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Abstract

We consider the effect of an elastic modulus that decreases with depth on the load-
displacement relation for indentation of a graded half space by a rigid indenter. A
closed-form approximation incorporating features of the plate on an elastic substrate
and the Hertzian contact theory is compared with finite element results for the
case of a uniform stiff layer on a homogeneous substrate. Some general results are
presented for the case where the grading has inverse power-law form and the effects
of truncation to a finite surface value are investigated numerically. Finally, a more
practical error-function grading is considered. In all cases, the load-displacement
relation is closer to linear than in the homogeneous case. We conclude that the
experimental data can be used to determine parameters in a predetermined form of
grading, but that comparative insensitivity to the exact form of the grading would
make it difficult to distincguish experimentally between different models based on
indentation experiments alone.

Key words: layered materials, indentation, inhomogeneous material, contact
problems, functionally graded material

1 Introduction

Modern technological developments have led to considerable interest in mate-
rials whose properties vary with depth [1], [2]. Applications range from barrier
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coatings designed to resist extreme environments [3] to the development of cus-
tom layers on polymers in the development of biodiagnostic devices [4]. The
variation in properties may either be in the form of a continuous function of
depth as in a graded material, or as one or more discrete layers on the sur-
face of a homogeneous substrate. The resulting layers can be extremely thin,
which makes it very difficult to perform direct measurements of their mechani-
cal properties. However, it has long been recognized that indentation tests can
be used to extract more mechanical properties than merely the hardness [5]. In
particular, the atomic force microscope (AFM) and the nano-indenter permit
this technique to be extended to examine materials layered in the nanome-
ter range, for which other measurement techniques would be impractical [6].
Techniques and analyses for extracting the elastic properties of homogeneous
materials by indentation are well established [7], and many modifications to
indentation analyses have been proposed to account for the effects of layered
materials [8], [9], [10].

In the present paper, attention is focused on the effects of a substrate that
is significantly more compliant than the surface. Elementary considerations
suggest that the load-displacement relation should reflect elastic properties
in a region of material comparable in thickness to the linear dimensions of
the contact area, so that by examining this curve over a range of indenta-
tion depths, we might hope to obtain information about the way in which
the elastic properties are graded with depth. However, if the elastic modulus
decreases substantially with depth, the system will behave somewhat like a
plate on an elastic foundation and the indentation load-displacement relation
will be influenced by properties of the substrate even when the contact area
is extremely small. In this paper, we shall explore the extent to which the
experimentally measured load-displacement relation can be used to deduce
information about the grading of elastic modulus in such cases.

The topic is introduced by considering limiting analyses for the mechanics
of indentation for a discrete stiff layer on a compliant substrate, as would
be appropriate for a metal layer on a polymer. This is followed by a general
study of how the indentation behavior is affected if the surface is graded,
with a continuous increase in compliance away from the surface, as would be
appropriate for a polymer with a surface stiffened by a chemical reaction such
as oxidation.

2 The uniform layer

The simplest situation is that in which a uniform layer of thickness h and
Young’s modulus Ef is bonded to a uniform half space of a more compliant
material with modulus Es. If Ef " Es and the layer is in some sense thin, it
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is natural to expect the behaviour of this system to be well-approximated by
an elastic plate of stiffness

D =
Efh3

12(1 − ν2
f )

(1)

supported on an elastic half space representing the substrate. Timoshenko and
Woinowsky-Krieger [11] give the solution for the case where a concentrated
normal force P is applied to the surface of such a plate, but the interface
between the plate and the half space is frictionless. The surface displacement
at a distance r from the force is

w(r) =
P l2

2πD

∫

∞

0

J0(λρ)dλ

(1 + λ3)
, (2)

where

ρ =
r

l
and l = 3

√

2D(1 − ν2
s )

Es
. (3)

If the plate is instead bonded to the half space, this will tend to reduce the
tangential displacement at the surface of the substrate and hence increase its
effective modulus. In the Appendix we consider the extreme case where the in-
plane stiffness of the layer is sufficient to prevent any tangential displacement
at the interface and show that l is then modified to

l =

(

D(1 + νs)(3 − 4νs)

2Es(1 − νs)

)1/3

. (4)

This is identical to (3:ii) for the case νs = 0.5 and is only 10% lower when
νs = 0. For a plate of finite in-plane stiffness, the effective value of l will be
intermediate between these quite tight bounds. Substututing for D from (1),
we can define the dimensionless parameter

l̂ ≡
l

h
=

(

Ef (1 + νs)(3 − 4νs)

24Es(1 − νs)(1 − ν2
f )

)1/3

, (5)

which is a measure of the modulus mismatch between the layer and the sub-
strate.

2.1 Local displacement and curvature

Ol’shanskii [12] gives a series solution to the integral (2) in the form
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w(r)=
P l2

12D

∞
∑

m=0

(−1)m

{

4√
3

[

ρ6m

(3m)!(3m)!
−

ρ6m+4

(3m + 2)!(3m + 2)!

]

+
3ρ6m+5

Γ(3m+7/2)Γ(3m+7/2)
+

6ρ6m+2

π(3m+1)!(3m+1)!
[ln(ρ) − ψ(3m+2)]

}

, (6)

where ψ is Euler’s psi function ([13] §8.36). For sufficiently small values of ρ
(i.e. points sufficiently near the load), (6) can be approximated by the first
three terms

w(r) =
P l2

12D

{

4√
3

+
6ρ2

π
[ln(ρ) + C − 1]

}

, (7)

where we have used the result ψ(2) = 1 − C from [13]:§8.365.4 and C =
0.577215... is Euler’s constant. Numerical calculations show that (7) is a good
approximation to (6) in the range 0 ≤ ρ < 0.5.

The Laplacian of (7),

∇2w =
d2w

dr2
+

1

r

dw

dr
=

2P

πD
{ln(η) + C} , (8)

provides a measure of the curvature of the initially plane plate surface. This
curvature is unbounded as r → 0, showing that a finite contact area must be
established for any rigid indenter of finite radius R.

2.2 Indentation by a rigid sphere

If the plate is indented by a rigid sphere of radius R, the resulting contact
pressure will comprise a line load of P/2πa per unit length distributed around
a ring of radius a. To demonstrate this, we use (8) as a Green’s function
to determine the curvature due to such a ring load. The constant term will
clearly contribute a constant curvature at all points on the surface and it is a
well-known result of two-dimensional potential theory that with a logarithmic
Green’s function, the potential due to the uniform ring source is equal to that
of the corresponding point source at the origin for r > a and is constant for
r < a. Superposing these results, we obtain

∇2w =
2P

πD

{

ln
(

r

l

)

+ C

}

; r > a (9)

=
2P

πD

{

ln
(

a

l

)

+ C

}

; 0 ≤ r < a . (10)

It follows that the profile of the plate surface due to the ring force will conform
exactly to that of the indenting sphere and leave a positive gap outside r = a
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as required if

2P

πD

{

ln
(

a

l

)

+ C

}

= −
2

R
or

a

l
= exp

(

− C −
π

P̂

)

, (11)

where we define the dimensionless load

P̂ ≡
PR

D
. (12)

Once the radius of the ring is found from this equation, the displacement
at the center (and hence the indentation of the punch) is readily found by
superposition using (7) as a Green’s function. We obtain

w(0) =
P l2

12D

{

4√
3

+
6a2

πl2

[

ln
(

a

l

)

+ C − 1
]

}

. (13)

Using (11) to eliminate a and introducing the dimensionless parameters (5,
12), we can also write this result in the form

w(0) =
P̂ l̂2h2

6R

{

2√
3
−

3

π

[

1 +
π

P̂

]

exp
(

−2C −
2π

P̂

)

}

. (14)

2.3 The Hertzian solution

At small values of the dimensionless load P̂ , the contact radius (11) is ex-
tremely small and the load-displacement relation (14) is virtually linear. How-
ever, in this range, the actual contact area and contact pressure distribution
will be more accurately defined by the Hertzian theory for a body composed
entirely of the layer material. In this limit, the Hertzian contact radius is

aH =

(

3(1 − ν2
f )PR

4Ef

)1/3

or
aH

h
=

1

2

(

P̂

2

)1/3

(15)

[14], using (12, 1). The Hertzian indentation depth d is given by

dH =
a2

H

R
=

h2

4R

(

P̂

2

)2/3

(16)

[14], using (15, 12). These results can be regarded as a correction that can
be ‘patched in’ to the plate solution (14) at small values of P̂ . In particular,
the rigid body motion of the indenter d will then be the sum of the plate
displacement w(0) and the Hertzian compliance dH , giving

d̂ ≡
dR

h2
= P̂

[

l̂2

3
√

3
−

l̂2

2π

[

1 +
π

P̂

]

exp
(

−2C −
2π

P̂

)

+
1

4

(

1

4P̂

)1/3
]

. (17)
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This superposition is strictly meaningful only when the Hertzian radius aH )
h and hence P̂ ) 1. However, for larger values of P̂ , the last (Hertzian) term
in (17) becomes small compared with the remaining terms and hence this
equation might be expected to give reasonable results as long as the contact
radius is sufficiently small to justify the use of the three-term approximation
(7).

2.4 Dimensional considerations

Notice that the radius of the indenter R appears only as a linear multiplier in
equation (17) and can be subsumed into the dimensionless indentation depth
d̂. Thus, the dimensionless load-displacement relation depends only on the
single dimensionless material parameter l̂ and in particular is independent of
the dimensionless ratio R/h. This reduction in parameter dependence also
occurs for the exact elasticity solution, provided that the indenter is replaced
by the equivalent paraboloid so that the normal displacement in the contact
region is

uz(r, 0) = d −
r2

2R
. (18)

If we normalize the length dimensions with h and the displacements with
h2/R, defining

ûz =
uzR

h2
; d̂ =

dR

h2
; r̂ =

r

h
,

equation (18) takes the form

ûz(r̂, 0) = d̂ −
r̂2

2

and the resulting boundary-value problem in these variables clearly depends
only on the dimensionless contact radius a/h and on the dimensionless material
parameters l̂, νf , νs. Also P̂ of equation (12) is an appropriate dimensionless
indentation force resulting from this normalization.

2.5 Finite element results

To evaluate the approximations involved in the plate solution, an axisymmetric
finite element solution of the problem was developed. Rectangular elements of
side 0.1h were used in the layer, with coarser meshing distant from the contact
region. The total depth of the modeled region is 6250h and the maximum
radius is 2500h. Fig.1 compares the predictions of equation (17) with the
finite element results for l̂ = 3. Agreement is excellent up to P̂ ≈ 3.5, d̂ ≈ 6,
at which load equation (11:ii) predicts a/l ≈ 0.7. We also note that the contact
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pressure distribution exhibits a peak that moves towards the outer radius of
the contact region in this load range.
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Fig. 1. Finite element results (circles) and theoretical prediction (solid line) from
equation (17) for indentation of a uniform layer bonded to an elastic half space.

3 Continuously graded material properties

The uniform layer solution is appropriate to situations in which a layer of a
stiffer material is deposited on a more flexible substrate. However, in many
cases, stiff surface layers are generated by chemical changes at the surface of
an initially homogeneous material [15] and it is then reasonable to expect the
modulus to be a continuous function of depth. If the modulus at the surface
is much higher than that of the substrate, the qualitative behaviour might
still be expected to resemble that of a plate on an elastic substrate. However
equations (14, 17) require us to determine an equivalent stiffness D for the
‘layer’ and this in turn requires a decision as to the point where the layer is
considered to stop and the substrate to start. Unfortunately, this essentially
arbitrary choice has a substantial effect on the calculated value of D, because
it involves the second moment of the modulus distribution across the layer
thickness.

3.1 Power-law grading

Information about the nature of the grading can be obtained from the shape
of the experimental load-displacement curve. As background to this, it is in-
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structive to consider the case where the grading has power law form and the
rigid indenter has a power law profile. We assume the most general form of
anisotropic Hooke’s law

σij = cijkl
∂uk

∂xl
, (19)

with the modulus defined by

cijkl = xλ
3BCijkl , (20)

where Cijkl is a dimensionless tensor and B is a dimensional constant, so that
all the components of the elasticity tensor follow the same grading. It should
be remarked that this idealized grading function implies unrealistic behaviour
at x3 = 0 and x3 → ∞ for all values of λ except the uniform case λ = 0.
In particular, for λ < 0, the modulus tends to zero as x3 → ∞. However, we
shall demonstrate later in §3.2 that more realistic grading functions with a
power law central segment but finite limiting values exhibit behaviour close
to that of the idealized case. We consider the case where the half space x3 ≥ 0
is indented by a frictionless rigid punch with a power-law conical profile. A
formal statement of the boundary value problem is

g(x1, x2) ≡ u3(x1, x2, 0) − d + rβf(θ)≥ 0 (21)

p(x1, x2) ≡ −σ33(x1, x2, 0)≥ 0 (22)

σ31(x1, x2, 0) = σ32(x1, x2, 0) = 0 (23)

p(x1, x2)g(x1, x2) = 0 , (24)

where d is the indentation, g is the gap between the indenter and the surface
of the half space and the function f(θ) describes a representative cross section
of the punch in polar coordinates x1 = r cos θ , r sin θ = x2.

This problem has no intrinsic length scale and hence the solution for all loads
must be similar to each other. This fact can be exposed by defining the di-
mensionless parameters

ξi = d−1/βxi ; ρ = d−1/βr ; Uj =
uj

d
; Sij =

d(1−λ−β)/βσij

B
,

in terms of which equations (19, 21–24) take the form

Sij = Cijklξ
λ
3

∂Uk

∂ξl
(25)

γ(ξ1, ξ2) ≡ U3(ξ1, ξ2, 0) − 1 + ρβf(θ)≥ 0 (26)

−S33(ξ1, ξ2, 0)≥ 0 (27)

S(ξ1, ξ2, 0) = S(ξ1, ξ2, 0) = 0 (28)

S(ξ1, ξ2)γ(ξ1, ξ2) = 0 , (29)
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This problem is clearly independent of the punch indentation d. Once it is
solved, the total force required to produce a given indentation can be obtained
by considering the equilibrium of the region 0 < x3 < d1/βh, giving

P = −
∫

∞

−∞

∫

∞

−∞

σ33(x1, x2, d
1/βh)dx1dx2 = −d(1+λ+β)/βB

∫

∞

−∞

∫

∞

−∞

S33(ξ1, ξ2, h)dξ1dξ2 .

(30)
The integral is independent of d and hence the load-displacement relation
must have the form

P ∼ d α , (31)

where

α =
(1 + λ + β)

β
. (32)

Similar considerations show that the contact area retains the same shape at all
values of P and that a typical linear dimension a of the contact area increases
as

a ∼ d1/β ∼ P 1/(1+λ+β) .

For the case of a paraboloidal punch, β = 2 and we have P ∼ d(λ+3)/2,
a ∼ d1/2 ∼ P 1/(λ+3). These results agree with the classical Hertzian analysis
[14] in the homogeneous case λ = 0 and with the solution of the isotropic
axisymmetric indentation problem due to Giannakopoulos and Suresh [16].
The latter authors claim that their solution applies only to the case where
λ > 0 — i.e. when the modulus increases with depth — but there seems to be
no basis to this restriction. In the special case where the modulus increases
linearly with depth (λ = 1), the half space mimics a Winkler elastic foundation
[18]. This result was first remarked by Gibson [19].

Notice that the non-linearity of the load-displacement relation is reduced as
λ becomes more negative and a completely linear relation is obtained for all
power-law punch profiles (all β) when λ = −1. A physical explanation for
this latter result is provided by the point force solution of Giannakopoulos
and Suresh [17]. They show that the normal surface displacement uz(r, 0) at a
distance r from the point of application of the force varies with r−λ−1. Thus,
when λ → −1, the normal surface displacement becomes independent of r. In
other words, a point force causes the entire surface to deflect downwards by
the same distance (though this distance tends to zero in the limit). It follows
that a rigid punch of any shape (not necessarily power law or axisymmetric)
will make only point contact with the surface and in fact all such punches will
have the same force-displacement relation.

3.2 More realistic grading

The preceding results suggest that some information about the nature of the
grading can be obtained by plotting the experimental load-displacement data
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on a log-log scale and approximating the resulting curve by a straight line.
Of course, any power law grading other than uniform (λ = 0) implies an
unrealistic zero or infinite modulus at the surface and at infinite depth, so it is
important to estimate how the truncation of equation (20) at large and small
values of x3 might influence the resulting curve.

This question was investigated using a finite element approximation to the
problem. In view of the localized loading, a graded mesh was used, with the
smallest elements near the surface being 100 times thinner than the coarsest
elements distant from the surface. A piecewise constant modulus distribution
was generated from the power law function, which implies that the layer ad-
jacent to the surface has the (finite) modulus appropriate to its mid-point.
The material was assumed to be isotropic and incompressible (ν = 0.5). No
explicit truncation was imposed at large depths, but of course the finite size of
the model implies a form of truncation. This effect was explored by changing
the total depth of the model and the results showed less than 1% change in the
load-displacement curve with a change of a factor of five in the total depth.

1

10

100

0.1 1 10

d

P

0.5

1

1.5

2

2.5

-1 -0 .5 0 0.5 1

α

λ

(a) (b)

Fig. 2. (a) Load-displacement relation for the indentation of a half space with mod-

ulus proportional to x−1/2
3 . (b) Slope of the logarithmic load-displacement relation

as a function of the modulus exponent λ. Finite element results are represented by
circles and the solid line in Fig.2(b) corresponds to equation (32).

Fig.2(a) shows the load-displacement relation for indentation of a power-law
graded half space with λ = −0.5 by a rigid paraboloidal punch whose tip
radius is 1250 times smaller than the total depth of the modeled region. A
good straight line approximation can be fitted on the logarithmic scale. Results
were obtained for several different values of λ in the range −1 < λ < 1 and the
resulting slopes are compared with the theoretical prediction (32) in Fig.2(b).
We conclude that truncation due to discretization has only a small effect on
the results, and hence the ‘unphysical’ values of modulus implied by a strict
power law do not preclude the use of these results in cases of approximately
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power-law grading. Incidentally, these finite element results can be regarded
as a ‘practical’ confirmation that the results of Giannakopoulos and Suresh
[16] can indeed be extended to negative values of λ > −1.

To separate the effects of discretization and power law truncation, we next
consider a half space with the explicitly truncated modulus distribution

E(x3)= E0

[

1 +
λ

(2 − λ)

(

x3

h

)2
]

; 0 ≤ x3 < h

=
2E0

(2 − λ)

(

x3

h

)λ

; x3 > h . (33)

where E0 is the modulus at the surface and h is the thickness of the re-
gion in which the power-law distribution is truncated. This distribution pre-
serves continuity of modulus and gradient at x3 = h. The indentation problem
now ceases to be self-similar because of the length parameter h, but dimen-
sional considerations similar to those in §2.4 show that for indentation by a
paraboloidal punch, the dimensionless indentation d̂ must depend only on the
dimensionless load

P̃ =
PR

E0h3
. (34)

As in the case of the uniform layer, we anticipate that the load-displacement
relation will be dominated by local ‘Hertzian’ stresses corresponding to the
surface value of the modulus for P̃ ) 1, but that the substrate will play an
increasingly important rôle as P̃ increases. This suggests a relation P̃ ∼ d̂3/2

for P̃ ) 1 and P̃ ∼ d̂5/4 for P̃ " 1, based on equation (32).
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Fig. 3. Load-displacement relation for the truncated power-law grading of equation
(33) with λ = −0.5.
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Fig.3 shows finite element results for the case λ = −0.5. The two limiting
slopes 3

2 and 5
4 are indicated by the solid lines and the results confirm that

a transition between these limiting behaviours occurs predominantly in the
range 0.03 < d̂ < 1. In particular, the load-displacement relation is dominated
by the substrate power-law grading when

d̂ > 1 or
d

h
>

h

R
.

Notice that since the dimensionless indentation contains the radius R of the
indenter, this places restrictions on the ability of the measurement to probe
the modulus very close to the surface. For example, if the AFM tip radius is 20
nm and the displacement d is measured with an accuracy of ±8 nm, a modulus
distribution of the form (33) would give results essentially indistinguishable
from pure power-law grading if h < 15 nm.

3.3 Error function grading

If the stiff surface layer is generated by a chemical reaction, it is likely that the
resulting modulus will be some function of the concentration of a reactant and
the period to which the local material is exposed to the reactant at an appro-
priate temperature. This in turn is likely to be determined by an appropriate
diffusion equation, suggesting the possibility of error-function grading

E(x3) = Es + (E0 − Es)erfc
(

x3

h

)

, (35)

where E0 is the modulus at the surface x3 = 0 and h is a characteristic
thickness dimension for the stiffened layer.

Fig.4 shows the dimensionless load PR/Esh3 as a function of d̂ for various
values of the modulus ratio E0/Es. Notice that the substrate modulus Es is
used here in normalizing the load P to permit us to present disparate curves on
the same plot. A striking feature of these results is the almost linear form of the
load-displacement relation, particularly at large modulus ratios. For example,
at E0/Es = 103, the best straight line fit to the corresponding logarithmic plot
has a slope of about 1.04. By contrast, the power law form of equations (20,
33) give a strictly linear load-displacement relation only in the limit λ → −1.

3.4 Effect of residual stress

All of the theoretical and finite element results reported in this paper are based
on the assumption that the graded half space is stree-free in the unloaded state.
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Fig. 4. Load-displacement relation for the error function grading of equation (35)
and various values of E0/Es.

However, if the graded modulus results from a chemical or physical change in
the surface layers, it is possible for this same process to generate a state of
residual stress, which could have a significant effect on the load-displacement
relation. In particular, if a thin surface layer is much stiffer than the substrate
and is in a state of residual biaxial tension, these membrane stresses will tend
to stiffen the apparent load-displacement relation.

To assess the importance of this effect, finite element calculations were per-
formed for a uniform layer in a state of uniform biaxial tensile strain ε11 =
ε22 = ε0, ε33 = 0 and the results were compared with those reported in Figure
1. The load-displacement curve was essentially unaffected by residual strains
of 10−3 or less, but a strain of ε0 = 0.005 increases P̂ by about 30% in the
range 0 < d̂ < 20. Thus, if the layer formation process is likely to produce
significant residual tensile strains, it is important that these be taken into
account in interpreting the indentation data.

4 Conclusions

The classical Hertzian analysis for the indentation of a homogeneous elastic
half space by a paraboloidal punch predicts that the load will vary with inden-
tation to the power 3/2. The various results presented in this paper all show
that when the modulus of the half space decreases with depth, this relation
becomes closer to linear. Physically, this effect might be explained by noting
that the stiffening effect of an increased contact area is to some extent offset
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by the fact that the resulting contact stress field penetrates to a greater depth
where the modulus is lower. Also, when the surface layers are much stiffer
than the substrate, a significant part of the indentation results from ‘plate’
deformation of this stiff layer.

For power-law grading, the load-displacement relation is itself a power law of
the form of equation (32). However, this implies an unphysical infinite modulus
at the surface and if this condition is relaxed by defining a thin layer in which
the modulus passes to a finite surface value, the relation transitions to the
Hertzian at small values of dimensionless indentation d̂.

In principle, one might expect that the information contained in a sufficiently
accurate experimental measurement of the load-displacement relation could be
used to define an inverse problem for the determination of the modulus as a
function of depth. However, the results obtained here suggest that this inverse
problem, even if well-posed, would be ill-conditioned in regard to experimen-
tal variance. For example, the load-displacement relation for error-function
grading (Fig.4) with E0/Es = 1000 is very close to that obtained with power-
law grading with λ = −0.92, and the difference between these two dissimilar
forms of grading would very probably lie within the range of experimental
uncertainty.

We conclude that indentation measurements can be used to estimate parame-
ters in a predetermined grading function for the modulus such as a truncated
power law or an error function, but that more detailed information about the
grading would require the indentation results to be supplemented by addi-
tional experimental information, such as for example the surface wrinkling
wavelength obtained in a compression text [20].
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Appendix

If the interface between the layer and the substrate is frictionless, the substrate
is loaded only by normal tractions and the elastic field can be defined in terms
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of a single harmonic function ϕ, using Solution F of [21]. In particular, the
relevant surface tractions and displacements are

uz(r, 0) = −
2(1 − ν2

s )

Es

∂ϕ

∂z
(r, 0) ; σzz(r, 0) = −

∂2ϕ

∂z2
(r, 0) (36)

At the opposite extreme, if the substrate is bonded to a plate with sufficient in-
plane stiffness to prevent all tangential surface displacement, the most general
stress state in the substrate can be defined in terms of the harmonic function
ω of Solution B [21], for which

uz(r, 0) = −
(3 − 4νs)(1 + νs)

Es
ω(r, 0) ; σzz(r, 0) = −2(1 − νs)

∂ω

∂z
(r, 0) . (37)

The expressions for uz(r, 0) in (36, 37) can be made identical by the substitu-
tion

ω =
2(1 − νs)

(3 − 4νs)
. (38)

Making the same substitution in the expressions for σzz(r, 0), we obtain results
of identical form except for the multiplying constants. We conclude that for
a given value of contact traction σzz(r, 0), the displacement in the frictionless
case will exceed that in the radially restrained case in the constant ratio

4(1 − νs)2

(3 − 4νs)
. (39)

This also implies that the radial restraint is equivalent to an increase in the
apparent elastic modulus Es in the ratio (39) relative to the frictionless case.
In particular, Timoshenko’s solution (2) remains valid if l is replaced by

l =

(

D(1 + νs)(3 − 4νs)

2Es(1 − νs)

)1/3

. (40)
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