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Abstract

A method is proposed for estimating the effect of broad spectrum surface
roughness on the adhesion between elastic bodies. At each length scale, the
effect of fine scale roughness is modelled by a modified traction law whilst
an added coarse scale increment is described by a probability distribution of
mean gap as modified by elastic deformation. Instabilities occur for relatively
smooth surfaces whose linear dimensions are sufficiently large to support
long wavelength perturbations. The method is validated by comparison with
direct numerical calculations, in the range where this is practicable. It is
then applied to power-law spectra with various values of height variance
and lower wavenumber cutoff. The results show that the effect of roughness
is dominated by the height variance m0, but at lower wavenumber elastic
deformation reduces the dependence on m0, except near the unstable range.
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1. Introduction

If the surfaces of two contacting bodies were perfectly smooth and plane,
the tractions between them would be determined by a potential law char-
acterizing the physics of the intermolecular forces, and in particular would
exhibit a range of separations in which these tractions would be attractive.
However, the inevitable presence of surface roughness weakens the adhesive
tractions. Indeed, Fuller and Tabor [1] showed that even minor roughness
can seriously degrade the adhesion between contacting bodies.
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Many researchers have developed models to predict the effect of surface
roughness on contact. Since contact is expected to be concentrated near the
highest points of the two surfaces, many of these theories depend on approx-
imating the rough surface profile by a distribution of asperities, which are
then assumed to act independently. Greenwood and Williamson [2] showed
that the behaviour predicted by such a model is largely determined by the
height and local curvature distribution of the asperities and considerable ef-
fort has been expended in extracting this information from surface profile
measurements [3]. However, high resolution measurements of surface pro-
files show that roughness exhibits multiscale features over several decades of
length scale [4]. This implies that if an asperity is defined as a point higher
than its nearest neighbours, the asperity parameters and some of the pre-
dictions of the resulting model are sensitive to the resolution of the surface
measuring instrument.

An alternative approach, pioneered by Persson [5], is to characterize the
rough surface contact problem by the probability distribution function [PDF]
Φ(p, k) for the contact pressure p at a random point, when the power spectral
density [PSD] P (k) of the surface roughness is truncated at some wavenumber
k. The modification of Φ(p) due to the introduction of a small increment
(k, k + ∆k) of the PSD is then estimated. The PDF Φ(p) due to the entire
PSD can then be determined by iteration or integration. This technique was
introduced earlier by Ciavarella et al. to investigate the contact of a surface
defined by the Weierstrass profile [6].

In a previous paper [7], we introduced a modification to Persson’s theory
in which we (i) tracked the PDF Φ(g) for the local separation [gap] g between
the surfaces rather than the contact pressure, and (ii) determined the effect
of an infinitesimal increment in the PSD using a linear perturbation of the
traction law between plane surfaces [8] about the local value of g. The reason
for developing this theory in terms of g was that the local traction σ0[= −p]
is always a unique function of g, whereas if a tensile range [σ0 > 0] exists, g is
not a unique function of σ0. This is illustrated for the Lennard-Jones traction
law in Figure 1, but it is clearly the case for any traction law, including those
we shall use in the following analysis for the mean traction between rough
surfaces.

2



Figure 1: The Lennard-Jones interface traction law. The separation g is
normalized by the equilibrium spacing ε between the surfaces.

The method described in [7] gives predictions of the relation between the
mean traction σ̄ and mean gap ḡ that agree closely with direct numerical sim-
ulations for cases where the roughness PSD is restricted to high wavenumbers
k. However, it cannot be extended to a broader spectrum because the in-
cremental problem is unstable for wavenumbers that are low enough for the
maximum negative slope of the traction law to exceed the positive stiffness
of the contacting bodies subjected to a spatially sinusoidal traction. This is
a real physical effect. Ghatak et al.[9, 10] have shown experimentally that
for thin elastic films, nominally uniform contact can bifurcate into regular
patterns. An energetic analysis of this phenomenon [11, 12] predicts instabil-
ities for layers of any thickness, including the half space, if the wavelength is
sufficiently large [i.e. k sufficiently small]. An arbitrarily small perturbation
of the given wavenumber [i.e. any non-zero content in the PSD in that range]
is then sufficient to trigger the instability.

In this context we should note that practical contact problems necessar-
ily involve bodies of finite dimensions, and the description of the surface in
terms of a PSD [and particularly a power-law PSD] is then meaningful only
for wavelengths much smaller than the linear dimensions of the macroscopic
contact area. Practical surfaces are likely to exhibit stochastic and/or deter-
ministic deviations from the plane outside this range, and these can also be
expected to influence the contact morphology and hence the adhesive force
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law.

Figure 2: Partition of the power spectral density [PSD] into ‘fine scale’ and
‘coarse scale’ components.

In the present paper, we shall overcome this difficulty by applying the
technique from [7] sequentially. To illustrate the concept, Figure 2 shows a
representative PSD in the range k1 < k < k2 which has been arbitrarily sepa-
rated into coarse-scale [k1 < k < k0] and fine-scale [k0 < k < k2] components.
Suppose that k0 is sufficiently large to permit the method of reference [7] to
be used to determine the relation σ̄(ḡ) for a plane surface containing only
the fine scale roughness. We can then consider the entire PSD of Figure 2 as
defining a surface whose PSD contains only the coarse scale roughness, but
for which the interface traction law is σ̄(ḡ) rather than σ(g). In other words,
at this stage, the coarse scale is modelled explicitly, but the effect of the fine
scale is reflected in a modified traction law. Since σ̄(ḡ) will generally have
a lower maximum negative slope than σ(g) [the fine-scale roughness attenu-
ates the attractive tractions], this allows us to proceed to lower wavenumbers
without encountering an instability in the incremental problem.

2. Theory

If the force between two molecules is assumed to follow the Lennard-Jones
6-12 law, the traction σ0(g) between two bodies bounded by plane surfaces
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and separated by a distance g is given by

σ0(g) =
8∆γ0

3ε

(
ε3

g3
− ε9

g9

)
, (1)

[8], where ∆γ0 is the interface energy per unit area and ε is the equilibrium
spacing. The maximum tensile traction then occurs at g = 31/6ε ≈ 1.201ε
and is

σmax
0 =

16∆γ0

9
√

3ε
. (2)

We shall use these results in the following derivations, but we note that the
same method can be applied to any other traction law for which the function
σ0(g) is known or assumed.

2.1. Probability function for gap
Suppose that a rough surface is placed near to a plane surface such that

the mean gap is g, and that, in this configuration, the probability of a given
point having a local gap s is Φ(s|g). The mean traction σ(g) between the
surfaces can then be found by convolution with the traction law as

σ(g) =

∫ ∞
0

Φ(s|g)σ0(s)ds . (3)

We shall refer to σ(g) as the effective traction law for a surface of the given
roughness. It corresponds to the traction law that would be measured ex-
perimentally for nominally plane but actually slightly rough surfaces.

We next extend the definition of the conditional PDF such that Φ(s|g; k1, k2)
denotes the conditional probability Φ(s|g) for the case where the roughness
is defined by that part of a given PSD P (k) in the range k1 < k < k2. If
P (k) is partitioned into two ranges as in Figure 2, it then follows that

Φ(s|g; k1, k2) =

∫ ∞
0

Φ(s|t; k0, k2)Φ(t|g; k1, k0)dt , (4)

since points that are separated by t for the PSD (k1, k0) will be distributed
by the conditional probability Φ(s|t; k0, k2) when the roughness spectrum
(k0, k2) is added.

If we now apply the operator (3) to both sides of equation (4), we obtain

σ(g; k1, k2) =

∫ ∞
0

∫ ∞
0

Φ(s|t; k0, k2)Φ(t|g; k1, k0)σ0(s)dtds

=

∫ ∞
0

Φ(t|g; k1, k0)σ(t; k0, k2)dt (5)
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after changing the order of integration, where

σ(t; k0, k2) =

∫ ∞
0

Φ(s|t; k0, k2)σ0(s)ds (6)

is the effective traction law for a surface containing only the roughness in
(k0, k2).

Clearly this argument can be applied sequentially to a PSD partitioned
into any number N of tranches. At each stage, the effective traction law
determined up to that point is used in place of σ0(g) to determine the new
traction law when the next tranche is included.

2.2. Conditional probability

An essential stage in the procedure is the determination of the conditional
probability distribution Φ(s|g) given the PSD P (k) when k ∈ (ki−1, ki) and
the most recent effective traction law σi(g) = σ(g; ki, kN). If the added
roughness is sufficiently small, this problem can be solved as in [7], but using
a local linear perturbation of the non-linear function σi(g), in combination
with the elastic solution for a half-space1 loaded by a prescribed sinusoidal
traction.

The derivations are given in [7] and are omitted here in the interests of
brevity. We obtain

Φ(t|g; ki−1, ki) =
1√

2πV
exp

(
−(t− g)2

2V

)
, (7)

where the variance

V = 2π

∫ ki

ki−1

kP (k)

[
1 +

2

E∗k
∂σi
∂g

]−2

dk , (8)

1

E∗
=

(1− ν2
1)

E1

+
(1− ν2

2)

E2

, (9)

and Ej, νj, j = 1, 2 are the Young’s modulus and Poisson’s ratio respectively
for body j. These results reduce to equations (14–17) of [7] if σi(g) is replaced
by the Lennard-Jones law σ0(g) of equation (1).

1Notice that the method described here is easily generalized to the problem of a thin
elastic layer by replacing the elastic term in equation (8) by the solution corresponding to
sinusoidal loading of the layer.
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3. Numerical solution and convergence

The procedure described above [and in particular equations (7, 8)] de-
pends on a linearization of σi(t) about t = g, which should be a good ap-
proximation provided that

V
∂2σi
∂g2

�

[
∂σi
∂g

+
E
∗
k

2

]
. (10)

This in turn requires that the intervals (ki−1, ki) be sufficiently small, and
that appropriate values can be chosen based on a conventional convergence
study. However, the condition (10) suggests that larger intervals can be
used at smaller values of k to increase computational efficiency. Numerical
experiments with several different PSDs showed that converged results can
be obtained by choosing ki−1 such that

E(g) ≡ 2m0(∆k)

E∗ki

∣∣∣∣∂2σi
∂g2

∣∣∣∣ [1 +
2

E∗ki
∂σi
∂g

]−3

< 2× 10−5 (11)

for all g, where

m0(∆k) = 2π

∫ ki

ki−1

kP (k)dk (12)

is the height variance associated with the tranche ∆k = (ki−1, ki) of the
PSD. If the PSD P (k) has power-law form corresponding to a fractal dimen-
sion D, the criterion (11) defines a set of values ki which are approximately
proportional to iλ at small wave numbers, with λ ≈ 7− 2D.

3.1. Comparison with direct numerical computations

The strength of the present method is that it can be used for broadband
spectra where the ratio of upper to lower wavenumber kN/k1 is relatively
large. Direct numerical solutions [e.g. boundary-element or finite-element
studies] are limited to values of this ratio of the order of 100. Furthermore,
they can only give results for particular random realizations of the underly-
ing statistics, requiring multiple calculations to yield appropriate averages.
However, as a check on the present procedure, we compared our results with
numerical solutions using the ‘Green’s function molecular dynamics’ [GFMD]
code developed by Persson and Scaraggi [13] for a PSD of power-law form
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with a fractal dimension D = 2.2, k̃1 = 0.8, k̃2 = 8.0 and height variace
m0 = 0.66ε2, where the dimensionless wavenumber is defined by

k̃ = χk with χ =
3ε2E

∗

16∆γ0

. (13)

Figure 3 shows the predicted relation between the normalized mean interface
traction σ/σmax

0 and gap g/ε [solid black line] and numerical simulations using
several realizations of the same PSD [thin red lines]. The present prediction
lies well within the variance of these realizations, except in a range very close
to the equilibrium gap, where the theoretical line is lower than the mean of
the simulations.

Figure 3: Traction law σ(g) for contact between a nominally plane rough
surface and a flat. The roughness spectrum is a power-law with fractal di-
mension D = 2.2, dimensionless wavenumbers 0.8 < k̃ < 8.0 and height
variance m0 = 0.4356ε2. The solid line represents the predictions of the
present theory and the thin red lines represent numerical solutions using the
‘GFMD’ code from [13].

For practical applications, interest is focussed mainly on the effective
interface strength σmax [the maximum value of the traction in Figure 3] and
the effective interface energy ∆γeff [the area underneath the curve in Figure
3]. This latter term is the work per unit area needed to separate the rough
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surfaces from the equilibrium separation. The analytical predictions for these
quantities using the present theory are σmax = 0.41σmax

0 and ∆γeff = 0.88∆γ0,
whereas a curve σ(g) averaged over those from 12 numerical realizations gives
σmax = 0.43σmax

0 and ∆γeff = 0.89∆γ0 respectively.
As a further check, Figure 4 compares our predictions for the pull-off

traction σmax for the somewhat broader PSD defined by Figure 18 of [13]
with numerical [GFMD] calculations and theoretical predictions both taken
from Figures 15 and 17 of the same paper, for four different values of the
interface energy ∆γ for plane surfaces. The agreement between the present
theory and the GFMD calculations is clearly very satisfactory.

0.1 0.15 0.2 0.25 0.3 0.35 0.4
30

35

40

45

50

GFMD
Present theory

Theory of Persson and Scaraggi

Figure 4: The solid line shows the predicted pull-off traction σmax for the
PSD defined by Figure 18 of [13], which has fractal form with D = 2.2 in
the range kr < k < 8kr and is constant in kr/4 < k < kr, where the roll-
off wavenumber kr = 106 m−1. The RMS roughness height is hRMS = 0.52
nm. Theoretical predictions [dotted line] and numerical [GFMD] calculations
[dashed line] from [13] are shown for comparison. [This figure is plotted with
dimensional axes to facilitate comparison with [13]].

4. Results

The comparisons in Section 3.1 show that the proposed solution gives
good predictions of the effect of surface roughness on adhesive traction pa-
rameters, so we now apply the method to broader roughness spectra, for
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which direct numerical calculations would be very computationally inten-
sive. In the interests of generality, we present the results in terms of the
dimensionless wavenumber k̃ of equation (13).

We restrict attention to power-law PSDs, which can be characterized
by the lower and upper dimensionless wavenumbers k̃1 and k̃2, the fractal
dimension D and the dimensionless height variance

m̃0 =
m0

ε2
=

(
hRMS

ε

)2

. (14)

Figure 5 shows the effect of height variance on σmax and ∆γeff , for a fractal
PSD with k̃1 = 0.04, k̃2 = 8 and D = 2.2. In this range, m̃0 has a dramatic
effect on both these measures of adhesion. Changing m̃0 by a factor of 200
[from 0.5 to 100 and hence hRMS from 0.7ε to 10ε] reduces ∆γeff by a factor
of 1,000 and σmax by a factor of 25,000.

The dashed line in Figure 5 represents the analytical prediction for σmax

defined by Ciavarella [14] based on a ‘Bearing Area’ approximation to the
adhesive tractions. This method underestimates σmax [perhaps because of
the empirical factor in the bearing area calculation], but tracks the shape of
the curve well except at larger values of m̃0.

Figure 5: The effect of dimensionless height variance m̃0 on σmax and ∆γeff

for fractal roughness with D = 2.2 and k̃1 = 0.04, k̃2 = 8. The dashed line
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shows the corresponding prediction of Ciavarella’s ‘Bearing Area Method’
[14] for σmax.

We showed in [7] that the gap distribution Φ(g) and hence the effective
traction law σ(g) for a fractal surface converge as the upper cutoff k̃2 →∞,
since eventually the amplitudes of any added waves are small compared with
the length scale of the intrinsic force between the surfaces. Results from
the present analysis confirm that changing k̃2 has relatively little effect on
σmax and ∆γeff once it approaches a practical limit of the atomic scale. By
contrast, the lower cutoff k̃1 has a significant effect, as shown in Figure 6,
which plots these quantities as functions of k̃1 for fixed values of m̃0, k̃2 and
D.

Figure 6: The effect of lower cutoff k̃1 on σmax and ∆γeff for fractal roughness
with k̃2 = 8, m̃0 = 100 and D = 2.2.

This result has a simple physical explanation. The amplitude of the trac-
tion distribution needed to flatten a single sine wave elastically is proportional
to the surface slope, so the short wavelength roughness is very difficult to
deform. The behaviour in this range is dominated by the interfacial traction
law and the height distribution, and is therefore well characterized by m0.
This is the range described by Persson and Scaraggi [13] as the ‘DMT-limit’.
However, at lower wavenumbers, elastic deformation becomes increasingly
dominant, and the effect of coarse scale roughness tends to that predicted
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using a hard contact theory. We also note that for a given roughness profile, a
reduction in elastic modulus reduces χ in equation (13). This in turn reduces
k̃1 and hence leads to increased values of σmax and ∆γeff [i.e. enhanced ad-
hesion], as shown in Figure 6. Of course k̃2 will also be reduced but we have
already shown that the results are insensitive to this parameter provided it
is sufficiently large.

4.1. Effect of fractal dimension

All the results presented above are for a surface PSD with fractal dimen-
sion D = 2.2. Reducing D for given values of the other parameters has the
effect of moving contributions from the variance m̃0 towards lower wavenum-
bers, where we have already seen the effect of roughness on both σmax and
∆γeff is somewhat reduced. This tendency is confirmed by Figure 7, for
k̃1 = 0.05, k̃1 = 8, m̃0 = 0.4356. However, the effect is relatively modest,
implying that the results for D = 2.2 should be reasonably representative for
other practical fractal dimensions.

Figure 7: The effect of fractal dimension D on σmax and ∆γeff for fractal
roughness with k̃1 = 0.05, k̃2 = 8 and m̃0 = 66.

4.2. Contour plot

Each point in Figures 5 and 6 involves the calculation of the effective trac-
tion law σi(g) for the PSD truncated at at a progressively lower wavenumber
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cutoff ki and therefore provides implicit information about the pull-off trac-
tion σmax and the effective interface energy ∆γeff at a series of points along
a line in (m0, k1)-space. These data were used to construct the contour plots
of Figure 8 [for σmax] and Figure 9 [for∆γeff ] for power-law PSDs with k̃2 = 8
and D = 2.2.

Figure 8: Contour plot of normalized pull-off traction σmax/σmax
0 as a function

of k̃1, m̃0 for fractal roughness with k̃2 = 8 and D = 2.2. The inset compares
contours in the dashed rectangle from the present theory [solid lines] with
those from the GFMD code [dashed lines] using a single realization for each
point.

The bottom left region of each of these figures [below the dashed line]
defines parameter values in which the reduction of maximum negative slope
in the effective traction law σ̄(ḡ) due to surface roughness is insufficient to
prevent instability. In this range, if the linear dimensions of the surface are
sufficiently large to support a sine wave of the given value of k̃1, we can
anticipate periodic structures of the type documented by Chaudhury and
Shenoy [9, 10, 11, 12], even if the roughness PSD contains no waves of this
wavelength.
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Figure 9: Contour plot of normalized effective interface energy ∆γeff/∆γ0

as a function of k̃1, m̃0 for fractal roughness with k̃2 = 8 and D = 2.2.One

consequence of these instabilities is that there then exist two stable equilib-
rium states for a given value of mean separation, so that the loading and
unloading curves will generally be different. This implies hysteretic energy
loss during a loading/unloading cycle, and since different regions encounter
the instability at different points in the loading cycle, the unloading cycle and
the hysteretic loss will depend on the maximum compressive traction during
loading. Results of this kind have been documented in asperity models[15]
and in numerical models [16]. One method of quantifying these effects would
be to use a partition of the PSD as shown schematically in Figure 2, such
that inclusion of the fine scale alone defines a point in the stable range in
Figures 8,9 and hence leads to a single-valued traction law. This law could
then be used in a numerical solution of the coarse-scale problem. This is a
subject of ongoing research.

The contours in these figures start to curve backwards as the unstable
region is approached, particularly for the pull-off traction σmax in Figure 8.
This implies a greater reduction of adhesion in this region as k1 is reduced.
Physically this arises because long wavelength sinusoids experience relatively
large amplitudes of elastic deformation, which increase the variance of the
local gap g in regions where the traction law has a negative slope. In effect,
the PDF Φ(g) is already starting to develop the bimodal form associated
with the unstable patterns described in [9, 10, 11, 12].
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To ensure that these results were not the result of a fictitious numeri-
cal instability, we ran numerical [GFMD] examples in the range defined by
the dotted rectangle in Figure 8. In this range, numerical calculations are
computer-intensive but not prohibitively so. Since each run of the GFMD
code defines only one realization of the underlying statistics, a precise check
on the theory is not possible, but the predicted pull-off traction for all the
cases analyzed were within ±10% of the predicted values. More importantly,
the GFMD results confirm that the pull-off traction falls with decreasing
k1 near the stability boundary, implying that the contours have the shape
shown in Figure 8.

5. Conclusions

The paper presents an efficient procedure for predicting the effect of broad
sprectrum surface roughness on the effective adhesive traction law — i.e. the
relation between nominal adhesive traction and mean gap. Results agree well
with the averages of direct numerical simulations for the relatively narrower
spectra over which such simulations are computationally practicable.

Contour plots are presented for the nominal pull-off traction and effective
interface energy for broader power-law spectra as a function of lower cutoff
wavenumber and height variance. The calculations show that instabilities
occur for relatively smooth surfaces whose linear dimensions are sufficiently
large to support long wavelength perturbations. This is a physical effect
that has been documented both experimentally and theoretically. Near the
unstable range, a greater reduction in adhesive effects is predicted and this
behaviour has been confirmed for relatively narrow spectra using numerical
simulations.

At large wavenumbers [short wavelengths], the effect of roughness on ad-
hesion is well-characterized by the height variance m0, but at lower wavenum-
bers elastic effects become more important and incremental contributions to
m0 have less effect, except near the unstable range.
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