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Abstract

The rate at which fluid drains from a collapsing channel or crack depends
on the interaction between the elastic properties of the solid and the fluid
flow. The same interaction controls the rate at which a pressurized fluid can
flow into a crack. In this paper, we present an analysis for the interaction
between the viscous flow and the elastic field associated with an expanding or
collapsing fluid-filled channel. We first examine an axisymmetric problem for
which a completely analytical solution can be developed. A thick-walled elastic
cylinder is opened by external surface tractions, and its core is filled by a fluid.
When the applied tractions are relaxed, a hydrostatic pressure gradient drives
the fluid to the mouth of the cylinder. The relationship between the change
in dimensions, time and position along the cylinder is given by the diffusion
equation, with the diffusion coefficient being dependent on the modulus of the
substrate, the viscosity of the fluid, and the ratio of the core radius to the
exterior radius of the cylinder.

The second part of the paper examines the collapse of elliptical channels
with arbitrary aspect ratios, so as to model the behavior of fluid-filled cracks.
The channels are opened by a uniaxial tension parallel to their minor axes, filled
with a fluid, and then allowed to collapse. The form of the analysis follows that
of the axisymmetric calculations, but is complicated by the fact that the aspect
ratio of the ellipse changes in response to the local pressure. Approximate an-
alytical solutions in the form of the diffusion equation can be found for small
aspect ratios. Numerical solutions are given for more extreme aspect ratios,
such as those appropriate for cracks. Of particular note is that, for a given
cross-sectional area, the rate of collapse is slower for larger aspect ratios. With
minor modifications to the initial conditions and the boundary conditions, the
analysis is also valid for cracks being opened by a pressurized fluid.
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interactions
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1 Introduction

Nano-fluidic channels fabricated by cracking a thin film supported on an elastic

substrate are used for biological applications including DNA and chromatin anal-

yses [1, 2, 3, 4], cell patterning [5, 6, 7], and biomimetic systems [8]. The fabrication

of this type of nanochannel is fairly easy and cost-effective: an array of parallel chan-

nels is created by applying tension to a layered structure. This concept has been

greatly enhanced by the development of techniques for controlled cracking, in which

micro-features are used to initiate and propagate cracks at desired locations [9, 10],

so that there are many identical channels on one substrate. After fabrication, the

channels can be reversibly opened and closed by the application and relaxation of an

applied tensile strain. In particular, opening the channels by applying a strain allows

single strands of DNA and chromatin to be loaded into the channels. Subsequent

narrowing of the channels by relaxing the strain provides the confinement that, ac-

companied by nano-scale squeezing flow, can linearize the DNA and chromatin [4].

This present work was motivated by the need to understand the interaction between

a collapsing elastic channel and a fluid contained within it, so as to help develop the

optimal design of such channels and the operation of them.

Since the channels are nano-scale, three-dimensional structures beneath a surface,

characterization of their shape and size is difficult. Scanning-electron microscopy and

laser confocal-microscopy have been used to characterize surface cracks [1, 4, 10]. The

results provide some reference for the shape and size of tunneling cracks, but don’t

reflect the real profiles of liquid-filled nanochannels. Electrical-impedance methods

have been used to determine the average cross-sectional area of nanochannels [3, 4].

The accuracy of these results is greatly affected by the choice of model used to in-
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terpret them, and by ion depletion that can occur during the experiments. Photo-

activated localization microscopy has been used to perform super-resolution imaging

of nanochannels [11]. While this technique provides high-resolution images, it is

limited to two-dimensions, and cannot track the time-dependent narrowing process,

because it takes an average of signals over time. Hence, the need to use computational

methods to understand the time-dependent narrowing of fluid-filled nanochannels in

elastic substrates.

Existing analyses for flow in elastic channels fall into two groups: (i) flow driven

by prescribed wall movements, and (ii) collapse of an elastic wall responding to

established flow. Analyses for the first group, where flow is driven by the move-

ment of a channel wall, were developed for studies of peristaltic transport of bio-

fluids [12, 13, 14, 15] and membrane-activated microfluidic pumps [16, 17, 18, 19].

The elasticity of the channel walls in these studies was neglected, and flow was as-

sumed to be driven by prescribed displacements. In the analyses for the second group

of flow-induced collapse [20, 21], the fluid flow was prescribed by steady-state flow

being established upstream and downstream. A final balanced state of the collapsed

channel was solved by iterating the movement of the interface at different positions

along the tube until the steady-state configuration was achieved. Since only steady-

state conditions were considered, evolution of the channel profile was not addressed.

Our analysis differs from these existing analyses in that it studies the transient process

of channel narrowing by solving the stress field for an elastic channel, and coupling

the stresses to gradients in the fluid pressure and the resultant flow. Time-dependent

channel profiles naturally evolve from this approach.

This paper consists of two parts. In the first part, we present an analytical result
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for a thick-walled axisymmetric tube that is expanded by external tensile tractions,

filled with a liquid, and then collapses when the external tractions are removed. This

provides insight into the mechanics of the process, and shows how the channel nar-

rows in a non-uniform fashion, starting from one end, and proceeding towards the

center of the tube. In the second part of the paper, we repeat this process to analyze

the collapse of elliptical channels after relaxation of a uniaxial tension. While the

equations for this second portion of the paper are developed analytically, they have

to be solved numerically. However, they provide more general solutions, and a more

realistic approximation to the experimental configuration that originally motivated

the study.

2 Axisymmetric tubes

To provide insight into how a fluid-filled elastic channel collapses, we first develop an

analytical result for the axisymmetric problem of a cylindrical elastic tube. The tube

is made from an incompressible elastic material with a modulus of E. The fluid is

also incompressible with a visocity of η. The inner radius of the tube is R1, and the

outer radius is R2. These have values R1o and R2o when the cylinder is fully relaxed.

It is assumed in the following calculations that changes in R1 and R2 are always small

compared to R1o and R2o . The tube has a half length of L, which is much greater

than the other two dimensions. Since the problem is symmetric about the center

of the tube, half of the geometry is considered, as shown in Fig. 1(a). Cylindrical

coordinates of r, θ, z are employed. The radial and hoop stresses in a thick-walled
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tube are described by the Lamé equations:

σrr = C1 + C2/r
2

σθθ = C1 − C2/r
2 (1)

where C1 and C2 are constants which can be calculated from the boundary conditions

for the particular problem being considered, and r is the radius at any point.

The analysis is performed in several steps. First the tube is expanded by the

application of a uniform traction, σo, on the external surface as shown in Fig. 1(b).

The radius of the inner core is calculated under these applied tractions. In particular,

the volume change of the core for an element of length δL is calculated. It is assumed

that fluid flows into the cylinder under these conditions, so that it fills the core at

the ambient pressure. The remote tractions are then released, causing the tube to

exert a pressure Po on the fluid on the core. This pressure is found by determining

the radial compressive tractions that would need to be applied to the internal sur-

face of the cylinder core to produce the volume change calculated above, subject to

an additional set of assumptions that the axial displacements of the cylinder are all

planar, and there is no net axial force acting on the tube and fluid. (In practice, this

is done in two steps: a plane-strain calculation with the internal radial compressive

tractions of Po, followed by the application of a uniform axial tensile load of πPoR2
1o .

Po is found by equating the total volume change associated with these calculations

to the volume change induced by the external tractions, σo.)

Once the initial pressure away from the exit of the tube has been calculated, the

fluid flow is calculated by assuming (i) incompressible Poiseulle flow to the exit where

the pressure of the fluid is at ambient pressure, (ii) compatibility between the local

5



fluid pressure and the local volume of the core, (iii) plane displacements, and (iv) no

net axial load. These calculations are demonstrated analytically for the cylinder to

illustrate the process. The same concepts form the basis of the subsequent calcula-

tions for elliptical channels.

2.1 Initial expansion of the tube

The tube is initially expanded by applying uniform tensile tractions, σo, to the outer

surface of the tube. Consider a thin slice of the cylinder of length δL, opening un-

der plane-displacement conditions1. The problem can be analyzed by superposition

of the solutions to two problems: (i) plane-strain deformation under exterior radial

tractions, and (ii) deformation from a uniform tensile load to satisfy the condition of

no net axial force.

The boundary conditions for the first, plane-strain problem are

σrr = σo (at r = R2o),

σrr = 0 (at r = R1o),

and εzz = 0 . (2)

Solving the Lamé equations (Eqn. 1) with these boundary conditions, we find that

C1 = ρ2oσo/(ρ2o − 1) and C2 = −ρ2oσoR2
1o/(ρ

2
o − 1), where ρo = R2o/R1o . The axial

stress induced in plane strain is found from Hooke’s Law, with �zz = 0. The resultant

1This is the assumption that plane sections perpendicular to the axis of the channel remain plane,
and is enforced with the additional constraint of no net axial load. It is this second requirement
that distinguishes plane-displacement boundary conditions from plane-strain conditions.
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stresses are

σrr =
ρ2o

ρ2o − 1

�
1−

R2
1o

r2

�
σo ,

σθθ =
ρ2o

ρ2o − 1

�
1 +

R2
1o

r2

�
σo ,

σzz =
ρ2o

ρ2o − 1
σo . (3)

Integrating the axial stress over the cross-section of the tube gives a net axial

tensile load of

Fz = πR2
1oρ

2
oσo , (4)

resulting from this first step in the calculations. To ensure a plane-displacement

solution with no net axial tension, the stress and strain fields resulting from the

application of a uniform compressive load of this magnitude need to be added to the

previous solutions. This results in an additional stress component of

σzz = − ρ2o
ρ2o − 1

σo , (5)

with all the other additional stresses being zero. Therefore, by linear superposition,

the stress and strain fields resulting from the channel opening process are:

σrr =
ρ2o

ρ2o − 1

�
1−

R2
1o

r2

�
σo ,

σθθ =
ρ2o

ρ2o − 1

�
1 +

R2
1o

r2

�
σo ,

σzz = 0 ,

εrr =
ρ2o

2(ρ2o − 1)

�
1−

3R2
1o

r2

�
σo

E
,

εθθ =
ρ2o

2(ρ2o − 1)

�
1 +

3R2
1o

r2

�
σo

E
,

εzz = − ρ2o
ρ2o − 1

σo

E
. (6)
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It transpires that this solution is identical to what would have been obtained with

an assumption of plane stress along the axis of the cylinder. However, the full set

of calculations has been presented, because this equivalence does not generally hold,

and a simple calculation illustrates the concept that is necessary for the elliptical

calculations that follow.

The volume of the core of an element of the cylinder of length δLo is given by

Vo = πR2
1oδLo. The change in volume of the element is given by

∆V

Vo
= 2

∆R1

R1o

+
∆δL

δLo
= 2�θθ|r=R1 + �zz|r=R1 , (7)

where

�θθ|r=R1 = 2
ρ2o

ρ2o − 1

σo

E
,

�zz|r=R1 = − ρ2o
ρ2o − 1

σo

E
. (8)

This can be written as
∆V

Vo
= 3

ρ2o
ρ2o − 1

σo

E
. (9)

2.2 Relaxation of the applied tractions

The next step in the calculations is to compute the initial state of the cylinder and

fluid immediately after the applied tractions are removed, but before any fluid can

begin to flow out of the core. Since the fluid is incompressible, volume must be

conserved. This means that if the radius of the core changes instantaneously upon

removal of the external tractions, the length of the tube must increase by a corre-

sponding amount. The unknown parameter that needs to be calculated is the initial
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pressure in the fluid after the external tractions have been removed, Po. This is calcu-

lated by determining the change in the volume of the core if the cylinder supports an

internal pressure Po, assuming plane-displacement conditions and no net axial force

on the system2, and equating this change in volume to that given by Eqn. 9. The

details of the calculation are described below, since the steps are identical to those

that follow for the more complicated case of an elliptical channel.

As described in the previous section, the solutions to the plane-displacement prob-

lem can be analyzed using linear superposition of two problems: a plane-strain prob-

lem, and a problem with a uniform axial stress. The plane-strain problem is solved

using the following boundary conditions:

σrr = 0 (at r = R2o),

σrr = −Po (at r = R1o),

and εzz = 0 . (10)

The Lamé equations and Hooke’s Law can be used with these boundary conditions

2The net axial force on any section must be zero since there is no fluid pressure at the outlet
and there are no surface tractions on the ends of the cylinder. However, since the core supports a
hydrostatic pressure, the solid material must support an equivalent tensile force. This tensile force
develops in the solid as a result of shear stresses at the solid/fluid interface associated with the flow
of the fluid.
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to show that the corresponding stresses and strains are

σrr =
Po

ρ2o − 1

�
1−

R2
2o

r2

�
,

σθθ =
Po

ρ2o − 1

�
1 +

R2
2o

r2

�
,

σzz =
Po

ρ2o − 1
,

εrr = − 3Po

2E(ρ2o − 1)

R2
2o

r2
,

εθθ =
3Po

2E(ρ2o − 1)

R2
2o

r2
,

εzz = 0 . (11)

Two components need to be added to the axial stress given above to ensure both

no net axial force and plane-displacement conditions. The first is a compressive force

of magnitude −πR2
1oPo to negate the effect of the axial stress σzz in Eqn. 11. The

second is a tensile force of magnitude πR2
1oPo to balance the hydrostatic pressure

within the fluid. Obviously, both of these cancel, leaving the stress and strains of

Eqn. 11 as the full solution for the second part of the problem.

The change in the volume of the core associated with this stress state can be

calculated using Eqn. 7 and the strains at r = R1:

�θθ|r=R1 =
3ρ2o

2(ρ2o − 1)

P

E
,

�zz|r=R1 = 0. (12)

This volume change is given by

∆V

Vo
=

3P

E

ρ2o
ρ2o − 1

. (13)
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Equating this equation to Eqn. 9, it can be seen that the initial pressure in the core,

Po, must be equal to σo. This provides the initial hydrostatic pressure in the core

of an incompressible elastic cylinder, before any flow out of the ends can occur, and

is the starting point for the flow calculations of the next section. Again, this simple

result is a feature of the cylindrical symmetry assumed. It doesn’t hold for the general

case of elliptical channels that will be considered later.

2.3 Viscous flow of the core

As shown above, upon relaxation of the external tractions, the fluid in the core

develops a hydrostatic pressure of Po = σo. The difference between this pressure

and the ambient pressure will cause the fluid to flow to the exit of the tube. In the

calculations that follow, it has been assumed that there is no slip at the interface

between the inner surface of the tube and the fluid, there is continuity of stresses and

displacements in the radial direction across the interface, the cylinder deforms under

plane-displacement conditions, there is no net axial force on the tube and fluid, and

there are only small perturbations on the radius of the core.

Fluid flow initiates at the ends of the tube, where the pressure gradient is greatest.

Once the fluid flows out of an element, the cylinder contracts and the local pressure,

P , decreases. The relationship between the local radius of the core, R1, and the local

pressure can be calculated using the Lamé equations and Hooke’s Law, following the

approach and assumptions of the previous section (see Eqn. 12):

∂P (z, t)

∂z
=

2E

3R1o

(ρ2o − 1)

ρ2o

∂R1(z, t)

∂z
. (14)
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If it is assumed that the flow along the length of the tube can be described by

Poiseulle flow, and that the strains are relatively small, so R1 ≈ R1o , the volumetric

flow rate is given by

Q̇(z, t) = −
πR4

1o

8η

∂P (z, t)

∂z
, (15)

where z is the axial distance along the cylinder measured from the end of tube. For

an incompressible fluid, conservation of mass requires conservation of volume, so that

2πR1o

∂R1

∂t
= −∂Q̇(z, t)

∂z
. (16)

Equations 14 through 16 can then be combined to give the governing equation for

fluid flow in the cylinder:

∂R1

∂t
=

ER2
1o

24η

(ρ2o − 1)

ρ2o

∂2R1

∂z2
. (17)

Equation 17 can be normalized using the non-dimensional parameters τ = Et/η,

ψ = R1/R1o , ζ = (Lo − z)/R1o , where R1 is the current radius of the core, R1o is the

original (fully-relaxed) radius of the core, and Lo is the original half length of the

cylinder. The normalized form of the governing equation is given by

∂ψ

∂τ
= ρ∗

∂2ψ

∂ζ2
, (18)

where

ρ∗ = (ρ2o − 1)/24ρ2o .

The radius of inner surface is a function of axial location and time: ψ = ψ(ζ, τ). The

governing equation is in the form of the diffusion equation. For an infinitely long

tube, the solution is given by

ψ(ζ, τ) = 1 +∆ψmax erf

�
ζ

2
√
ρ∗τ

�
, (19)
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where erf is the error function, and

∆ψmax = ψ(ζ, 0)− 1 = σo/16Eρ∗

corresponds to the difference between the radius of the fully-relaxed core and the

radius of the core immediately after the applied tractions have been removed. The

solution for an infinitely long, very thick tube with σo/E = 0.01 is presented in Fig. 2,

and a schematic sketch showing how the profile of the cylinder changes as the fluid

flows out of it is given in Fig. 3.

An equivalent form of Eqn. 19 is:

∆ψ

∆ψmax
= erf

�
ζ

2
√
ρ∗τ

�
, (20)

where ∆ψ/∆ψmax is the relative collapse of the core. If we define the collapse front

as being the point at which ∆ψ/∆ψmax = 0.5, we can use Eqn. 20 to show that the

location of this front is given by

ζ0.5 = 0.954
√
ρ∗τ . (21)

Since ρ∗ increases with wall thickness, up to an asymptotic limit of 1/24, it can be

seen that the collapse front travels faster in systems with thicker elastic walls, up to

a limit of
dζ0.5
dτ

= 0.097τ−1/2 (22)

for very thick cylinders.

The solution to the diffusion equation for finite domains can also be found in

standard text-books as a series solution [22]. Equation 18 can be solved with the
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following boundary and initial conditions:

ψ(0, τ) = 1, for τ > 0

ψ(2Lo/R1o, τ) = 1, for τ > 0

ψ(ζ, 0) = 1 +∆ψmax . (23)

This results in the solution

ψ =

�
4∆ψmax

π
Σ∞

n=0

1

2n+ 1
e
− ρ∗(2n+1)2π2τ

(2Lo/R1o )2 sin
(2n+ 1)πζ

2Lo/R1o

�
+ 1 , (24)

which has been added to Fig. 2, for a value of Lo/R1o = 1000.

3 Elliptical channels

Channels formed by cracking a sandwich layer can be modeled as an elliptical core

in an infinite elastic body, since the channel width and depth are much smaller than

the crack spacing and the thickness of the substrate [4, 10]. In this section, we an-

alyze the behavior of a fluid-filled core that has, in the undeformed state, a major

radius of ao and a minor radius of bo. The half length of the channel is Lo, which is

much larger than either ao or bo. The elastic body is made of an incompressible elas-

tic material with a modulus of E, and the fluid is incompressible with a viscosity of η.

The analysis is very similar to that presented in the previous case of an axisym-

metric tube, except that the channel is opened by applying a remote uniaxial tension,

σo, in the direction of the minor axis of the cylinder. While the channel is held in the

opened state, it is filled with fluid. The applied tension is then relaxed to develop

a pressure in the fluid. This pressure then drives the fluid out of the exit, until the

channel returns to its original relaxed state. The process is depicted in Fig. 4, where
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a quarter of the model is shown, reflecting the symmetry of the problem.

The general solution for stresses in an infinite plate with an elliptical hole is

provided by Inglis [23]. Cartesian coordinates with x and y aligned with the major

and minor radii, respectively, are transformed to curvilinear coordinates α, β by

x =
�

ao2 − bo
2 coshα cos β ,

y =
�
ao2 − bo

2 sinhα sin β . (25)

The z-axis is in the longitudinal direction pointing from the center to the exit. In

this coordinate system, constant values of α correspond to ellipses with the same

aspect ratio as the core, and the surface of the elliptical hole being defined by

α = αo = tanh−1 (bo/ao). Constant values of β correspond to lines that are or-

thogonal to these ellipses, with 0 ≤ β < 2π. The stress and displacement fields, and

the corresponding shape changes, can be calculated for different boundary conditions.

However, in contrast to the axisymmetric case, the calculations for the opening and

closing of an elliptical channel are complicated by shape changes; these are addressed

in the following sections.

3.1 Opening of the elliptical channel

The first set of calculations were conducted for the opening of the channel when the

elastic body is subjected to a uniaxial tension, as shown in Fig. 4(b). As with the

axisymmetric problem, the calculations were done under the assumption of plane-

displacements perpendicular to the longitudinal axis of the channel. This required

a plane-strain calculation to be done first, with boundary conditions of a remote

tension, σo, in the direction of the minor axis, and zero tractions along the interior
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surface of the ellipse. The stresses are given by Inglis [23]:

σαα = −σo

�
2e2α0 [1− cosh(2α− 2α0)] cos(4β)

+ 2e2α0 [cosh(4α− 2α0) + 3 cosh(2α0)− 4 cosh(2α)] cos(2β)

+ 4 cosh(2α0) sinh(2α)− 2 sinh(4α)− 3e−2α+4α0 − e2α + 4e2α0

−e2α − 2e−2α − 4e2α0
��

8 (cosh 2α− cos 2β)2
�−1

,

σββ = σo

�
−2e2α0 [1 + cosh(2α− 2α0)] cos(4β)

+ 2e2α0
�
cosh(4α− 2α0) + 3 cosh(2α0) + 8e−2α − 4e2α−2α0 + 4e−2α−2α0

�
cos(2β)

+ 4 cosh(2α0) sinh(2α)− 2 sinh(4α)− 3e−2α+4α0 − 2e2α0−4α

−2e−2α + 2e2α0−4α
��

8 (cosh 2α− cos 2β)2
�−1

. (26)

The changes in the major and minor radii under these conditions can also be found

from Ref. [23]:

∆a1 = −3σo

4E
ao ,

∆b1 =
3σo

4E
(2ao + bo) . (27)

Finally, the use of Hooke’s law with the stresses of Eqn. 26, under plane-strain con-

ditions, gives the axial stress:

σzz(α, β) =
σo

2

�
−e2αo +

(e2αo + 1) sinh 2α

cosh 2α− cos 2β

�
. (28)

The second step is to apply a uniform axial stress to negate the axial force induced

by the plane-strain conditions, leaving plane-displacement conditions. The average

stress induced by the plane-strain conditions for any value of α can be found by
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integrating σzz(α, β) from Eqn. 28 with respect to β, over the interval 0 ≤ β ≤ π/2:

σ̄zz(α) =
1

π/2

� π/2

0

σzz(α, β)dβ

=
1

π/2

σo

2

� π/2

0

�
−e2αo +

(e2αo + 1) sinh 2α

cosh 2α− cos 2β

�
dβ . (29)

Using a standard table of integrals [24], this can be shown to be given by

σ̄zz(α) = σo/2 . (30)

Since σ̄zz(α) is constant for all values of α, a uniform compression of σa = −σo/2

needs to be applied to obtain the desired plane-displacement boundary conditions. It

should be noted that, in contrast to the axisymmetric problem discussed previously,

the final axial stress state is not uniform; it depends on α and β. However, the net

force is zero and the displacements are plane. Using Hooke’s law, the strains resulting

from the uniform compression are

εαα = εββ =
σo

4E
,

εzz = − σo

2E
. (31)

So that the changes in the major and minor radii of the channel are

∆a2 =
σo

4E
ao ,

∆b2 =
σo

4E
bo . (32)

Combining the results from Eqns. 27 and 32, the total change in the shape of the

cross-section of the channel can be found from

∆a1−2 = − σo

2E
ao ,

∆b1−2 =
3σo

2E
ao +

σo

E
bo . (33)
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The corresponding axial strain resulting from both steps of the calculation is given

by

εzz = − σo

2E
. (34)

The results of the previous paragraph allow us to calculate the change in volume

of the channel. For a slice of length δLo, the original volume is Vo = πaoboδLo, where

ao and bo are the original values of the major and minor radii. The change in volume,

∆V , is given by
∆V

Vo
=

∆a

ao
+

∆b

bo
+

∆δL

δLo
. (35)

Therefore, from Eqns. 33 and 34, the change in volume of the channel associated with

the application of a remote tensile stress σo is

∆V

Vo
=

3σo

2E
φo , (36)

where φo = ao/bo is the initial aspect ratio of the channel.

3.2 Relaxation of applied tension

As with the axisymmetric case, it is assumed that the channel fills with fluid while it

is held open by the applied tension. The channel collapses when the applied tension

is released, and the fluid flows to the exit. As before, it is assumed that the channel

immediately assumes a local equilibrium configuration upon relaxation of the applied

tension, such that the interior volume is conserved and there is an initial uniform

hydrostatic pressure, Po, away from the exit. This initial pressure is found following

the same procedures as before, using the same assumptions of constant volume, no

net axial force, and plane displacements.
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The first set of calculations are for plane-strain conditions, with the following

boundary conditions:

σαα = −Po, ταβ = 0 (at α = αo) ,

σαα = σββ = ταβ = 0 (at α = ∞) ,

εzz = 0 . (37)

Wth these boundary conditions, the stresses are [23]

σαα = − Po

4 (cosh 2α− cos 2β)2

�
2 cos 4β − 8 cos 2β cosh 2α + 4 + 2e−4α +

sinh 4αo

sinh 2αo
2 sinh 2α

�
,

σββ = − Po

4 (cosh 2α− cos 2β)2

�
2 cos 4β − 8e−2α cos 2β + 4 + 2e−4α +

sinh 4αo

sinh 2αo
2 sinh 2α

�
,

ταβ =
Po

2 (cosh 2α− cos 2β)2

�
2 sin 2β cosh 2α +

sinh 4αo

sinh 2αo
2 sin 2β

�
,

σzz = −Po

�
1− sinh 2α

cosh 2α− cos β

�
. (38)

The changes in major and minor radii of the channel are

∆a3 =
3Po

2E
bo ,

∆b3 =
3Po

2E
ao . (39)

The average axial stress for any value of α can be calculated as before:

σ̄zz =
1

π/2

� π/2

0

σzzdβ

=
−Po

π/2

� π/2

0

�
1− sinh 2α

cosh 2α− cos 2β

�
dβ

= 0 . (40)

Since there is no axial load arising from the plane-strain calculations, the only

additional step required to complete the calculations is the application of a uniform
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tensile stress in the solid to provide equilibrium for the compressive force of Poπaobo

arising from the hydrostatic pressure in the fluid. However, since a very large sub-

strate has been assumed, the cross-sectional area over which this force is supported

is infinite and the magnitude of the axial stress is zero. Therefore, the solution of the

previous paragraph is the complete one for this geometry.

Equations 35 and 39 (with �zz = 0) can be combined to find the change in the

channel volume resulting from the internal pressure Po:

∆V

Vo
=

3Po

2E

�
φo +

1

φo

�
. (41)

Equating this volume change to that given by Eqn. 36, the fluid pressure is found to

be

Po =
φ2
o

φ2
o + 1

σo. (42)

This shows that the initial pressure, Po, is approximately equal to σo in cracks (φ0 →

∞), and approximately equal to σo/2 in circular channels (φ0 → 1). From Eqn. 39

it can be seen that the major and minor radii of the channel after relaxation of the

remote tension are

a = ao +
3Po

2E
bo ,

b = bo +
3Po

2E
ao . (43)

It is important to note that the solutions for the limit of a circular channel are differ-

ent from those given in the previous section because of the different loading. In the

previous section, the channel was opened by an axisymmetric tension. In the present

section, the channel is opened by a uniaxial tension.
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3.3 Viscous flow in the elliptical channels

The initial pressure in the fluid, Po, has a value given by Eqn. 42. The difference

between this pressure and the ambient pressure at the exit causes the fluid to flow,

allowing the channel to collapse. At any position along the channel, the instanta-

neous pressure is P (z, t). The relationship between the local pressure and the local

dimensions of the channel can be derived following the approach used above (see

Eqn. 43):

∂a(z, t)

∂P (z, t)
=

3bo
2E

,

∂b(z, t)

∂P (z, t)
=

3ao
2E

. (44)

Alternatively, this allows one to write a relationship between the axes of the ellipse:

∂a(z, t)

∂b(z, t)
=

bo
ao

, (45)

In addition, Poiuseulle flow in an elliptical pipe has a flow rate of [25]

Q̇(z, t) = − π

4η

∂P (z, t)

∂z

a3(z, t)b3(z, t)

a2(z, t) + b2(z, t)
. (46)

Finally, the corresponding equation for mass conservation in an elliptical channel is

π

�
b(z, t)

∂a(z, t)

∂t
+ a(z, t)

∂b(z, t)

∂t

�
= −∂Q̇(z, t)

∂z
. (47)

The problem, as defined by equations 43 through 47, can be solved numerically as

discussed in the following section. However, an equation with an analytical solution

can be established by assuming that a ≈ ao and b ≈ bo. With these assumptions,

Eqns. 46 and 47 can be re-written as

Q̇(z, t) = − π

4η

∂P (z, t)

∂z

(aobo)3

a2o + b2o
,

π

�
bo
∂a(z, t)

∂t
+ ao

∂b(z, t)

∂t

�
= −∂Q̇(z, t)

∂z
. (48)

21



Clearly these equations will not be valid for cracks, when b can open to many multi-

ples of bo.

Equations 44 and 48 can be combined into two identical, but independent, differ-

ential equations for a and b:

∂a

∂t
=

Eaobo
6η

φ2
o

(φ2
o + 1)2

∂2a

∂z2

∂b

∂t
=

Eaobo
6η

φ2
o

(φ2
o + 1)2

∂2b

∂z2
, (49)

where φo = ao/bo, as before. It will be noted that when φo = 1, these equations are

both identical to Eqn. 17 for a tube with an infinite outer radius, and a = b = R1. This

suggests a similar normalization to that used in the previous section, with τ = Et/η,

ψa = a/ao, ψb = b/ao, and ζ = (Lo−z)/ao. With this normalization, Eqns. 49 become

∂ψα

∂τ
= ρφ

∂2ψα

∂ζ2
,

where ρφ = φo/6(φ2
o+1)2, and the subscript α represents a or b, as appropriate. These

equations have the same form of solutions as those given in the previous section for

the axisymmetric problem. For example, for an infinitely long channel, the sizes of

the major and minor axes are given by

ψα(ζ, τ) = 1 +∆ψmax
α erf

�
ζ

2
�

ρφτ

�
, (50)

where ∆ψmax
a = ∆ψmax

b /φo = 3(σo/E)
�
3ρφφo/2. The distance at which the dimen-

sions of the cross section have shrunk by 50% is given by the analogue of Eqn. 21:

ζ0.5 = 0.954
�
ρφτ . (51)

Similarly, the solutions for a finite channel follow the form of Eqn. 24.
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3.4 Numerical solutions

While an analytical solution can be obtained from the equations given above, the

assumption that b ≈ bo becomes increasingly invalid as φo increases, as can be seen

from Eqn 43. In particular, it is not valid for cracks. Although a governing equation

for a crack can be derived by assuming that ∂a/∂t = 0 so that a(t) = ao (see Eqn. 44,

in the limit of bo = 0), we were unable to identify an analytical solution for the re-

sulting equation.

Since we were unable to identify analytical solutions for the general problem, we

used a numerical approach to solve the original set of equations, without making any

assumptions about the aspect ratio. We obtained these numerical solutions by divid-

ing the channel into thin slices of length δLo, as shown in Fig. 5. We assumed that the

jth element was under a uniform pressure, Pj, with a major axis of aj and a minor axis

of bj. The pressure and the dimensions of the segment were related through Eqn. 44.

The pressure gradient in the jth element was (Pj+1 − Pj)/δLo. The volumetric flow

rate for each element was determined by Eqn. 46, and the corresponding deformation

at each time step was calculated by Eqn. 47. We validated the numerical results by

comparing them to the analytical solutions that we knew; there was excellent agree-

ment as will be seen from the plots given in the subsequent sections. Estimates of

the numerical uncertainties are indicated on all the accompanying plots; when not

visible, they are estimated to be of the order of the line thickness.
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4 Discussion

One of the results that can be obtained from the numerical solutions is the velocity

at which a collapse front moves into an elastic body. For example, Fig. 6 shows the

locations, as function of time, at which the dimensions of a channel have shrunk by

a factor of two. It will be noted that the analytical solution given by Eqn. 51 is in

excellent agreement with the numerical results, if the aspect ratio is less than about

30. However, while the form of the solution is very similar to that presented earlier

for the axisymmetric case, the aspect ratio of an ellipse changes during the collapse,

as shown in Fig. 7.

The governing equation for the limiting case of a crack (a(t) = ao, bo = 0) can be

derived as
∂ψb

∂τ
=

1

6

ψ3
b

1 + ψ2
b

∂2ψb

∂ζ2
. (52)

While we have not identified a simple analytical solution to this equation, the numer-

ical results of Fig. 6 suggest that an empirical relationship for the collapse of a crack

is

ζ0.5 = (6.85± 0.22)× 10−5
√
τ . (53)

Full numerical solutions for how the dimensions of a crack (with an aspect ratio of

1000:1) change as a function of time are shown in Fig. 8. In particular, the negligible

change in the major axis can be seen from Fig. 8(a).

Solutions for the related problem of a fluid entering an initially relaxed channel

at an applied pressure Po can be found by an almost identical analysis. These results

might be useful in a totally different application from the one we have focussed on,

such as fluids being forced into fissures within rock formations. Although it is not
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addressed here, one could imagine coupling these types of results with a fracture

criterion for cracks under a hydrostatic pressure. Here, we solve only the problem

of channels and cracks opening under the influence of a fluid pressure. To this end,

the equations given earlier in the text are solved subject to the following initial and

boundary conditions:

a(0, t) = a(2Lo, t) = ao + 3Pobo/2E

b(0, t) = b(2Lo, t) = bo + 3Poao/2E

a(z, 0) = ao

b(z, 0) = bo . (54)

The propagation of the opening front (defined as the point at which b is equal to

50% of its maximum value, bmax) is shown in Fig. 9. As expected, this is of a similar

form to the propagation of a collapse front given in Fig. 6, with limiting results for a

circular channel and a crack. Plots of how the channel profile varies along its length

at different times are given in Fig. 10. These plots show how the transition between

the open portion of the channel and the closed portion of the channel gets sharper as

the channel becomes more crack-like. The rapid increase in the opening at the center

of the channel corresponds to the point at which the fluid flow from both ends meet.

The original motivation of these analyses was to understand how nano-channels

collapse when they are used to linearize DNA and chromosomes [4]. The channels

used in those studies were fabricated by tunneling a crack within a thin layer of oxi-

dized PDMS. The channels had a half length of 500 µm, and were opened by different

values of applied tension up to 10%. It is believed that the linearization of DNA

was facilitated by both the confinement and the flow generated during the narrow-

ing process. Electrical-impedance measurements indicated that the open channels at
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10% strain had a cross-sectional area of about 15,000 nm2 [4]. The size (ao) of the

cracks was difficult to ascertain. However, the calculations in this paper indicate that

a strain of 10% would result in a value for b/ao of 0.15. For an elliptical section, this

would correspond of ao = 175 nm, which is not inconsistent with the thickness of the

oxidized layer.

Figure 11 shows how the middle of such a channel, with a length of Lo/ao = 3000,

collapses as a function of time for different levels of applied strain. This figure shows

that there is an incubation time of τc ≈ 1.8 × 106(σo/E)−3, during which the col-

lapse front travels along the channel to the mid-point. The crack then starts to

close, eventually reaching a steady-state collapse rate that has an approximate form

of b/ao ≈ 320τ−3. If one assumes that the channels are formed in a homogeneous

region of PDMS, with a modulus of 3 MPa, and that the fluid is water with a viscosity

of 10-3 Pa·s, the time is given by t = 3 × 10−10τ , in seconds. Figure 11 would then

indicate that it would take about one second before the center of a channel opened

by an applied strain of 10% starts to relax. It was observed experimentally that the

rate of collapse of the channels was too fast if the strain was relaxed in one step, so

the strain was relaxed in increments of 2 % [4]. This is consistent with the results

of Fig. 11 that show the velocity of the crack wall increasing with the initial applied

strain. However, the time to relax a strain of only 2% is predicted to be of the order

of a minute, rather than a second, as observed. This probably reflects the fact that

in the actual experimental configuration, the nano-channels were contained within a

layer of oxidized PDMS, rather than within the PDMS itself [4]. The higher modu-

lus of the oxidized material, would result in a smaller time constant. However, the

sandwich nature of this experimental geometry is beyond the goal of the present paper.
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5 Conclusions

We have developed a model for the time-dependent collapse of liquid-filled channels

in elastic bodies. The collapse initiates from the mouth of the channel, and follows

the form of a diffusion equation. The characteristic time scale is established as the

ratio between the viscosity of the fluid and the modulus of the solid. A collapse front

propagates along the channel with a velocity that depends on the distance of the

front to the mouth of the channel; its velocity is limited by how quickly the fluid

can drain from the channel. An analytical solution can be derived for cylindrical

channels; related numerical solutions were determined for elliptical channels. In par-

ticular, asymptotic results were obtained for cracks that had been opened up by an

applied tension, filled with a fluid, and then allowed to collapse.

The related problem of a channel being opened up by the injection of a fluid un-

der a hydrostatic pressure was also solved. Although the details of the solutions are

different, the general form is similar. An opening front propagates along the channel.

Crack-like channels exhibit a sharper transition between the open and closed states

at the front. An obvious extension to this work might include the effects of a finite

toughness, so that the possibility of crack growth, as well as crack opening, could be

incorporated.
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Figure Captions

Figure 1: Schematic figures of the axisymmetric model. The origin is located at

the mid-point of the cylinder. (a) A tube has an initial inner radius

of R1o , an initial outer radius of R2o and an initial half length of Lo.

(b) Uniform tensile tractions, σo, are applied to the outer surface of

the tube, resulting in increases in the inner and outer radius. Then,

the tube is filled with fluid at the ambient pressure. (c) The applied

tractions are fully relaxed, resulting in a uniform fluid pressure, P = Po,

being established throughout the core. (d) The fluid flows out of the

tube driven by the difference between the internal fluid pressure, P ,

and the ambient pressure. The fluid pressure, P , decreases during this

process, and its reduction is accompanied by changes in the dimensions

of the tube. The tube returns to its original shape as P approaches

the ambient pressure.

Figure 2: Profile of the inner surface of a cylindrical channel as a function of

distance from the outlet at different times. Plots are shown for an

infinitely long channel, and for a channel with Lo/R1o = 1000.

Figure 3: A cartoon based on the analysis showing how a liquid-filled cylindrical

tube collapses by Poiseuille from the center of the tube to the exit, when

the remote tractions are removed. (The shape change and dimensions

are exaggerated, and do not reflect real data.)

Figure 4: (a) The elliptical channel has initial radii of ao and bo. (b) A remote

tension of σo is applied to open the channel, increasing its size. While

the channel is held open, it is filled with fluid at the ambient pressure.
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(c) The applied tension is relaxed to zero, resulting in a fluid pressure

of Po. The dimensions of the channel are related to those in (b) by the

conservation of volume for an incompressible fluid. This is the initial

state from which flow occurs. (d) The pressure relaxes back to the

ambient pressure as the fluid flows out of the channel to restore the

original shape. (The dimensions in the schematics are exaggerated for

ease of visualization, and are not to scale.)

Figure 5: A schematic showing the model used in the numerical calculations for

deformation of an elliptical channel. A long channel is segmented into

thin slices. Each slice has a length of δLo, and the jth element has a

major axis of aj, a minor axis of bj, and a pressure of Pj. The values

of aj and bj are related by Eqn. 44, while Eqns. 46 and 47 are used to

calculate the evolution of the channel profile.

Figure 6: A collapse front defined by ∆ψ/∆ψmax = 50% travels from the exit of

the channel towards the center. Numerical solutions for the position

of the collapse front as a function of time are given in this figure. The

error bars are comparable with the thickness of the lines. When the

original aspect ratio is less than about 30, the motion of the collapse

front is described accurately by the analytical solution given in the

text. As the aspect ratio increases, the front moves increasingly slowly.

However, the numerical solutions suggest there is an asymptotic solu-

tion appropriate for cracks (φo → ∞).

Figure 7: The change in aspect ratio along an elliptical channel with an initial

aspect ratio of 100, at different times.

Figure 8: (a) The relative expansion of the major axis of a crack as a function
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of position, at different times after relaxation of an applied strain. (b)

The relative expansion of the minor axis of a crack as a function of

position, at different times after relaxation of an applied strain

Figure 9: An expansion front, defined by the point where b is equal to 50% of

its maximum value, bmax, travels from the entrance of a channel under

a pressure Po. Numerical solutions for the position of this expansion

front as a function of time are given in this figure for very long channels

with different aspect ratios.

Figure 10: (a) The relative expansion of a cylindrical channel in an infinite sub-

strate as a function of position, at different times after being opened

by a fluid under a pressure Po. (b) The relative expansion of the minor

axis of an elliptical channel in an infinite substrate with an aspect ratio

of 100, as a function of position, at different times after being opened

by a fluid under a pressure Po. (c) The relative opening of a crack in

an infinite substrate as a function of position, at different times after

being opened by a fluid under a pressure Po.

Figure 11: The width at the center of a long crack, as a function of time and differ-

ent initial strains. There is an incubation period while the collapse front

travels along the channel. This incubation period decreases with the

initial strain, and has the approximate form of τc ≈ 1.8×106(σo/E)−3.

Once the crack has started to collapse, its width follows an approximate

form of b/ao ≈ 320τ−3.
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Figure 1: Schematic figures of the axisymmetric model. The origin is located at the
mid-point of the cylinder. (a) A tube has an initial inner radius of R1o , an initial
outer radius of R2o and an initial half length of Lo. (b) Uniform tensile tractions,
σo, are applied to the outer surface of the tube, resulting in increases in the inner
and outer radius. Then, the tube is filled with fluid at the ambient pressure. (c)

The applied tractions are fully relaxed, resulting in a uniform fluid pressure, P = Po,
being established throughout the core. (d) The fluid flows out of the tube driven by
the difference between the internal fluid pressure, P , and the ambient pressure. The
fluid pressure, P , decreases during this process, and its reduction is accompanied by
changes in the dimensions of the tube. The tube returns to its original shape as P
approaches the ambient pressure.
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Figure 2: Profile of the inner surface of a cylindrical channel as a function of distance
from the outlet at different times. Plots are shown for an infinitely long channel, and
for a channel with Lo/R1o = 1000.
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Figure 3: A cartoon based on the analysis showing how a liquid-filled cylindrical
tube collapses by Poiseuille from the center of the tube to the exit, when the remote
tractions are removed. (The shape change and dimensions are exaggerated, and do
not reflect real data.)
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Figure 4: (a) The elliptical channel has initial radii of ao and bo. (b) A remote
tension of σo is applied to open the channel, increasing its size. While the channel
is held open, it is filled with fluid at the ambient pressure. (c) The applied tension
is relaxed to zero, resulting in a fluid pressure of Po. The dimensions of the channel
are related to those in (b) by the conservation of volume for an incompressible fluid.
This is the initial state from which flow occurs. (d) The pressure relaxes back to the
ambient pressure as the fluid flows out of the channel to restore the original shape.
(The dimensions in the schematics are exaggerated for ease of visualization, and are
not to scale.)
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Figure 5: A schematic showing the model used in the numerical calculations for
deformation of an elliptical channel. A long channel is segmented into thin slices.
Each slice has a length of δLo, and the jth element has a major axis of aj, a minor
axis of bj, and a pressure of Pj. The values of aj and bj are related by Eqn. 44, while
Eqns. 46 and 47 are used to calculate the evolution of the channel profile.
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Figure 6: A collapse front defined by ∆ψ/∆ψmax = 50% travels from the exit of the
channel towards the center. Numerical solutions for the position of the collapse front
as a function of time are given in this figure. The error bars are comparable with
the thickness of the lines. When the original aspect ratio is less than about 30, the
motion of the collapse front is described accurately by the analytical solution given in
the text. As the aspect ratio increases, the front moves increasingly slowly. However,
the numerical solutions suggest there is an asymptotic solution appropriate for cracks
(φo → ∞).
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Figure 7: The change in aspect ratio along an elliptical channel with an initial aspect
ratio of 100, at different times.
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Figure 8: (a) The relative expansion of the major axis of a crack as a function of
position, at different times after relaxation of an applied strain.
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Figure 8: (b) The relative expansion of the minor axis of a crack as a function of
position, at different times after relaxation of an applied strain.
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Figure 9: An expansion front, defined by the point where b is equal to 50% of its
maximum value, bmax, travels from the entrance of a channel under a pressure Po.
Numerical solutions for the position of this expansion front as a function of time are
given in this figure for very long channels with different aspect ratios.

43



Figure 10: (a) The relative expansion of a cylindrical channel in an infinite substrate
as a function of position, at different times after being opened by a fluid under a
pressure Po.
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Figure 10: (b) The relative expansion of the minor axis of an elliptical channel in an
infinite substrate with an aspect ratio of 100, as a function of position, at different
times after being opened by a fluid under a pressure Po.
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Figure 10: (c) The relative opening of a crack in an infinite substrate as a function
of position, at different times after being opened by a fluid under a pressure Po.
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Figure 11: The width at the center of a long crack, as a function of time and different
initial strains. There is an incubation period while the collapse front travels along
the channel. This incubation period decreases with the initial strain, and has the
approximate form of τc ≈ 1.8× 106(σo/E)−3. Once the crack has started to collapse,
its width follows an approximate form of b/ao ≈ 320τ−3.
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