry is 

believed to be responsible for the fact that no pure interfacial fracture was seen 

experimentally with the 2.8 mm thick specimens. 

4.2 Comments on the failure transition 

The results of the previous section show the conditions for a transition in 

failure mechanism between interfacial fracture and adherend fracture in a 

nominally mode-I geometry.  Interfacial fracture is stabilized by a “weak” 

interface, a “strong” adherend, a “low” modulus of the arms, and “thick” arms. 

While it is well-documented that the plane of symmetry in a mode-I geometry 

may not be a stable trajectory if there is a tensile “T-stress” parallel to the crack 

plane [Cotterell, 1965; Cotterell and Rice 1980; Fleck et al., 1991, Akisanya and 

Fleck, 1992], predictions for a transition in the failure mode cannot be addressed 

by conventional fracture mechanics when only energy is used as a failure 

criterion.  Furthermore, a ratio in the range of five to eight between the 

                                                
7 Technically this misalignment introduces some mode-II effects.  However, on-going mixed-
mode investigations confirm previous results (Yang and Thouless, 2001) that fracture of this type 
of mixed-mode geometry is not very sensitive to the values of the mode-II parameters.  
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toughness of the two competing fracture paths would normally preclude such a 

transition with an energy-based criterion.  However, the addition of the strength 

criterion that is associated with cohesive-zone models introduces a length scale 

that immediately allows scale-dependent failure transitions of the type discussed 

in the previous section to exist.   

A simple analytical calculation for a symmetrical double-cantilever beam 

illustrates the effect of introducing a strength criterion to fracture models.  If 

L.E.F.M. conditions are assumed to be valid, then the energy-release rate for a 

D.C.B. loaded by a pure moment M would be given by: 

G = 12M2 / Eh3      (2) 

where E is the modulus of the composite and h is the thickness of the arms.  An 

estimate for the maximum bending stress in the arms is given by 

     

! 

"max = 6M/h2       (3) 

If the fracture strength of the composite is 

! 

ˆ " 
m

, and the toughness of the interface 

is ΓΙi, the arms of the specimen will fracture before the interface if 

h

! 

ˆ " 
m

2 / EΓΙi < 3       (4) 

Substituting appropriate values for the composite and interface (E = 6.0 GPa, 

ΓΙi = 5.0 kJ/m2, 

! 

ˆ " 
m

= 100 MPa), an estimate for the critical thickness, hc, is obtained 

as approximately 9 mm.  While this value is much larger than that obtained from 

the cohesive-zone models, this simple analysis does reveal the underlying 

physics of the problem, and Eqn. 4 shows similar effects of the different 

parameters on the failure mode as do the results of the cohesive-zone models.  

In particular, adherend failure is more likely with “thin” arms, a “weak” and 

“stiff” adherend, and a “strong” interface.  These are, of course, the same 
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conditions that favor plastic deformation over fracture when ductile adherends 

are bonded together (Kim and Kim, 1988; Kim and Aravas, 1988). 

5. Conclusions  

A three-parameter mode-I cohesive-zone model has been developed for 

the adhesive bond between two adherends made of a polymer-matrix composite.  

The values for these parameters were found by comparing numerical predictions 

to experimental observations.  Generally, only two cohesive parameters, a 

toughness and a characteristic strength associated with the dominant toughening 

portion of the cohesive law, are sufficient for failure analysis.  However, if the 

cohesive zone has a cohesive strength that is independent of and significantly 

larger than the characteristic (or average) strength associated with the dominant 

toughening mechanism at the crack tip, then a two-parameter model will give 

erroneous predictions of strength when the characteristic dimensions of the 

geometry are very small.  In other words, additional information about the shape 

of the traction-separation law may be required under these conditions.  In 

particular, it is noted that simple tensile tests with small ligament lengths (or 

small crack lengths) conducted to determine the strength of an interface may not 

necessarily result in the appropriate characteristic strength required to model 

crack propagation.  Similarly, with this type of cohesive law, two-parameter 

models deduced from cracking experiments may not predict the strengths of 

bonded structures correctly when the characteristic dimensions (such as flaw or 

ligament lengths) are too small.  The adhesive interface examined in this paper 

provided an example of this effect. 
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In the system studied in this paper, it was observed that failure could 

occur either along the interface or by catastrophic failure of the arms, despite the 

geometry being maintained as a nominally mode-I geometry, and despite the 

large difference in steady-state toughness between the arms and the interface.  

Interfacial fracture was stabilized when the interface was relatively weak, the 

composite was relatively strong, and the arms were thick and had a low 

modulus.  This transition cannot be explained by a fracture-mechanics approach 

to crack propagation that uses only an energy criterion for fracture.  However, 

the introduction of a characteristic strength into the failure criterion results in a 

length scale that determines this transition.  In particular, it was shown that by 

combining a cohesive-zone model for the interface with a cohesive-zone model 

for the composite, the essential features of the transition in failure mechanism 

could be predicted within the range of uncertainties established for the cohesive 

properties. 
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 Figure captions  

Figure 1 (a) Tensile coupons used to investigate the constitutive properties 

of the adhesive.  (b) Uniaxial tensile stress-strain curves for the 

adhesive obtained at a nominal strain rate of approximately 

0.00017 s-1. 

Figure 2 Schematic traction-separation law used to describe the mode-I 

fracture of the composite (from Li et al. [2004b]). 

Figure 3 Geometry and dimensions for the double-cantilever beam 

specimens used to investigate the mode-I fracture properties of the 

adhesive-composite interface.  

Figure 4 Plots of load per unit width versus displacement of the applied load 

for the double-cantilever beams with the geometry given in Fig. 3, 

and an arm thickness of 7.6 ± 0.2 mm.  The initial crack length for 

these studies varied between 67 and 75 mm.   

Figure 5 Micrographs of the interface and crack-tip region under load: (a) a 

large-scale micrograph of the specimen; (b) details of the crack-tip 

region.  The scale shown in (a) is in centimeters. 

Figure 6 (a) Schematic illustration of the triangular traction-separation law 

used for the 2-parameter cohesive law.  (b) A plot of load, F, 

normalized by the modulus of the composite, E, width of the arms, 

w = 25 mm, and thickness of the arms, h = 7.6 mm against 

normalized displacement of the applied load, Δ/h, showing a 

comparison between the predictions of a two-parameter cohesive-
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zone model and the experimental results.  The range of uncertainty 

given for the numerical predictions includes the uncertainties in the 

cohesive parameters, in the dimensions of the specimens, and in the 

constitutive properties of the composite.   

Figure 7  Test configuration of an interfacial tensile specimen, with a bonded 

composite supported by steel tabs.  

Figure 8 Average interfacial strength (maximum load divided by bonded 

area) as a function of bonded ligament length.  The data points are 

experimental data.  The numerical predictions (solid lines) are 

based on the cohesive-law of Fig. 9.  The dashed lines reflect the 

upper and lower bounds of the numerical predictions based on 

uncertainties in the cohesive parameters. 

Figure 9 The three-parameter traction-separation law used to describe 

interfacial fracture in this adhesively-bonded composite joint.  

Figure 10  A plot of load, F, normalized by the modulus of the composite, E, 

width of the arms, w = 25 mm, and thickness of the arms, 

h = 7.6 mm against normalized displacement of the applied load, 

Δ/h, showing a comparison between the predictions of the three-

parameter cohesive-zone model and the experimental results.  The 

range of uncertainty given for the numerical predictions includes 

the uncertainties in the cohesive parameters, in the dimensions of 

the specimens, and in the constitutive properties of the composite.  

It will be noted that this figure is indistinguishable from Fig. 6(b). 
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Figure 11 Definitions of the quantities used to determine the evolution of the 

cohesive zone in the double-cantilever beam specimens. (a) A 

micrograph of the specimen, and (b) a mesh from the numerical 

calculations. 

Figure 12 Plots of how the distance from the crack mouth at which the crack 

opening is equal to 1.2 mm varies with loading-line displacement 

for a double-cantilever beam specimen with arms 7.6 mm thick.  A 

comparison is shown between the experimentally-observed range  

and the range predicted from the cohesive-zone model.  The range 

of uncertainty given for the numerical predictions includes the 

uncertainties in the cohesive parameters, the dimensions of the 

specimens, and the constitutive properties of the composite. 

Figure 13 (a) Comparison between the numerical predictions for the 

normalized load-displacement curves and the experimentally 

observed curves for specimens with arms 5.0 mm thick, an initial 

crack length of 40 ± 1.5 mm, and a modulus of 6.0 ± 0.1 GPa.  The 

results of the numerical calculations shown are for perfectly 

symmetrical loading.  The lower curve indicates the results of 

assuming the lower bound for the interfacial cohesive parameters 

(ΓΙi = 5.5 kJm-2, 

! 

ˆ " 
io

 = 21 MPa, 

! 

ˆ " 
i
 = 3.5 MPa) and the upper bound 

for the composite cohesive parameters (ΓΙc = 44 kJm-2, 

! 

ˆ " 
m

 =120 MPa, 

! 

ˆ " 
b
 = 88 MPa).  The upper curve indicates the results of assuming 

the upper bound for the interfacial cohesive parameters (ΓΙi = 9.1 

kJm-2, 

! 

ˆ " 
io

 = 27 MPa, 

! 

ˆ " 
i
 = 6.5 MPa) and the lower bound for the 
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composite cohesive parameters (ΓΙc = 36 kJm-2, 

! 

ˆ " 
m

 =80 MPa, 

! 

ˆ " 
b
 = 71 MPa).  A transition between stable interfacial fracture and 

unstable composite fracture is observed between these two limits. 

 (b) Micrograph of a double-cantilever beam specimen with 5.0 mm 

thick arms, showing an interfacial crack that did not result in 

failure of the composite. 

 (c) Micrograph of a double-cantilever beam specimen with 5.0 mm 

thick arms, showing failure of the composite. 

Figure 14 (a) Comparison between the numerical predictions for the 

normalized load-displacement curves (solid lines) and the 

experimentally observed curves (dotted lines) for double-cantilever 

beam specimens with arms 2.8 mm thick.  The modulus 

corresponding to each experimental curve is indicated on the plot.  

The initial crack lengths were 40 ± 1.5 mm.  Two sets of numerical 

calculations were performed with the largest and smallest values of 

the moduli for this particular set of experimental data (E = 5.6 GPa 

and 7.5 GPa).  The range of both sets of numerical calculations 

illustrate the full effects of the uncertainties in the cohesive-zone 

parameters for both the interface and the adherend, but assuming 

perfectly symmetrical loading. 

 (b) Micrograph of a double-cantilever beam specimen with arms 

2.8 mm thick, showing failure of the composite. 
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 Figure 15 Comparison between the numerically-predicted load-displacement 

curves for symmetrical loading and asymmetrical loading.  Both 

calculations are performed with a composite modulus of 5.6 GPa, a 

composite toughness of ΓΙc = 44 kJm-2, a matrix strength of 

! 

ˆ " 
m

 =120 MPa, a fiber-bridging strength of 

! 

ˆ " 
b
 = 88 MPa, an 

interfacial toughness of ΓΙi = 5.5 kJm-2, an interfacial cohesive 

strength of 

! 

ˆ " 
io

 = 21 MPa, and an interfacial characteristic strength of 

! 

ˆ " 
i
 = 3.5 MPa.  The loading line was perfectly aligned for the 

symmetrical loading, aligned, but there was an offset of 5.8 mm in 

the loading for the asymmetrical case.  The initial crack length for 

both calculations was 40 mm, and the arms were 2.8 mm thick. 
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