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Abstract

A review of the mechanics of lap-shear joints is followed by a detailed analysis of

the problem using a cohesive-zone approach.  The cohesive-zone model allows not only

the influence of geometry to be considered, but also allows the cohesive properties of the

interface and plastic deformation of the adherends to be included in the analysis.  The

first part of the paper examines the strength of elastic joints, with an emphasis on the

effects of geometry, the cohesive strength of the adhesive, and mode-mixedness.  The

cohesive-zone models show a transition to the predictions of linear-elastic fracture

mechanics under conditions where these are expected to apply.  The second part of the

paper examines the effect of plasticity in the adherends, and looks at the transition

between the elastic and plastic regimes.  The final part of the paper makes comparisons

between the predictions of the numerical calculations and experimental observations for a

model system consisting of a commercial adhesive used to bond an aluminum alloy.

Using cohesive-zone parameters previously determined for this particular combination of

materials, the numerical predictions show excellent agreement with the experimental

observations.
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1. Introduction

Joints that are of the form of the single lap-shear geometry shown in Fig. 1 are of

great practical importance. The behavior of such joints depends not only on the properties

of the adherends and the bond between them, but also on geometrical parameters such as

the length of the bonded portion of the overlap l, the total length of the specimen L, the

crack length, a,  and the thickness of the adherends, h.  Of particular note among the

models of the lap-shear geometry are the beam-bending analyses that have been

developed to calculate the deformations and stresses when the adherends deform in an

elastic fashion.  These analyses have a particular emphasis on calculating the distribution

of the bending moment along the joint [Goland and Reissner, 1944; Hart-Smith, 1973;

Allman, 1977; Chen and Cheng, 1983; Tsai et al., 1998].  Numerical analyses have

provided further refinements to understanding the effects of the material and geometrical

parameters [Adams and Peppiatt, 1974; Bigwood and Crocombe, 1989; Tsai and Morton,

1994, 1995].  A major conclusion of this body of literature is that, despite its apparent

simplicity, the behavior of a lap-shear specimen is very sensitive to details of the

geometry of how the specimen is loaded.

Historically, two types of analyses for the strength of lap-shear joints have been

developed.  One is a stress-based approach that uses the beam-bending analyses

discussed in the previous paragraph to deduce stresses or strains in the adhesive layer.

Failure is assumed to occur when these stresses or strains reach a critical value [Harris

and Adams, 1984; Bigwood and Crocombe, 1990; Crocombe and Bigwood, 1992].

However, the use of linear-elastic fracture-mechanics (L.E.F.M.) and its energy-based

approach has now gained general recognition as the most appropriate way of predicting
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failure if the adherends remain elastic [Anderson et al., 1988; Chai, 1988; Fernlund et al.,

1994; Papini et al., 1994; Tong, 1996].  Furthermore, the results of the beam-bending

analyses can be used to make a connection with the work of Suo and Hutchinson [1990]

for the delamination of beam-like geometries, by recognizing that an interface crack in a

lap-shear specimen is acted on by a combination of axial load (per unit width), P,  and

bending moment (per unit width), M, as illustrated in Fig. 2 [Papini et al., 1994; Lai et

al., 1996].  If both adherends have an equal thickness, h, the bending moment, M, is

proportional to Ph, but the constant of proportionality, k, is both geometry- and load-

dependent [Tsai and Morton, 1995]:1
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where E is the elastic modulus of the adherends.  For linear-elastic joints, with a crack

length, a, significantly greater than h, the energy-release rate can be written as [Suo and
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So that, from Eqn. 1,
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Since k is a function of P/Eh, l/h and L/l, the complex interaction between G, the load,

and the geometry can be seen immediately.  The relationship between M and P given in

Eqn. 1 can also be used with the general results of Suo and Hutchinson [1990] to deduce

an expression for the phase angle, ψ, of the symmetrical single lap-shear geometry:

                                                  
1 This result is for plane stress.  In general, Poisson’s ratio is an additional parameter that should be
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where GI is the mode-I component of the energy-release rate and GII is the mode-II

component.

There are two limiting cases for which analytical values of k can be computed.

From Fig. 3a, it can be seen that k must equal 0.5 when the loads and geometry are such

that negligible deformation of the sample occurs.  The energy-release rate is then

G =
7
4

2P
Eh

(5)

and the phase angle is -49.1°.  However, if the geometry is long enough to be completely

flexible, and the applied loads are relatively high, the free arm will deform so that its

neutral axis lies along the line of action of the applied load and is, therefore, not subject

to a bending moment (Fig. 3b).  In this second case, there is a limiting steady-state

condition in which extension of the crack does not change the geometry, and the energy-

release rate can be deduced by comparing the stress state in the bonded portion of the

specimen (well way from the free arm) to the stress state in the free arm (well away from

the grips and bonded portion of the sample).  Both portions are subjected to a uniform

load of P, and the energy-release rate can then be written as

G =
P
Eh

2

4
(6)

Hence, from Eqn. 2, it can be shown that k = 0.1306 under these conditions, so that the

bending moment acting on the crack is given by M = 0.1306Ph, and the phase angle is

equal to -63.1°.  The results of a finite-element calculation showing how the energy-

                                                                                                                                                      
included; it is neglected throughout this paper.
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release rate for a lap-shear geometry varies between the two analytical limits of

Eqns. 5 and 6 are shown in Fig. 4.

If the mixed-mode fracture criterion of the adhesive layer is known, the strength

of the joint can be predicted by equating the energy-release rate to the toughness at the

appropriate phase angle.  As an example, a simple, but general, mixed-mode failure

criterion that captures the essential elements of experimental observations is given by

G GI

Io

II

IIoΓ Γ
+ = 1 (7)

where ΓIIo/ΓIo = 1 corresponds to the limit of Griffith fracture with a mode-independent

toughness, and ΓIIo/ΓIo = ∞ corresponds to the limit where only the mode-I component of

the energy-release rate contributes to brittle fracture.  Since both the energy-release rate

and the degree of mode-mixedness are functions of k, the strength of a lap-shear bond

(per unit width), Pf, under conditions of linear-elastic fracture mechanics (L.E.F.M.) must

be of the general form:
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Ιt is possible to use Eqns. 3, 4 and 7 to write down two asymptotic expressions for the

strength of a lap-shear joint under LEFM conditions:
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The constant of proportionality Λ1(ΓIIo/ΓIo) varies between the two limits of 2.0 and 3.1

depending on the sensitivity of toughness to phase angle, whereas Λ2(ΓIIo/ΓIo) varies



6

between 2.0 and 4.4.  Equation 9a is expected to be appropriate for short stiff geometries,

and the Eqn. 9b is expected to be asymptotically correct in the opposite limit of long

compliant geometries with small values of Eh/ΓIo.  The utility of a mixed-mode linear-

elastic approach such as this has been demonstrated experimentally [Fernlund and Spelt,

1991; Fernlund et al., 1994; Papini et al., 1994].

For many practical adhesives and geometries, plastic deformation of the

adherends can occur before the adhesive layer fails [Kim and Kim, 1988; Lai and Dillard,

1997].  For example, beam-bending theory can be used to show that if the strength, Pf, of

the lap-shear specimen is greater than
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yielding will occur in the free arm of the specimen before crack growth occurs.  It can be

seen from Eqns. 9 and 10 that plasticity in the adherends will occur before fracture if
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depending on the geometries and properties of the joint.  If this condition is met, the

strength of the joint becomes sensitive to the plastic properties of the adherends.  The

lack of analytical tools that can be used to provide a reliable correlation between the joint

strength and the “intrinsic” properties of the adhesive layer and the adherends under these

conditions has left the interpretation of single lap-shear joints in a somewhat qualitative

state [Hart-Smith, 1993].

The inherent difficulties associated with plasticity can be circumvented by using

cohesive-zone modeling that combines elements of both the energy- and strength-based
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approaches to fracture.  A mixed-mode cohesive-zone model (C.Z.M.) has been used to

investigate interfacial fracture of bi-material systems [Tvergaard and Hutchinson, 1992,

1996; Wei and Hutchinson, 1997, 1999].  A similar approach has been developed and

used with considerable success to model the deformation and fracture of plastically-

deforming adhesive joints [Yang et al. 1999, 2000, 2001].  It can also be used to model

the behavior of elastic joints when L.E.F.M. assumptions are violated because of large-

scale deformation of the adhesive layer.  The cohesive-zone model of Yang et al. (1999,

2000, 2001) is used in the present paper to provide an extensive examination of the

behavior of single-lap shear joints in both the elastic and plastic regimes.

The results of this paper are presented in three sections. The first section is an

analysis of the limit in which the adherends deform in a purely linear-elastic fashion, so

that the predictions of the cohesive-zone model can be compared with the linear-elastic

fracture mechanics results described earlier.  This section is followed by a general

analysis of geometries in which plastic and elastic deformation of the adherends can

occur, so as to illustrate the general case and to explore the transition between the two

modes of deformation.  The results of this section are validated by making comparisons

between experimental results and the predictions of associated numerical analyses using,

without modification, a mixed-mode cohesive-zone model previously developed for the

experimental system.  The final section of this paper addresses the problem of

asymmetrical lap-shear joints in which one adherend is of a different thickness from the

other.  Comparisons between the numerical predictions and experimental observations

are again presented for this configuration.
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2. Numerical approach

In this study of the lap-shear test, it is assumed that the role of the adhesive layer

is to provide cohesive tractions across the interface of the joint.  These tractions are

dictated by the geometry, testing rate and constitutive properties of the adhesive [Yang et

al., 1999].  Furthermore, it is assumed that the adhesive layer can fail under the influence

of both shear and normal loading.  Previous studies on mixed-mode failure of adhesive

joints [Yang and Thouless, 2001] indicate that different cohesive laws are required for the

two modes of deformation, and that two parameters are required to describe the cohesive

tractions for each mode of deformation (Fig. 5).  The mode-I toughness, ΓΙο, is the area

under the mode-I traction-separation law, and the mode-I cohesive strength, 
)
σ , is the

maximum normal stress that can be supported by the adhesive layer. The mode-II

toughness, ΓΙΙο, is the area under the mode-II traction-separation law, and the mode-II

cohesive strength, 
)
τ , is the maximum shear stress that can be supported by the adhesive

layer.  It can be shown that the precise shapes of the cohesive laws are not particularly

significant.

In any mixed-mode problem, an assumption about the coupling between the two

fracture modes needs to be made.  The failure criterion of Eqn. 7 is particularly amenable

to adaptation in a cohesive-zone analysis [Yang and Thouless, 2001].  It permits a general

mode-independent failure criterion to be incorporated into the cohesive-zone model that

can be used under a variety of conditions including elastic and plastic geometries.  The

definitions of the mode-I and mode-II components of the energy-release rates are

generalized so that GI and G II are defined as the area under the traction-separation law

integrated up to the values of the displacements dictated by the current deformation of the
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joint (Fig. 5).  Once the failure criterion has been met for an element in the cohesive

zone, it is assumed that the element is no longer capable of bearing any load.  The mode-

mixedness can be deduced directly from the numerical predictions by examining the

value of G II/GI for a crack-tip cohesive-zone element just before it fails [Yang and

Thouless, 2001], and using this ratio in the expression for the phase angle given in

Eqn. 4.  It should be noted that various schemes can be devised for defining mode-

mixedness in these types of problem.  They all tend to be affected by the cohesive

properties and the mode-mixedness may vary during loading.  The one proposed here

appeared to be the most satisfactory way of describing mode-mixedness, and gave good

agreement with the L.E.F.M. description where appropriate.

A commercial code (ABAQUS version 5.8) was used to model the adherends.

Two-dimensional plane-stress elements were used for the adherends.  These were

assumed to exhibit linear-elastic behavior until yield and isotropic hardening after yield.

A von Mises yield criterion was assumed, and the constitutive behavior of the adherends

was assumed to be described by

σ ε= E for σ ≤ σY (12a)

σ σ σ ε= ( )Y Y
n nE/ for σ ≥ σY (12b)

where σ and ε are the uniaxial stress and strain, σY is the uniaxial yield stress, E is the

Young’s modulus of the adherends, and n is the power-law hardening exponent.  The

cohesive-zone model introduces the mode-I and mode-II cohesive stresses, 
)
σ  and 

)
τ , into

the analysis, in addition to the toughness of the two modes.  The strength of an equal
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thickness, linear-elastic, lap-shear geometry is of the form2
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where the first four terms are identical to the L.E.F.M. form of Eqn. 8, and the last two

terms come from the parameters of the cohesive-zone model.  This general form is

appropriate when the adherends remain elastic, but L.E.F.M. conditions are not valid

because of large-scale deformations in the adhesive.  If yielding of the adherends can

occur, then the additional terms σY and n must be included to reflect the yield properties

of the adherends:
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In the present study, the primary emphasis is on the effects of geometry, as expressed by

the first three non-dimensional groups of the equations.  However, the properties of the

adhesive layer (i.e., 
) )
σ τ, , ΓIo and ΓIIo) are assumed to be independent of geometry.  The

effects of geometry on the cohesive properties of an adhesive layer have been studied by

Kafkalidis et al. (2000), and Cavalli and Thouless (2001).

3. Results

3.1 Elastic adherends

The predictions of lap-shear strength for elastic adherends are shown in Figs. 6 to

                                                  
2  The thickness of the cohesive zone, b, and the crack length, a, are additional parameters that should be
included in a full description of a mixed-mode geometry.  Generally, the results are not very sensitive to the
thickness of the cohesive zone if b/h << 1.  Furthermore, calculations with non-zero values of l/h show that,
for the range of cohesive strengths used in this paper, an initial crack has little influence beyond its effect
on the bonded ligament length.  This appears to be consistent with the observations of Papini et al. (1994)
that the strength of adhesively-bonded lap shear joints is not strongly dependent on the existence of pre-
existing cracks  Therefore, unless otherwise specified, constant values of b/h = 1/48 and a/h = 0 were used
for the results presented in this study.
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8.  Figures 6 and 7 show that the strength is very sensitive to the geometry but exhibits

asymptotic steady-state behavior when both the overlap length and the total length of the

specimen are long enough.  In particular, Fig. 6 shows how the lap-shear strength varies

as a function of overlap length.  Superimposed on this plot are the limiting L.E.F.M.

predictions from Eqn. 9b.  These asymptotic limits are expected to be valid for relatively

long compliant geometries,  and it can be seen that they are in excellent agreement with

the numerical results for very long overlap lengths.  The mode-mixedness was also in

good agreement with the L.E.F.M. predictions in this regime.  However, it will also be

observed from Fig. 6 that as the overlap length decreases, even the lower L.E.F.M. limit

of Eqn. 9a provides a prediction that is much too large.  This discrepancy arises because

of large-scale deformation along the interface associated with relatively low values of the

cohesive shear and normal strengths.  Linear-elastic fracture-mechanics predictions are

only appropriate when parameters such as E h Eh EIo IoΓ Γ/ / /
) )
σ σ2 1 2

= ( ) ( )− −
 are small,

where 
)
σ  is a representative cohesive strength and h is a representative dimension.3

Figure 7 shows how the strength of a lap-shear joint varies with the total length of

the specimen for a fixed overlap length.  An asymptotic value is reached when the

specimen length is greater than about 10 times the overlap length.  In this particular

example, although the overlap length is twenty times the adherend thickness it is short

enough for large-scale slip to influence the strength, and the analytical results of Eqn. 9

are inappropriate.  The final figure of this series (Fig. 8) shows load-displacement plots

for elastic lap-shear specimens with different values of mixed-mode toughness ratio,

                                                  
3 The condition for the validity of L.E.F.M. results is usually stated as h> 2.5(KIc/σY

2), where the yield
strength, σY, is taken as a measure of the crack-tip cohesive strength.  It can be seen that this is equivalent
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ΓIIo/ΓIo, for fixed values of the other parameters including Eh/ΓIo.  The shape of the curves

are all identical; the effect of increasing the mode-II toughness is to increase the strength.

It should be noted that the displacement in this figure is defined as the horizontal

projection of the relative displacement of two points each situated a short distance from

the ends of the overlap region.  Consequently, the non-linearity of the load-displacement

curve close to the origin arises from rotation of the specimen upon initial loading.  This

rotation of the lap shear geometry needs to be considered when experimentally

investigating load-displacement curves

3.2 Elastic-plastic adherends

Figures 9, 10 and 11 show how the strength depends on geometry and interfacial

toughness for the general case of elastic-plastic adherends.  The trends of strength with

geometry are similar to the trends when the deformation is purely elastic; however, the

asymptotic steady-state solutions occur at somewhat shorter specimen lengths owing to

the increased deformation of the adherends.  The transition between elastic and plastic

behavior can be seen in Fig. 11 in which the elastic-plastic solutions are plotted as a

function of Eh/ΓIo for different values of yield strength.  Superimposed on these plots is

the purely elastic solution for identical values of the appropriate dimensionless

parameters.  Plasticity dominates at low values of the parameter Eh/ΓΙο, and elasticity

dominates at higher values.  The transition from plasticity to elasticity occurs at higher

values of Eh/ΓIo as σY/E increases, as predicted by Eqn. 11.  At sufficiently large values

of Eh/ΓIo, the deformation of the adherends is entirely elastic and the strength follows the

(Eh/ΓIo)
1/2 dependence predicted by L.E.F.M. (Eqn. 9).  Just below the transition,

                                                                                                                                                      

to the condition E hIoΓ / .
)
σ 2 0 4<
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plasticity results in a lap-shear strength that increases with decreasing yield strength

(Fig. 11a).  It should be noted that if the ratio 
)
σ σ/ Y  was significantly higher than the

values chosen for this study, the solutions at large values of Eh/ΓΙο would tend to a small-

scale yielding limit, in which crack-tip plasticity would result in a higher effective

toughness [Tvergaard and Hutchinson, 1992], rather than the elastic limit shown in

Fig. 11a.

Somewhat surprisingly, the trends described above are reversed at very low

values of Eh/ΓIo, and the lap-shear strength increases with increasing yield strength

(Fig. 11b).  This behavior is geometrical in origin and is coupled to the fact that ΓΙIo is

much larger than ΓΙο.  As Eh/ΓIo  is reduced, the critical normal displacement for fracture

increases, eventually reaching values which are too large to be accommodated by the

smoothly curved elastic substrates.  Consequently, failure will occur only with a

significantly increased contribution from mode-II deformation, thereby increasing the

strength.  This increase in strength is accompanied by an increase in the magnitude of the

phase angle at fracture from about 65° (as predicted by L.E.F.M.) to 80° or more.  On the

other hand, plastic joints can form plastic hinges near the roots of the overlap regions and

accommodate large local deformations.  The resulting “peel” type of failure means that

the mode-I component becomes more dominant when the yield strength of the adherends

drops and, consequently, the strength drops with yield strength.

3.3 Comparisons between experimental and numerical results

The numerical results presented in this paper were tested by comparing them to

experimental observations using a bonded system for which the mixed-mode fracture
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parameters have been well-characterized in earlier work [Yang and Thouless, 2001].  In

this earlier work, it was shown that both the form of the load-displacement curves and the

deformation could be accurately predicted.  These comparisons were confined to a

limited set of similar geometries with different adherend thicknesses.  In the present

study, the comparison was extended to look at the effects of overlap length and the

effects of asymmetry in the adherend thickness.   The symmetrical single-lap-shear

specimens were made from 2.0 mm thick 5754 aluminum alloy sheets bonded using a

commercial adhesive (Ciba Specialty Chemicals XD4600) with a bond-line thickness of

250 µm.  The thickness of the adhesive layer was maintained by using uniform glass

spheres as spacers.  Teflon® tape was used to limit the extent of the adhesive to the

overlap region.  The details of the bonding process is outlined elsewhere [Thouless et al.,

1998].  A series of tests were conducted to measure the lap-shear strength of these joints

using different overlaps ranging from 2 mm (l/h = 1) to 50 mm (l/h = 25), with the overall

length of the joints being maintained at L = 300 mm.  The velocity of the ends of the

specimens was kept constant at 0.2 mm.s-1.  The displacement was measured optically

using two points separated by a gauge length of 75 mm.  At the magnification used, these

measurements had a spatial resolution of ± 40 µm.  The numerical calculations were

conducted using, without modification, the mixed-mode fracture parameters previously

established for this system.  The mode-I values (for interfacial fracture, as is appropriate

for the mixed-mode loading in a lap-shear test) were Γ Ι ο = 1.0 ± 0.15 kJm-2 a n d

)
σ  = 60 ± 10 MPa, and the mode-II values were ΓΙΙο = 5.4 ± 0.8 kJm-2 and 

)
τ  = 35 ± 5 MPa

[Yang and Thouless, 2001].  As determined from uniaxial tensile tests, the modulus and

yield strength of the aluminum were taken to be 69 GPa and 95 MPa, while the power-
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law hardening exponent, n was taken to be 0.238.  The agreements between the results of

the numerical calculations and the experimental behavior of the joints with different

overlap lengths were generally excellent.  As with the earlier results of Yang and

Thouless [2001], fairly accurate predictions for the loads, displacements and

deformations were obtained.  For example, a summary of the experimental and numerical

results for the dependence of lap-shear strength on overlap length is given in Fig. 12.  It

should be noted that, as discussed earlier, the behavior of the lap-shear geometry is very

sensitive to boundary conditions, and the experimental configuration results in a slight

rotation and, hence, slight misalignment of the grips.  This effect was not mimicked

numerically, and may be responsible for the slight discrepancies in the predicted

strengths that can be seen in Fig. 12.

To complete this work on lap-shear geometries, a second series of experiments

and simulations were done using asymmetrical single lap-shear joints (Fig. 1b) for which

the ratio between the adherend thicknesses provides an additional dimensionless group

that affects the strength of the joint.  These specimens were fabricated in an identical

fashion to the symmetrical set.  The length of the bonded segments, l, was kept at 25 mm,

the overall length of the specimens, L, was kept at 180 mm, and the gauge length for the

displacement measurements was 55 mm for all specimens.  The adhesive thickness was

250 µm, and the thicknesses of the adherends was varied between 1.0 mm and 3.0 mm,

giving a range of thickness ratios, h1:h2, of between 3.0 and 1.0.  Since the two arms were

of unequal thickness, square shims of complementary thickness were bonded to the ends

of each free arm, so that the joints would not be artificially rotated when clamped in the

aligned machine grips.  During the test, the arms of the specimens were pulled apart by a
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tensile testing machine at a constant displacement rate of 0.2 mm.s-1.  A high-resolution

C.C.D. camera was used to observe the deformation, and the crack initiation and

propagation.  In all cases, except for the h1:h2 = (3.0 mm):(2.3 mm) combination, a stable

crack was initiated at the interface between the adhesive and the thinner arm and

propagated roughly halfway along the overlap before the onset of an instability led to

very fast fracture.  The h1:h2 = (3.0 mm):(2.3 mm) specimens exhibited an instability as

soon as the initial crack was formed.  A sequence of four images for a typical example of

stable crack growth with h1:h2 = (2.0 mm):(1.0 mm) is shown in Fig. 13.  It will be

observed that the crack propagation is reminiscent of crack growth in a peel test.  The

thinner arm peels off the thicker one, with a plastic hinge forming at the root of the thin

arm and moving along the bonded region.

Using the same parameters for the cohesive-zone and aluminum described above,

numerical predictions were made for the deformation and load-displacement curves.

These were all in good agreement with the experimental observations.  For example, the

predictions for the deformed shapes of a specimen with h1:h2 = (2.0 mm):(1.0 mm) at

various stages during a test are shown in Fig. 14, and can be compared with the

experimentally observed shapes illustrated in Fig. 13. Figures 15a and 15b show

comparisons between the numerical predictions for the load-displacement curves and the

experimentally observed curves for thickness ratios of h1:h2 = (3.0 mm):(2.3 mm) and

h1:h2 = (2.0 mm):(1.0 mm). In particular, it should be noted that the numerical results

predicted the much higher loads and lower displacements for the thickness ratio of

h1:h2 = (3.0 mm):(2.3 mm).   The onset of crack growth is indicated for both the

experimental and numerical curves.  Both the experimental results and the numerical
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predictions show an instability occurring at the onset of crack growth for a thickness ratio

of h1:h2 = (3.0 mm):(2.3 mm), but a regime of stable crack growth for a thickness ratio of

h1:h2 = (1.0 mm):(2.0 mm).  The peak load in these figures, which corresponds to crack

initiation, depends strongly on the thickness of the adherends.  Similar agreements were

obtained for all the other thickness ratios that were studied.

4. Conclusions

The mechanics of the lap-shear geometry can be quite complicated, even under

conditions when linear-elastic fracture mechanics (L.E.F.M.) are appropriate, owing to a

great sensitivity to geometrical parameters.  When the cohesive strength of the adhesive

is low enough for large-scale deformations within the interfacial layer to become

important, or when non-linear deformations occur within the adherend, a numerical

cohesive-zone approach combining strength and energy considerations is required to

describe the behavior.  The results of such a model have been presented in this paper.  In

the first part of the paper, the results for adherends that remain elastic have been

presented.  Provided the effects of large-scale deformations (caused by both shear and

normal tractions across the interface) are limited, L.E.F.M. results provide a reasonable

approximation to the fracture behavior.  The effects of plastic deformation in the

adherends become important at low values of Eh/ΓIo and σY/E; i.e., when the toughness of

the interface is high, the thickness of the adherends is low, or if the yield stress of the

adherends is low.  Plasticity in the adherends occurs below a critical value of Eh/ΓIo, and

just below this transition the lap-shear strength increases with a decrease in yield

strength,  However, at much lower values of Eh/ΓIo, plasticity tends to reduce the lap-

shear strength because it enhances local peeling deformations and increases the effect of
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mode-I failure.  Very large cohesive stresses may also introduce crack-tip plasticity in the

adherends, but these effects have not been explored for the adhesive-joint applications

considered here.  The final portion of this paper compares the numerical predictions with

experimental observations.  A commercial adhesive / aluminum adherend system was

used for which the cohesive-zone parameters had been determined in earlier work.  These

parameters were used directly in the numerical modeling with no modification at all.  The

resulting predictions showed excellent agreement with the experimental observations.
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Figure captions

Figure 1 (a) Single lap-shear geometry.  (b) Asymmetrical lap-shear geometry.

Figure 2 Load and moments acting on a symmetrical, single-lap-shear specimen.

Figure 3 Configuration and distribution of loads and moments at the (a) low-load,

or stiff, limit for a single-lap-shear joint, and (b) high-load, or compliant,

limit for a single-lap-shear joint.

Figure 4 The variation of energy-release rate with load under plane-stress linear-

elastic fracture-mechanics conditions for a single-lap-shear joint.  For

these calculations, l/h= 60, L/l = 16.5, and a crack of length a/h = 10

extended from each side of the bonded region.  The ends of the specimen

were prevented from rotating.

Figure 5 Schematic illustrations of the mode-I and mode-II traction-separation laws

used for the mixed-mode cohesive-zone calculations.

Figure 6 Plot of normalized strength versus normalized overlap length for elastic,

single-lap-shear joints.  The other dimensionless parameters for this figure

are L/l = 11, 
)
σ / E  = 8.7x10-4, 

) )
τ σ/  = 0.58 and ΓΙΙο/ΓIo = 5.4..

Figure 7 Plot of normalized strength versus normalized total length for elastic,

single-lap-shear joints.  The other dimensionless parameters for this figure

are l/h = 20, 
)
σ / E  = 8.7x10-4, 

) )
τ σ/  = 0.58 and ΓΙΙο/ΓIo = 5.4.
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Figure 8 Plots of load versus displacement for elastic, single-lap-shear joints with

different values of ΓIIo/ΓIo.  The other dimensionless parameters for this

figure are L/l = 11, l/h = 100, 
)
σ / E  = 1.0 x 10-3 and 

) )
τ σ/  = 0.58.  The

three different loading curves superimpose upon one another.  The

displacement for this plot is defined as the projection along the axis of the

specimen of the displacement of two gauge points located on the

centroidal axes of the arms at a distance Lg = 108h apart.  Therefore, the

non-linearity at the origin of the curve arises from this definition of

displacement and from the initial rotation of the specimen.

Figure 9 Plot of normalized strength versus normalized overlap length for elastic-

plastic lap-shear joints.  The other dimensionless parameters for this figure

are L/l = 11, 
)
σ / E  = 8.7x10-4, 

) )
τ σ/  = 0.58, ΓΙΙο/ΓIo = 5.4, 

)
σ σ/ Y  = 0.75 and

n = 0.238.

Figure 10 Plot of normalized strength versus normalized total length for elastic-

plastic lap-shear joints.  The other dimensionless parameters for this figure

are l/h = 20, 
)
σ / E  = 8.7x10-4, 

) )
τ σ/  = 0.58, ΓΙΙο/ΓIo = 5.4, 

)
σ σ/ Y  = 0.75 and

n = 0.238.

Figure 11 Plots of normalized strength versus Eh/ΓΙο for elastic-plastic lap-shear

joints for different values of σY/E.  The dimensionless parameters for this

figure are L/l = 11, l/h = 100, 
)
σ / E  = 10-3, 

) )
τ σ/  = 0.58, ΓΙΙο/ΓIo = 5.0 and

n = 0.238.  (a) Shows the behavior over a wide range of values for Eh/ΓIo.

(b) Shows the behavior at the higher end of the range.  Superimposed on
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both of these plots are the numerical predictions for the strength of a

perfectly elastic lap-shear joint with the same cohesive-zone and

geometrical parameters.

Figure 12 A comparison between the measured and numerically-predicted peak

loads for a series of symmetrical lap-shear joints made with 2.0 mm thick

aluminum adherends bonded with a 250 µm thick layer of a commercial

adhesive (Ciba Specialty Chemicals XD4600).  There was no initial crack

in either the numerical simulations or in the experimental configuration.

However, Teflon® tape was used to prevent the adhesive from bonding

outside the overlap region.

Figure 13 A sequence of images showing the propagation of a stable crack in a lap-

shear geometry with h1:h2 = (2.0 mm):(1.0 mm).  (a) The initial state of

the specimen.  (b) An advanced state of plastic deformation of the thinner

arm prior to crack initiation.  A plastic hinge has formed near the overlap

area.  (c) Initial stage of crack growth, which occurs after the thinner arm

has been drawn significantly.  (d) A steady-state crack, advancing as the

plastic hinge formed by the thinner arm moves along the interface of the

adhesive layer.

Figure 14 Images showing the numerical predictions for the sequence of deformation

and crack growth in an asymmetric, single, shear-lap joint that has a

thickness ratio of h1:h2 = (2.0mm:1.0 mm).  The parameters used in these

calculations were appropriate for the experimental system of Figure 13.
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Figure 15 The load-displacement curve for asymmetrical lap-shear joints with (a) a

thickness ratio of h1:h2 = (2.0 mm):(1.0 mm) and (b) a thickness ratio of

h1:h2 = (3.0 mm):(2.3 mm).  The displacement is defined as the projection

along the axis of the specimen of the displacement of two gauge points

located 55 mm apart on the centroidal axes of the arms.  There was no

initial crack in either the numerical simulations or in the experimental

configuration; Teflon® tape was used to prevent the adhesive from

bonding outside the overlap region.
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