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Abstract

If a body with a stiffer surface layer is loaded in compression, a surface wrinkling

instability may be developed. A bifurcation analysis is presented for determining the

critical load for the onset of wrinkling and the associated wavelength for materials

in which the elastic modulus is an arbitrary function of depth. The analysis leads

to an eigenvalue problem involving a pair of linear ordinary differential equations

with variable coefficients which are discretized and solved using the finite element

method.

The method is validated by comparison with classical results for a uniform layer

on a dissimilar substrate. Results are then given for materials with exponential

and error-function gradation of elastic modulus and for a homogeneous body with
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thermoelastically-induced compressive stresses.

Key words: layered materials, stability and bifurcation, inhomogeneous material,

buckling, functionally graded material

1 Introduction

If a structure consisting of a thin stiff layer and a more flexible substrate

is subjected to a sufficiently large compressive load, a buckling or wrinkling

surface instability can occur, as shown in Fig. 1. Generally, surface wrinkling

has been considered as an undesirable phenomenon to be avoided. However, in

emerging areas such as micro/nano-fabrication and bio-engineering, wrinkling

can be used to produce controlled nanoscale features (Bowden et al. (1999),

Moon et al. (2007), Efimenko et al. (2005)). It has been proposed that these

may be useful for applications such as diffraction gratings, patterned platforms

for cell adhesion or nano-fluidic channels. Surface wrinking may also provide

a way of probing the surface characteristics of the materials (Stafford et al.,

2004).

Fig. 1. Schematic of a half space subjected to a compressive load

Chen and Hutchinson (2004) developed a closed-form solution for the wrin-

kling of a gold layer deposited on an elastomer substrate. They modeled the

structure as a plate on linear elastic foundation with infinite thickess. The

same methodology was extended to the case of a thin elastic layer on a sub-

strate of finite thickness by Huang et al. (2005). These solutions most naturally

relate to the situation in which a thin stiff film is deposited on a more flexi-
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ble substrate, so that there is a sharp discontinuity in elastic modulus at the

interface. However, similar effects should be anticipated in cases where the

elastic modulus of the material is graded continuously from the surface to a

lower substrate value.

The present work was motivated by observations of micron-scale buckling on

oxidized poly(methyldisiloxane)(PDMS) in which a stiff surface-modified layer

was formed by exposure to an oxygen plasma. The surface layer in this mate-

rial is formed by a diffusive process, so we anticipate a gradation of mechanical

properties from the surface. The absence in the literature of any discussion

of surface wrinkling under these conditions prompted the question of how

the mechanics of wrinkling might be affected by the graded properties. The

intent of this paper is to establish the general mechanics framework for the

study of such problems. In particular, we develop a bifurcation method to an-

alyze the onset of surface wrinkling of an elastic layer with elastic properties

that are arbitrary functions of depth. The analysis is sufficiently general to

allow for an arbitrary distribution of applied compressive strain with depth.

In addition to cases of functionally-graded elastic modulus, it can therefore be

applied to situations where a non-uniform distribution of eigenstrain is gener-

ated by thermal expansion or by a change in lattice parameters due to variable

concentration of a diffusive species (Larché and Cahn, 1982). The method is

validated by comparison with the results of Huang et al. (2005). It is then

used to determine the critical compressive strain at which wrinkling occurs

and the associated wavelength for different distributions of elastic moduli. A

subsequent paper will examine some specific examples of buckling associated

with cracking in oxidized PDMS.
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2 General theory of the instability

We consider the orthotropic elastic layer 0 < x2 < Ht in a state of plane strain

and subjected to a compressive load parallel to the x1 axis, as shown in Fig. 2.

The elastic moduli Lijkl(x2) are assumed to be arbitrary functions of x2 only,

satisfying the major and minor symmetry conditions

Lijkl = Lklij = Ljikl = Lijlk .

The boundary x2 = 0 is assumed traction-free, while x2 = Ht is attached to

a rigid plane surface. In many cases, the wrinkling field will be localized near

the free surface and we can then use the simplifying assumption that the body

is a half space (Ht →∞) with zero displacement at infinity.

Fig. 2. The graded layer subjected to a compressive load

If there is no wrinkling, we expect the stress state to be independent of x1.

We shall refer to this as the ‘fundamental stress state’ and the corresponding

solution of the elasticity equations as the ‘principal solution’
0
σ. It must satisfy

the equilibrium equations

0
σij,i= 0 i, j = 1, 2

and the boundary conditions

0
σi2= 0

on the free surface x2 = 0. Here and subsequently, the notation (.),i denotes

differentiation with respect to xi and the Einstein summation convention is

implied over repeated indexes. Since there is no dependence on x1 (i.e
0
σ,1= 0),

the only possible non-zero stresses are
0
σ11,

0
σ33 which can be general functions

of x2. It is convenient to define a loading parameter Λ such that
0
σ (x2, Λ) = 0

at Λ = 0 and an increase in Λ describes a set of progressively increased applied
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loads. We then anticipate that above some critical value of Λ, the principal

solution will become unstable and wrinkling will occur.

2.1 Nature of the loading

The loading
0
σ may result from a force applied to the extremities of the body,

but in this case, compatibility considerations demand that the corresponding

strain
0
ε11≡ ε0 be independent of x2, giving

0
σij= Lij11(x2)ε0 .

Thus, the fundamental stress state varies with depth in proportion with the

elastic modulus. However, more general variations in loading can be generated

by other mechanisms. For example, if the temperature T (x2) of the body is a

function of depth, we will have

0
σij= Lijkl(x2)

{
0
εkl −αklT (x2)

}
, (1)

where αkl is the tensor of thermal expansion coefficients. This situation may

give rise to wrinkling even for a homogeneous half space if the surface is sud-

denly heated, leading to high compressive stresses in a thin surface layer. Other

physical mechanisms leading to transformation strains could have similar ef-

fects.

2.2 Analysis

Since we assume an elastic material response, the problem is conservative and

a potential energy functional P (ui) exists, defined by

P (ui) = Uint + Wext (2)
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where ui is the displacement field, Uint is the internal energy, and Wext is the

potential of the external forces. The latter are given by

Uint =
∫

V
W (εij)dV and Wext = −

∫
V

ρbiuidV −
∫

∂V
tiuidΓ , (3)

where W (εij) is the strain energy density in the body V , bi is the body force

and ti is the traction on the boundary ∂V . In the present problem, there is

no body force or boundary traction, so only the strain energy term appears

in the subsequent analysis. The strain energy density W is

W =
1

2
Lijklεijεkl , (4)

where εij is the strain field. The wrinkling is governed by small strains and

moderate rotations, so the strain can be expressed as

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

+
∂uk

∂xi

∂uk

∂xj

)
. (5)

The equilibrium of this system can be examined by taking the first derivative

of the potential energy,

P,uδu = 0 . (6)

The equilibrium equation can be expressed in the weak form by substituting

equations (2)–(5) into (6), giving

∫
V

σijδεijdV = 0 . (7)

The fundamental stress state
0
σ (Λ) is always a solution of Eq. (7).

We now consider the stability of the principal solution by taking the derivative

of the equilibrium equation. The principal solution is stable in the neigh-

borhood of Λ = 0 since it minimizes the total potential energy P — i.e[
P,uu

(
0
u
)

δu
]
δu > 0, where

0
u (Λ) is the displacement field corresponding

to the fundamental stress state
0
σ and δu is any kinematically admissible per-

turbation. As Λ increases, there will be a critical value Λc where stability is
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lost —
[
P,uu

(
0
u (Λc)

)
∆u

]
δu = 0 (Eq. (7)), where ∆u is the eigenmode. By

substituting the stress field
0
σij= Lijkl

0
εkl into the left hand side of Eq. (7), we

can define a stability functional

S(Λ) ≡
[
P,uu

(
0
u (Λ)

)
∆u

]
δu =

∫
V

[
Lijkl∆εklδεij+

0
σij ∆δεij

]
dV , (8)

where

∆δεij =(∆uk,iδuk,j)s ; δεij =
(
δui,j+

0
uk,i δuk,j

)
s
; ∆εij =

(
∆ui,j+

0
uk,i ∆ur,j

)
s
,

where (.)s denotes the symmetric part of the corresponding second order ten-

sor. Since we assume small strains,
∣∣∣∣0uk,i

∣∣∣∣� 1 and the strain field perturbation

simplifies to δεij ' (δui,j)s, ∆εij ' (∆ui,j)s. At the onset of wrinkling, we

therefore have

S(Λc) =
[
P,uu

(
0
u (Λc)

)
∆u

]
δu =

∫
V

[
Lijkl∆uk,lδui,j+

c
σij ∆uk,iδuk,j

]
dV = 0 , ,

(9)

where
c
σ≡ 0

σ (Λc) Integrating Eq. (9) by parts and using Gauss’ divergence

theorem, we obtain

[
Lijkl∆uk,l+

c
σpj ∆ui,p

]
,j

= 0 , (10)

with boundary conditions

Li2kl∆uk,l+
c
σp2 ∆ui,p = 0 (11)

at the free surface x2 = 0 and

∆ui = 0 (12)

at x2 = Ht.

Since the fundamental stress state
0
σij and the orthotropic elasticity tensor Lijkl

are independent of x1, the equilibrium equation (10) and boundary conditions
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(11) simplify to

L1212∆u1,22 + L1212,2∆u1,2 +
(
L1111+

c
σ11

)
∆u1,11 + L1122∆u2,21 + L1221∆u2,12

+ L1221,2∆u2,1 = 0

L2211∆u1,12 + L2112∆u1,21 + L2211,2∆u1,1 + L2222∆u2,22 + L2222,2∆u2,2

+
(
L2121+

c
σ11

)
∆u2,11 = 0 (13)

L1212∆u1,2 + L1221∆u2,1 = 0

L2211∆u1,1 + L2222∆u2,2 = 0 (14)

respectively. Since the material is orthotropic, equations (13, 12, 14) admit

eigenmodes of sinusoidal form

∆u1 = U1(x2) sin(ωx1)

∆u2 = U2(x2) cos(ωx1) . (15)

For the problem at hand, the eigenmode decomposition in (15) is complete.

Substituting these expressions into (13), we obtain two ordinary differential

equations

L1212U
′′
1 + L′

1212U
′
1 − ω2

(
L1111+

c
σ11

)
U1 + ω (L1122 + L1221) U ′

2 + ωL′
1221U2 = 0

L2222U
′′
2 + L′

2222U
′
2 − ω2

(
L2121+

c
σ11

)
U2 − ω (L2211 + L2112) U ′

1 − ωL′
2211U1 = 0

(16)

for the functions U1(x2), U2(x2), where the primes denotes derivatives with

respect to x2. The boundary conditions are

L1212U
′
1 − ωL1221U2 = 0 ; ωL2211U1 − L2222U

′
2 = 0 (17)

at x2 = 0 and

Ui = 0 (18)

8



at x2 = Ht, from (14, 15, 12). In the special case where the material is isotropic,

equations (16, 17) reduce to

µU ′′
1 + µ′U ′

1 − ω2
(
λ + 2µ+

0
σ11

)
U1 − ω (λ + µ) U ′

2 − ωµ′U2 = 0

ω (λ + µ) U ′
1 + ωλ′U1 + (λ + 2µ) U ′′

2 + (λ′ + 2µ′) U ′
2 − ω2

(
µ+

0
σ11

)
U2 = 0

(19)

with boundary conditions

U ′
1 − ωU2 = 0 ; ωλU1 − (λ + 2µ)U ′

2 = 0 (20)

at x2 = 0 and (18) at x2 = Ht, where λ, µ are Lamé’s constants.

Equations (16, 17, 18) or (19, 20, 18) define an eigenvalue problem for the

critical loading parameter Λc and the eigenmodes U1(x2), U2(x2) for given

wavenumber ω. If the elastic modulus Lijkl and the fundamental stress state
0
σ

are piecewise constant functions of x2, the problem can be solved analytically,

but a numerical method will generally be needed for the more general case of

a functionally-graded material.

2.3 Numerical Solution

A numerical solution could be obtained by discretizing the differential equa-

tions (16), but it is more convenient to apply the finite element method di-

rectly to Eq. (8). Using the same eigenmodes as given in Eq. (15), the stability

functional (8) can be written

S(Λ, ω) =
∫

x1

∫
x2

[
Lijkl∆uk,l∆ui,j+

0
σij ∆uk,i∆uk,j

]
dx2dx1 . (21)

Stability of the structure depends on S(Λ, ω) being positive definite for all

ω ∈ R. Since from symmetry S depends on ω2, only ω > 0 needs to be

checked for Λ.
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The x2 domain is decomposed in a set of 2-node linear interpolation elements,

within each of which the unknown displacement Ui is represented in the form

Ui(x2) =
2∑

I=1

NI(x2)u
I
i , (22)

where NI(x2) is the shape function and uI
i is the local degree of freedom for

Ui at the two terminal nodes (I = 1, 2) of the element. For each element there

are therefore four degrees of freedom, which we combine into the vector

qe =
{
u1

1, u
1
2, u

2
1, u

2
2

}T
.

By substituting Eq. (22) into Eq. (21) and integrating over the element in

question in x2-space 1 , we obtain the element stiffness matrix

ke =
∫

e
L dx2 ,

where

L =



ω2
(
L1111+

0
σ11

)
N1N1 + L1212N

′
1N

′
1

ω (L1122 − L1221)
N1N

′
1

ω2
(
L1111+

0
σ11

)
N1N2 + L1212N

′
1N

′
2

ω (L1122N1N
′
2

−L1221N
′
1N2)

ω (L2211 − L2112)
N1N

′
1

ω2
(
L2121+

0
σ11

)
N1N1 + L2222N

′
1N

′
1

ω (−L2112N1N
′
2

+L2211N
′
1N2)

ω2
(
L2121+

0
σ11

)
N1N2 + L2222N

′
1N

′
2

ω2
(
L1111+

0
σ11

)
N1N2 + L1212N

′
1N

′
2

ω (−L1221N1N
′
2

+L1122N
′
1N2)

ω2
(
L1111+

0
σ11

)
N2N2 + L1212N

′
2N

′
2

ω (L1122 − L1221)
N2N

′
2

ω (L2211N1N
′
2

−L2112N
′
1N2)

ω2
(
L2121+

0
σ11

)
N1N2 + L2222N

′
1N

′
2

ω(L2211 − L2112)
N2N

′
2

ω2
(
L2121+

0
σ11

)
N2N2 + L2222N

′
2N

′
2



The global stiffness matrix K can then be constructed by adding the element

stiffnesses such that ∑
e

qT
e keqe = QTKQ

1 The integral
∫
x1

cos2(ωx1)dx1 =
∫
x1

sin2(ωx1)dx1 is taken out of (21) as a common

factor.
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where Q is a vector of global degrees of freedom. The eigenvalues of the system

can be obtained by decomposing the global stiffness matrix K using Choleski

decomposition, subject to the essential boundary condition Ui(Ht) = 0. We

write

K = LDU ,

where L is the lower triangular matrix with unit diagonal terms, U = LT

is the upper diagonal matrix and D is the diagonal matrix. By tracking the

positive definiteness of the matrix D, the system stability can be evaluated. If

the system is stable, the lowest eigenvalue should be positive. When the load

parameter Λ reaches a critical value Λc at which the lowest element of D is

zero, the system becomes unstable.

3 Results

3.1 Convergence and validation

The method developed in the preceding two sections can be used to evaluate

the stability of a layer or half space with arbitrarily graded properties and

applied loading. However, to validate the method, we first compare its pre-

dictions with the results of Huang et al. (2005) for an isotropic homogeneous

layer of thickness Hf on a dissimilar substrate of finite thickness Hs (so in

our notation Ht = Hf + Hs). Notice that these authors made the simplifying

assumption that the shear stress at the film/substrate interface remains zero

in the buckled state, whereas our analysis is exact within the context of the

numerical discretization.

Fig. 3 shows the critical strain εc
0 and critical dimensionless wavelength 2π/ωcHf

as a function of the thickness ratio Hs/Hf for three values of the modulus ratio
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Fig. 3. Critical strain and wavelength for a homogeneous layer on a dissimilar sub-

strate. The solid lines are taken from Huang et al. (2005).

Ēf/Ēs, where Ē is the plane strain modulus defined as

Ē =
E

(1− ν2)

and E, ν are Young’s modulus and Poisson’s ratio respectively. Poisson’s ratio

for both film and substrate was taken as ν = 0.4. The solid lines are taken

from Huang et al. (2005) and reproduce their Fig. 5, while the points were

obtained from the present program. The agreement is extremely good in all

cases.

Tests were also conducted to determine the number of elements required for

the numerical solution to converge. A finer mesh was used in the film and in

the upper layers of the substrate since the perturbation is concentrated in this

region. Better than 0.1% accuracy was obtained using 100 elements in the film

and an equal number in a region of the substrate adjacent to the interface of

thickness 3Hf . For the most efficient meshing, the element gradation should

follow the rate of decay of the eigenmode, but this depends on the wavelength

which is only known a posteriori.

It is clear from Fig. 3 and from heuristic considerations that the thickness

of the substrate has little effect on the results if it is large compared with

the wavelength of the eigenmode. For the homogeneous layer, we found that

the half space results can be recovered from the necessarily finite numerical

model provided that the substrate thickness Hs is greater than about twice

the wavelength — i.e. Hs > 4π/ωc.
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3.2 Graded materials

We next turn our attention to continuously graded materials, for which no

previous results are available. We considered two examples: a half space in

which the plane strain modulus is graded exponentially from a surface value

Ē0 to a substrate value Ēs as x2 →∞ — i.e.

Ē(x2) = Ēs + (Ē0 − Ēs) exp
(−x2

H

)

and one in which the grading follows the complementary error function

Ē(x2) = Ēs + (Ē0 − Ēs)erfc
(

x2

H

)
. (23)

In both of these examples, the parameter H serves as a characteristic length for

the decay and can also be used in constructing an expression for the critical

dimensionless wavenumber ωcH. The two expressions are compared in Fig.

4, which shows that the error function decays to zero more rapidly at large

depths.

Fig. 4. Examples of variable modulus: — exponential grading, - - - error function

grading

Fig. 5 shows the critical strain εc
0 and the critical dimensionless wavenumber

ωcH for the exponentially graded modulus as a function of the modulus ratio

Ē0/Ēs. Poisson’s ratio was taken as a constant ν = 0.4 for these calculations.

For comparison we also show on these figures the results for a discrete homo-

geneous layer (solid line). The parameters for this ‘equivalent homogeneous

layer’ were chosen by matching the area between the modulus curve and the

constant substrate level and the first moment of the same area, giving

Hf =
2
∫∞
0 (Ē(x2)− Ēs)x2dx2∫∞
0 (Ē(x2)− Ēs)dx2

(24)
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and

Ēf =
1

Hf

∫ ∞

0
(Ē(x2)− Ēs)dx2 . (25)

The graded results show a trend similar to the homogeneous layer, but the

dependence on modulus ratio is not now of power law form and both critical

strain and wavenumber become less sensitive to modulus ratio at high ratios.

However, the homogeneous approximation (24, 25) underestimates the critical

strain by up to a factor of two and generally overestimates the corrresponding

wavenumber.

Fig. 5. Critical strain and dimensionless wavenumber for exponential grading. The

solid line represents a homogeneous layer approximation using equations (24, 25).

Corresponding results for error-function gradation are shown in Fig. 6. The

results are qualitatively similar to the exponential case, though the homoge-

neous approximation to the critical wavenumber is less good.

Fig. 6. Critical strain and dimensionless wavenumber for error function grading.

The solid line represents a homogeneous layer approximation using equations (24,

25).

3.3 Effect of Poisson’s ratio

In the preceding results, Poisson’s ratio was assumed to be independent of

depth. To examine the effect of grading in ν, we considered the case in which

both Ē and ν have error function grading. In other words, Ē is given by (23)

and

ν = νs + (ν0 − νs)erfc
(

x2

H

)
. (26)

The critical strain and wavenumber are shown as functions of Ē0/Ēs in Fig. 7

for the case where ν0 = 0 and νs = 0.49. For comparison, we also show results
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for the two cases where the modulus has the same grading but Poisson’s ratio

is uniform and given by the extreme values ν0 = 0 and 0.49 respectively.

Fig. 7. Effect of Poisson’s ratio: (◦) ν = 0 and uniform, (2) ν = 0.49 and uniform,

(3) Eq. (26) with ν0 = 0, νs = 0.49.

For a homogeneous layer on a homogeneous substrate, the critical strain and

wavenumber depend only on the ratio of the plane strain moduli Ēf/Ēs and are

otherwise unaffected by Poisson’s ratio (Huang et al., 2005). By contrast, if the

modulus is graded, we find a significant effect of ν even if it is assumed uniform.

These effects are greatest when the modulus ratio is relatively modest. For

example, for Ē0/Ēs = 10, the critical strain for ν = 0 exceeds that for ν = 0.49

by almost 90%.

The results for graded Poisson’s ratio are very close to those obtained using

the uniform value 0.49. In other words, a good approximation is obtained if

the substrate value of ν is used throughout the body. This conclusion was

verified by other numerical experiments.

3.4 Thermoelastic wrinkling

As a final example, we consider the case where the material is isotropic and

homogeneous, but the fundamental stress state
0
σ varies with depth because

of a non-uniform temperature field due to surface heating, as in Eq. (1). If the

body is initially at zero temperature and the boundary x2 = 0 is raised to a

constant temperature T0 for time t > 0, the subsequent temperature profile

will be given by

T (x2, t) = T0 erfc

(
x2√
4κt

)
,
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where κ is the thermal diffusivity (Carslaw and Jaeger, 1959, §2.5). The cor-

responding fundamental stress state is then

0
σ11= − EαT0

(1− ν)
erfc

(
x2√
4κt

)

from (1), where α is the coefficient of thermal expansion. Both expressions

have the same functional form at all times, but the characteristic length scale

κt (and hence the wavelength of any wrinkles) increases with time. We can

therefore determine a universal dimensionless critical thermal strain α(1+ν)T c
0

and critical wavenumber ωc
√

κt from a single numerical calculation. We find

α(1 + ν)T c
0 = 0.287 ; ωc

√
κt = 75.6 .

A related problem is one in which the thermal-expansion mismatch is uniform

and limited to a surface layer of thickness Hf in a homogeneous material.

The critical strain for this problem is given by α(1 + ν)T c
0 = 0.267, and the

critical wavenumber is ωcHf = 12.2. This thermoelastic problem also provides

a model for other phenomena that involve compressive misfit strains within

a surface layer, for example, a layer with epitaxial strains, a layer with a

volume change due to a phase transition or concentration of a diffusive species

(Larché and Cahn, 1982), or a piezo-electric layer. The critical strains due to

pure thermoelastic effects are sufficiently large that the surface instabilities

may not be of practical significance when there is no modulus mismatch, but

in conjunction with a stiff surface layer, phenomena such as thermoelastic

wrinking are likely to occur at practical levels of strain.
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4 Conclusions

We have presented a general strategy for determining the critical strain and

the corresponding wavenumber for the wrinkling instability of a half space or

thick layer loaded in compression, when the elastic properties vary with depth.

Results exhibit dependence on modulus ratios similar to those observed when

a homogeneous stiff surface layer is bonded to a more flexible substrate (i.e.

where the elastic properties are piecewise constant). We present expressions

permitting analytical results for the latter case to be used in an approximate

sense. The method can also be applied to thermoelastic loading associated

with transient surface heating and we give results for the critical surface tem-

perature at which a homogeneous half space will develop wrinkling.

Acknowledgements

This work was supported in part by NIH (EB003793-01).

References

Bowden, N., Huck, W.T.S., Paul, K.E., Whitesides, G.M., The controlled for-

mation of ordered, sinusoidal structures by plasma oxidation of an elas-

tomeric polymer, Applied Physics Letters, 75, 2557–2559, 1999.

Carslaw, H. Jaeger, J.C., The Conduction of Heat in Solids, 2nd ed. Clarendon

Press (Oxford), 1959.

Chen, X., Hutchinson, J.W., Herringbone buckling patterns of compressed

thin films on compliant substrate, ASME J. Appl. Mech. 71, 597–603, 2004.

Efimenko, K., Rackaitis, M., Manias, E., Vaziri, A., Mahadevan, L., Genzer,

17



J., Nested self-similar wrinkling patterns in skins, Nature Materials, 4, 293–

297, 2005.

Huang, Z.Y., Hong, Z., Suo, Z., Nonlinear analyses of wrinkles in a film bonded

to a compliant substrate, J. Mech. Phy. Sol., 53, 2101–2118, 2005.
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