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Abstract

Thin-film fracture can be used as a nano-fabrication technique but, gen-
erally, it is a stochastic process that results in non-uniform patterns. Crack
spacings depend on the interaction between intrinsic flaw populations and the
fracture mechanics of crack channeling. Geometrical features can be used to
trigger cracks at specific locations to generate controlled crack patterns. How-
ever, while this basic idea is intuitive, it is not so obvious how to realize the
concept in practice, nor what the limitations are. The control of crack arrays
depends on the nature of the intrinsic flaw population. If there is a relatively
large density of long flaws, as commonly assumed in fracture-mechanics analy-
ses, reliable crack patterns can be obtained fairly robustly using relatively blunt
geometrical features to initiate cracks, provided the applied strain is carefully
matched to the properties of the system and the desired crack spacing. This
process is analyzed both for cracks confined to the thickness of a film and for
cracks growing into a substrate. The latter analysis is complicated by the fact
that increases in strain can either drive cracks deeper into the substrate or gen-
erate new cracks at shallower depths. If the intrinsic flaws are all very short,
the geometrical features need to be very sharp to achieve the desired patterns.
While careful control of the applied strain is not required, the strain needs to
be relatively large compared to that which would be required to propagate a
large flaw across the film. This results in an approach that is not robust against
the introduction of accidental damage or a few large flaws.
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1 Introduction

Quasi-periodic arrays of cracks often form in layered engineering structures when a

brittle film is supported on a substrate [1, 2, 3, 4]. The general features of these

arrays depend on the geometry, the properties of the film, interface and substrate,

and the tensile strain. However, the details are governed by stochastic factors such as

the distribution of the intrinsic flaws, and the sequence in which cracks initiate from

these flaws. Crack arrays can be used for nano-fabrication purposes, and some recent

experimental examples have been presented in the literature [5, 6, 7, 8, 9]. However,

for the potential of these fabrication techniques to be fully realized, the stochastic

nature of the cracking has to be eliminated or controlled. Such controlled cracking

has been demonstrated in a silicon nitride film deposited on a silicon wafer [10], in

a gold film on a poly(dimethylsiloxane) (PDMS) [11], and in the surface layer of ox-

idized PDMS [11]. While these examples show that it is possible to control crack

patterns under some conditions, it is not clear the extent to which these patterns can

be robustly controlled. In this paper, we use the mechanics of crack propagation to

elucidate the answers to this question, and to provide strategies for controlling crack

patterns in different types of materials.

Existing analyses for the formation of crack arrays fall into two groups: shear-lag

and linear-elastic fracture mechanics (LEFM) analyses. The shear-lag analyses that

consider the statistics of flaw populations [12, 13, 14] were generally developed for

studies of crack arrays in laminated composites and the fragmentation of fibers em-

bedded in a matrix, but also apply to the fracture of films on ductile substrates. A

characteristic feature of shear-lag analyses is that once a pair of neighboring cracks

are close enough to interact, it is impossible to introduce a third crack between them,
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no matter what level of strain is applied. If a fully-populated crack array is gener-

ated at one unique level of stress (Fig. 1a), these analyses result in the well-known

solution to the “car-parking problem” [15, 16] that predicts a crack array with a spac-

ing that varies by a factor of two, and a mean spacing of 1.337 times the smallest

spacing. However, this simple result is not valid if the flaws are of different sizes,

so that they can be activated by different stress levels (Fig. 1b) [13]. Furthermore,

under conditions in which LEFM is appropriate, when there is so little delamination

or interfacial slip that it occurs over distances much less than the crack spacing, the

maximum stress between two cracks can always be increased by additional loading

(Fig. 2c). This means that it is always possible to introduce a third crack between

two neighboring cracks, no matter how close they might be, and introduces an aspect

of array formation that is missing in shear-lag analyses.

Published fracture-mechanics analyses of crack arrays have all been predicated

on the assumption that there is a very high density of long flaws. Furthermore,

only characteristic spacings have been obtained [17, 18, 19, 20, 21], with various

assumptions about how these might be related to the average spacing. The analyses

consider problems in which the cracks are limited to the thickness of the film [17, 18,

19, 20], and those in which they can extend into the substrate [22, 23, 21, 24]. The

mechanics of both situations is similar. When the strain in the film is equal to εo, the

characteristic spacing of the array, sch, is of the form:

sch
h

= f2

(
α, β,

Γf
Γs
,
εo

2Ēfh

Γf

)
. (1)

In this expression, h is the film thickness, Γ is the toughness, the subscripts f and s

denote the film and substrate respectively, the Dundurs’ parameters for the modulus
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mismatch across the interface, α and β are given by [25]

α =
Ēf − Ēs
Ēf + Ēs

(2)

and

β =
Ēf (1− ν̄s)− Ēs(1− ν̄f )

2
(
Ēf + Ēs

) , (3)

where Ē = E/(1 − ν2) and ν̄ = ν/(1 − ν) in plane strain, E is Young’s modulus,

and ν is Poisson’s ratio. However, the relationship between the characteristic spac-

ing that can be calculated by LEFM and the actual spacings in an array have not

been established. It depends on the interaction of two effects: the distribution of

the intrinsic flaws responsible for initiating cracks, and the fundamental mechanics

of the problem. In particular, LEFM dictates how the energy-release rate for a given

flaw depends on both its length and its distance from longer neighboring cracks. The

energy-release rate for a crack that is relatively short compared to the film thickness

increases linearly with crack length; whereas, the energy-release rate for a relatively

long crack scales linearly with film thickness (and is independent of crack length).

Similarly, as illustrated in Fig. 2, cracks that are very close to their neighbors have

reduced energy-release rates, while cracks that are further away have energy-release

rates that are essentially independent of spacing.

The underlying motivation of this paper is to understand possible strategies for

controlling crack arrays. The structure of the paper consists of two parts. The first

part contains analyses for the creation of uniform arrays, based only on fracture-

mechanics concepts and ignoring statistical aspects of the problem. The analyses

assume a sufficient density of long flaws, and further assume that the role of any

artificial features is to project flaws at their tips sufficiently far to ensure that they

will channel preferentially. These analyses are performed for crack arrays confined to
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a surface layer, and also for crack arrays that can penetrate into the substrate, as ap-

propriate for stiff films on very compliant substrates. In the second part of this paper,

the interaction between thin-film fracture mechanics and the statistics of an intrinsic

flaw population is addressed. The model is first used to analyze how natural crack

patterns evolve with strain in the absence of geometrical features. It is subsequently

used to analyze how artificial geometrical features, the statistics of an intrinsic flaw

population, and LEFM can interact to create uniform crack arrays.

2 Fracture mechanics of controlling crack patterns

Fracture-mechanics models without including statistical effects are first used to illus-

trate a simple strategy for controlling crack patterns. In the following analyses, a

uniaxial problem is considered in which cracks are initiated from flaws along a free

edge. The lengths of the flaws are sufficient to ensure that the energy-release rates

are independent of crack length, and the density of the flaws is sufficient to ensure

that cracks will propagate preferentially from wherever the local stress is a maximum.

Periodic geometrical features separated by a distance So serve to provide locations

where the intrinsic flaws extend well beyond their neighbors, since the size of these

geometrical features is assumed to be much bigger than the length of any flaw. Cracks

will channel preferentially from these features if it is energetically possible to do so.

However, if the applied strain is sufficiently small, so that the exclusion length be-

tween cracks is greater than So, cracks will channel from the tips of only some of the

geometrical features. In addition, the flaws along the straight edges of the structure

will be in the shadow of the geometrical features, and will not initiate channel cracks.

As the strain is increased, more of the geometrical features will be associated with
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channel cracks. Eventually, the strain will be so large that the exclusion distance

will be less than So and, at this point, the shorter defects along the edge can initiate

channel cracks. Therefore, tailoring the structure so that the spacing of the geomet-

rical features corresponds to the desired spacing of the crack array requires a delicate

balance between the applied strain and the properties of the film and substrate. Too

low a strain will result in a random array of cracks initiated from only a limited set

of features. Too high a strain will result in random cracks being initiated from flaws

away from the features.

These concepts are first illustrated by relatively simple analyses in which the

cracks do not penetrate into the substrate. A second case is then considered in which

the the cracks can penetrate into the substrate. This second case is complicated by

the fact that an increase in strain can either drive existing cracks deeper into the

substrate, or cause additional cracks of unknown depth to channel across the system.

However, it will be seen that the two processes occur in sequence, so that only when a

crack array has reached a critical depth (relative to its spacing) do additional cracks

form.

2.1 Crack arrays limited to the film

The calculations were done by computing the energy change associated with chan-

neling a crack between two existing cracks separated by a distance of 2s in a film

of thickness h. Although standard fracture-mechanics results from Tada et al. [26]

can be used to analyze a homogeneous system, numerical calculations are required

when the effects of a modulus mismatch are included. These calculations were done

using the commercial finite-element code ABAQUS. Mesh-sensitivity analyses were
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conducted as part of the process to determine the magnitude of the numerical un-

certainties, the magnitudes of which are reflected in error bars on the resulting plots

when they are significant.

Two geometries were used in the calculations (Fig. 3). One geometry (Fig. 3a) was

used to calculate the stress distribution σ(y) along the mid-plane between two cracks

of depth h and a distance 2s apart for a given value of applied strain, εo. The second

geometry, had a third crack, also of depth h, exactly in the middle, with surface

tractions corresponding to −σ(y) applied along its surface. The resulting crack-

opening displacements, u(y), were computed, and the steady-state energy-release rate

for channeling this new crack, Gss, was calculated from [27]

Gss =
∫ h

0
σ(y)u(y)dy/h. (4)

This integral was computed numerically from the output of the finite-element calcu-

lations. From this result, the condition for whether the new crack can channel was

calculated by comparing the energy-release rate to the toughness of the film, Γf .

The final step of the calculations involved equating the separation, So, of the geo-

metrical features to 2s. When So is sufficiently large to permit a new crack to channel

between two existing cracks, a random crack array will be generated, because cracks

can be formed away from the geometrical features. Conversely, if 2So is smaller than

the distance that will allow an intermediate crack to propagate, then not every fea-

ture will have a crack associated with it and, again, there will be a random aspect

to the crack pattern. There will, however, be a “Goldilocks” regime which is “just

right” for propagating cracks from every feature, but no more. This regime is shown

in the two plots of Fig. 4: one calculated with no modulus mismatch between the
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film and substrate (Fig. 4a), and one with a mismatch (Fig. 4b). It corresponds to

a range of strains between the minimum value required to permit cracks to channel

at a separation of So and the maximum value that is just too low to permit cracks

to channel at a separation of So/2. This range is what allows one to realize perfectly

periodic arrays with careful matching between the feature separation, the properties

of the material, and the applied strain. From Fig. 4 it can be seen that the range

of strains for periodic arrays increases as the feature separation decreases; it also

increases with increasing modulus mismatch.

The conclusions are consistent with the experimental observations described by

Kim et al. [11]. In their study, “V”-shaped notches were formed in poly(dimethylsiloxane)

(PDMS) substrates with a separation of 48 µm using soft lithographic techniques.

Specifically, a 5:1 mixture of the curing agent and PDMS (Sylgard 184, Dow Corn-

ing) was cast against silicon moulds and cured at 60◦C. The surface was plasma

treated to create a thin surface layer of a relatively brittle silica-like material. While

the material properties of this surface layer are not well-characterized, there is evi-

dence that the modulus is only slightly higher than that of the substrate, and the

cracks remain within the surface layer [8].

Figure 5 shows how a systematic increase in the applied strain resulted in a crack

pattern for the system that evolved from (i) random cracking at some of the notches,

through (ii) periodic cracking at every notch, to (iii) random cracking at locations

away from the notches. In this system, the range of strains for periodic cracking was

very narrow, with a value of the critical strain of approximately 6%. Based on earlier

work, the thickness of the surface layer can be estimated as being about 200 nm [8].

This makes the value of So/h equal to about 240. As can be seen from Fig. 4a,

8



when So/h > 100 the strain range for periodic cracks is, indeed, vanishingly small,

which is consistent with what was observed for the plasma-treated PDMS. The pre-

dicted strain required for periodic cracks in a homogeneous system with this spacing

is about εo
√
Ēfh/Γf = 0.71. Again, using the results of Mills et al. [8], the modulus

of the surface layer can be taken to be about 25 MPa, and the toughness can be

taken to be about 200 mJ/m2. This would suggest a critical strain of about 14%.

While this is greater than the measured value, it should be noted that all the material

parameters for the plasma-treated layer are known to only very approximate levels,

and the observed strain levels are well within any uncertainties of the predicted values.

2.2 Crack arrays penetrating into the substrate

A large modulus mismatch, such as that between a gold film and PDMS, results in

crack arrays penetrating relatively deep into the substrate [24]. This complicates the

analysis because an increase in strain can result in two possible events: (i) the growth

of existing cracks deeper into the substrate, or (ii) the channelling of intermediate

cracks of unknown depth. In this section, a fracture-mechanics analysis is presented

to determine the conditions required to control such crack arrays.

The analysis was done in a similar fashion to that of the previous section using

ABAQUS to perform the numerical calculations. In the first step of the calculations

(Fig. 6a), the applied strain required to propagate two cracks of depth ao, penetrating

through a film of thickness h and separated by a distance 2s, deeper into the substrate

was determined. This was done by computing the energy-release rate at the tips of

the cracks, and equating the value of this parameter to the toughness of the substrate,

Γs. The stress distribution, σ(y), along the mid-plane between these two cracks was
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computed for this strain level. In the next step (Fig. 6b), a crack was introduced

along this plane to an arbitrary depth, a, with surface tractions corresponding to

−σ(y) along its surface. The corresponding crack-opening displacements, u(y), were

calculated, and the energy-release rate for channelling calculated from

Gss =
∫ h

h−a
σ(y)u(y)dy/a. (5)

This energy-release rate was then compared to the effective toughness for a crack

channeling at a depth a, which is given by

Γ = (h/a)Γf + (1− h/a)Γs, (6)

to find whether there was any value of a for which an intermediate crack could chan-

nel between the other two cracks. If it was not possible to form a secondary crack,

the applied strain was increased, and a new equilibrium crack depth was determined

for the original cracks.

The calculations were repeated until a secondary crack could channel at any depth.

At this stage, the calculations were repeated for all three cracks (Fig. 7), exploring the

possibilities of either introducing another set of intermediate cracks or growing the

existing cracks. These calculations revealed the sequence of cracking for this prob-

lem. The intermediate crack is first formed at a shallower depth than the original pair

of cracks, and immediately unloads the original cracks. While a further increase in

strain increases the energy-release rate at the tips of all the cracks, only the shallower

intermediate crack meets the condition to grow deeper. Eventually, it reaches the

depth of the original cracks. Furthermore, during this stage, it is not thermodynam-

ically possible to introduce any further intermediate cracks. Once all cracks are at

the same depth, a further increase in strain allows the entire set to propagate deeper,
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until eventually another set of shallow intermediate cracks can channel, and the entire

sequence is repeated.

Following the approach and assumptions of the previous section, Fig. 8 shows the

range of strains for which the crack spacing will match that of the geometrical fea-

tures in a system for which the film modulus is 104 times higher than the substrate

modulus, so that α = 0.9998 and β = 0, and the film-to-substrate toughness ratio,

Γf/Γs, is 35. This figure shows the same important conclusions that are evident from

Fig. 4. There is a limited range of strains over which periodic cracking can be reliably

obtained; channel cracks will be initiated at only some of the features if the strain is

too low, and they will be initiated from sites away from the features if the strain is

too high.

A new aspect of the problem is the prediction of how the crack depths evolve

within the regime where the crack spacing matches the feature spacing. Figure 9

shows how the crack depths are initially bimodal at the lowest strain for which uni-

form cracking is obtained, with the newest cracks being shallower than the original

ones. An increase in strain results in the growth of the new cracks, while the original

cracks remain at their original depth (assuming no healing), until all the cracks are

of the same depth. From this point on, an increase in strain causes all the cracks

to grow deeper in a uniform fashion, until a new set of cracks is introduced. The

numerical predictions for the crack depth are very sensitive to the ratio of the film

toughness to the substrate toughness, Γf/Γs. Deeper cracks occur for larger values

of this ratio. The results shown in Figs. 8 and 9 are based on a value of Γf/Γs = 35,

resulting in relatively deep cracks.
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Experimental observations of Kim et al. [11] (Fig. 10) confirmed that the three

cracking regimes are observed when there is a huge modulus mismatch between the

film and substrate, and the channeling cracks propagate far below the interface [24].

A similar process to that described in the previous section was used to fabricate a

PDMS substrate with notches in it. A 10 nm adhesion layer of Cr was deposited by

e-beam on the surface of the PDMS, followed by a 40 nm thick Au layer. The results

shown in Fig. 10 are for for notches separated by 238 µm. This corresponds to a value

of So/h of about 5000. Laser interferometry confirmed that the cracks which formed

upon the application of a tensile strain were approximately 3 microns deep, or about

60 times deeper than the total film thickness.

While the experimental tri-layer system of Au/Cr/PDMS does not exactly match

the geometry or the modulus mismatch ratio assumed in developing the mechanics

results of Fig. 8 and 9, an approximate quantitative comparison can be made. In

contrast to the results for the plasma-treated PDMS, the uniform cracking regime

existed over a relatively wide range of strains from about 10% to just under 20%.

If the toughness, Γs and modulus, Ēs of the PDMS substrate are taken to be about

240 J/m2 and 4.5 MPa [8], this results in a range of normalized strains, εo
√
Ēsh/Γs,

for periodic cracking of 0.003 to 0.006. The calculations of Fig. 8 indicate that for

So/h = 5000, the corresponding range of normalized strains is 0.002 to 0.004. Within

the range of uncertainty for all the parameters, this provides relatively good consis-

tency between the analysis and experimental observations.

One important parameter that is not well characterized in the experiments is the

toughness of the film. In particular, it should be noted that a relatively tough film is

required to predict crack depths that are consistent with the experimental observa-
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tions. However, thin metal films with the dimensions used in this study are expected

to have very low values of toughness, because of the lack of volume in which to develop

a plastic zone. This paradox can be resolved by recognizing that a PDMS substrate

will provide very little constraint to plastic deformation of the film and that,without

such a constraint, thin metal films can rupture by shear localization [28] upon yield at

very high strains. Cracking of these systems is probably initiated by shear localization

when the metal film reaches the yield strain. In particular, it should be noted that

the results of Figs. 8 and 9 are reproduced exactly if the calculations are repeated

with the coupled assumptions that Γf/Γs = 0 and that cracks cannot form unless the

strain in the film equals 1%. This would seem to be the appropriate form in which the

calculations should be conducted for very thin, high-strength metal films supported

on compliant substrates.

3 Statistical effects on crack arrays

In this section, statistical aspects are considered to investigate how crack arrays are

affected by the distribution of flaw sizes and density. The calculations were done by

performing Monte Carlo simulations on a homogeneous system with a film of thick-

ness h, in which cracks did not penetrate the substrate. Before investigating the

effect of geometrical features on array formation, an analysis of how natural crack

arrays are generated in uniform structures was done as a point of comparison. While

shear-lag analyses have been coupled with statistics[12, 13, 14], a coupling between

thin-film linear-elastic fracture mechanics and flaw statistics has not been presented

before. Even for flaw populations that meet the conditions usually assumed (dense,

long flaws), fracture-mechanics analyses cannot predict the sequence in which crack
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arrays form, nor what the mean spacing of an array might be. This information can

only be obtained by incorporating some statistical aspects into the analysis, even in

the case when all the flaws are so long that LEFM would predict that each individual

flaw on its own would propagate at the same stress level.

In the simulations presented here, the intrinsic flaws were assumed to be dis-

tributed uniformly along the edge with a density of ρ per unit length. The lengths

of the flaws were assumed to follow a Gaussian distribution centered about zero with

a standard deviation of µ, but truncated to the interval of (0,∞). This truncated

distribution resulted in a monotonically decreasing probability of large flaws, with the

mean length of the flaws scaling with µ. The simulations were done for a specimen

of finite length L; but, it was verified empirically that L was always large enough so

as not to affect the results in a significant fashion.

Three parameters determine the energy-release rate to channel a crack in a thin

film: (i) the local strain, (ii) any shielding that may be provided by neighboring cracks,

and (iii) the length of the flaw. In order to simplify the analysis, various assumptions

were made about these parameters. Any flaws on the edge of geometrical features

were assumed to experience a local strain, εl, that was elevated above the remote

applied strain, εo, according to the Inglis solution for the stress concentration at the

surface of an ellipse [29]. The effect of shielding was assumed to be determined by

the distance to the nearest crack (or geometrical feature) that extended beyond the

tip of the crack being analyzed. Figure 11 shows examples of how this closest spacing

was determined. The appropriate energy-release rate for an individual flaw was then

calculated from the local strain and this distance, making a further approximation
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that the flaw was equidistant to two neighbors at this minimum spacing.1 Figure 2 was

used to determine an empirical equation for the relationship between the channeling

energy-release rate, G, for a long crack, the local strain, εl, the film thickness, h, and

the distance, d, to the nearest (longer) neighbor:

G
Ēfε2l h

= 1.98(1− e−0.172d/h). (7)

Here, the modulus of the film, Ēf , has been assumed to be identical to the modulus

of the substrate. The channeling energy-release rate for a short crack of length a was

assumed to be equal to the energy-release rate at the tip of a two-dimensional edge

crack [26], with the effect of crack spacing being of the same functional form as for

long cracks, so that

G
Ēfε2l h

= 1.25π
a

h
(1− e−0.172d/h). (8)

The calculations proceeded by seeding the geometry of interest with cracks having

a statistical distribution of lengths, evaluating the distance, d, to the nearest longer

neighbor for each crack, and using this distance to calculate the energy-release rate

for the crack as being the smallest of either Eqn. 7 or 8. The energy-release rate was

then compared to the toughness of the film, so as to determine whether a crack would

channel at a given level of strain. With a linear-elastic system, the calculations for

any individual crack only needed to be performed once, since it was assumed that

the energy-release rate was not affected by the growth of any nearest longer crack.

(The shielding effect of a neighboring longer crack was assumed to be unchanged by

growth of the neighbor.)

1This approximation could be relaxed by doing a series of calculations for the energy-release rate
of cracks not spaced symmetrically between two other cracks. However, it is not expected that this
would have a significant affect on the results.
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3.1 Crack arrays without geometrical features

The first set of results are presented for a geometry with no artificial features and

subjected to a uniform strain of εo. Figure 12 shows how the cumulative distribution

function for the crack spacing varies with strain for the limiting case of a relatively

high density of large intrinsic flaws. This is the appropriate condition for making

comparisons to LEFM results for characteristic spacings. The average spacing for

this flaw population is shown as a function of applied strain in Fig. 13 (solid line).

Consistent with the results for the characteristic spacing from LEFM solutions, the

cracks first form at a normalized strain of εo
√
Ēfh/Γf = 0.71, and the crack spacing

decreases with increases in applied strain. It should be emphasized that this change in

spacing occurs even though the flaws are long enough for there to be no effect of size on

strength. This provides a contrast to crack-spacing models based on Weibull statistics

which inherently assume a locally varying coating strength dependent on the flaw size.

The results of Fig. 13 indicate that, away from the threshold strain, the mean spacing,

sav, for the statistical distribution assumed in this paper is approximately given by

sav/h ∝
(
εo
√
Ēfh/Γf

)−2.36

. (9)

This is a steeper relationship than the inverse linear forms that result from analyses

based either on the minimum spacing that just prevents an intermediate crack from

channeling [19] or on a consideration of equilibrium [18, 20]. It is expected that this

relationship may be sensitive to the form of the assumed flaw population, through

how the distribution controls the distance to nearest longer neighbors, but this detail

of the problem has not been explored.
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The effects of flaw density and length, and of strain and toughness on the average

spacing of the array are also shown in the plots of Fig. 13. The details of this plot

would vary with different forms of the flaw distribution and on the material properties;

but, the general mechanics concepts will apply. While the onset of channeling always

occurs at a normalized strain of 0.71 for a homogeneous system, a limited density of

longer flaws increases the spacing for a given level of strain. The asymptotic spacing

that is shown for some flaw populations at large strains is simply a consequence of

an assumption that there is a finite set of flaws that can initiate channel cracks.

3.2 The effect of geometrical features on crack arrays

The second set of results shows the effect on crack arrays of geometrical features

consisting of periodic elliptical cut-outs spaced at So along the edge of the specimen.

Each elliptical hole is assumed to have a minor radius, b, aligned with the flat edge,

and a major radius of a. To simplify the process of seeding flaws in the analysis, it

was assumed that the density, ρ, is given in terms of the projected length along the

flat edge, rather than the actual length of the surface. The flaws were assumed to be

perpendicular to the straight edge. As shown in Fig. 11, the distance used to calcu-

late the energy-release rate was the distance from the tip of each flaw to the nearest

intersection with either a flaw or the surface of an ellipse. The Inglis solution for an

ellipse [29] was used to calculate the local strain from which the energy-release rates

for a flaw along the surface of a cut-out could be calculated. However, an additional

consideration in this problem was to determine whether such a crack could continue

channeling once it left the stress concentration at the tip of the ellipse. This was done

by a second step in which the energy-release rate for any flaw along the surface of an

ellipse that had been determined to meet the conditions of growth was recalculated
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with the assumption that it had reached a steady-state length but was out of the

stress-concentration region. If a crack didn’t meet this second growth condition, it

was assumed to have propagated only a little way from the geometrical feature, and

not to have channeled across the specimen. It was, therefore, not counted as forming

the crack array. (However, it was possible for these cracks to channel subsequently

at a higher level of applied strain.)

Cumulative distribution functions for a structure with a dense population of rela-

tively large flaws are shown in Fig. 14. There are three points to be observed in these

plots. First, consistent with the fracture-mechanics calculations of Section 2, there are

three regimes of crack arrays: (i) at low strains, relatively few cracks channel across

the system, and not every geometrical features initiates a crack; (ii) at intermediate

strains, the distribution has a sharp and single edge corresponding to the spacing

of the geometrical features; (iii) at high strains, a significant number of cracks can

form between the geometrical features, resulting in a non-uniform distribution again.

Second, the range of strains over which this single mode of crack spacings can be

obtained is very sensitive to the chosen value of So, becoming very restricted at large

values of So. Third, the results are not very sensitive to the aspect ratio of the geo-

metrical features. These conclusions are all consistent with the observations of Kim

et al. [11] for an oxidized PDMS system, which supports the notion that this system

was one with relatively large intrinsic flaws that could be analyzed by conventional

LEFM approaches for thin films, described in the previous section.

Figure 15 presents some cumulative distribution functions for a structure with

very small intrinsic flaws. A key feature to be noticed from these plots is that the

strains required to ensure the initiation of a crack from every geometrical feature
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are greater than the strains required to channel cracks from long flaws between the

geometrical features. So, the formation of uniform arrays in these systems relies on

the absence of any significant flaws between the geometrical features. Since it relies

on controlling the statistics of the flaw population, the approach can be considered to

be rather unstable, and damage can trigger much finer arrays than intended. Sharper

geometrical features lower the critical strains required to form periodic arrays, and,

at a given strain, a uniform array is more likely to be formed with sharper features.

Both of these conclusions, the sensitivity of array formation to the aspect ratio of

the features, and the triggering of uncontrolled arrays by unintended damage, are

consistent with the experimental observations presented by Nam et al. [10].

The strategy for forming periodic patterns when there is a sufficient density of

relatively large flaws is robust against damage, and is not very sensitive to the nature

of the geometrical features, but it can require a careful matching of the strain to the

desired spacing, depending on the modulus-mismatch ratio. The strategy of relying

on the intrinsic flaws being very small is sensitive to the aspect ratio of the features,

but may not be so sensitive to the strain. However, this strategy is vulnerable to

unintended damage. A lack of strain sensitivity is useful in that it allows a range of

crack spacings to be generated on a single specimen. This versatility can be obtained

either by keeping the density of long flaws low, or by ensuring that the film has a

much higher modulus than the substrate.
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4 Conclusions

The stochastic nature of flaws affects the formation of crack arrays in linear-elastic

systems through the fact that the energy-release rate for channeling a crack depends

on its distance to nearest longer neighbors. This introduces a statistical aspect of

crack lengths to the problem, even if all the flaws are long enough so that the energy-

release rates are insensitive to their lengths. This is a different effect from the more

usual assumption (used in Weibull statistics, for example) that the statistics of crack

lengths enter fracture problems directly through the dependence of energy-release

rates on crack length. These two aspects of the effects of statistics on cracking give

rise to two distinct approaches for controlling the formation of crack arrays: one re-

lies on maintaining a sparse density of flaws, the other is more general and applies to

systems with fairly extensive flaw populations.

Controlled arrays can be generated in a system with very small flaws by intro-

ducing sharp geometrical features that trigger crack channeling from small defects at

points of high stress concentrations. While there can be considerable latitude for the

range of strains that can be used with this technique, the strains have to be relatively

high, and the strategy is not stable against any accidental introduction of additional

large defects. The control of the crack array using this strategy is very sensitive to

the details of the strain enhancement. The physics behind this proposed strategy

seems to be consistent with the reported observations concerning controlled crack

patterns in a silicon nitride film deposited on a silicon wafer [10]. In that paper,

evidence was given that the crack patterns could be controlled, but the details of

the stress concentrators used to trigger cracks were important. There was also ev-

idence that the system failed occasionally, with dense random arrays being generated.
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Controlled arrays can also be generated in systems with relatively large defect pop-

ulations by introducing geometrical features. The role of these features is to project

the tips of some flaws well beyond the others at well-defined points where channeling

is desired. These cracks propagate first, when the appropriate strain conditions are

met. Since the role of the features is primarily to shield flaws from which cracks

should not channel, less stringent conditions are placed on their sharpness than on

the features discussed in the previous paragraph. However, the design of the system

requires a tight coupling between the material properties of the system, the geome-

try, and the applied strain used to generate the crack arrays. A small difference in

modulus between the film and substrate allows only relatively close crack spacings to

be obtained reliably. A large difference in modulus mismatch, which can be accom-

panied by cracking of the substrate, allows a larger range of crack spacings, and a

larger range of strains over which the spacings can be matched correctly.

This strategy of strain matching is consistent with observations on the forma-

tion of controlled crack patterns on oxidized PDMS and in gold films deposited on

PDMS [11]. This system has been used as the basis for fabricating tunable nano-

channels used for confining DNA and chromatin [9]. It is believed that the strategy

outlined in this paper can be used to ensure uniform arrays, so that at a given strain

all the channels in an array will have similar dimensions. One question that might

arise is whether the cracks in an initially uniform array will close in a uniform fash-

ion, or whether some cracks might collapse before others. In this regard, it should

be noted that the appropriate toughness for healing these arrays (corresponding to

a physical attraction, such as van der Waals) will be much lower than the toughness

associated with crack formation. Therefore, the arrays that form are very sparse
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compared to the natural spacing that would correspond to the toughness appropriate

for the healing process. This means that the cracks will not interact with one another

until the applied strain has been relaxed to very low levels, and the closing of the

nano-channels should be effectively uniform until the system is almost completely

strain free. This is consistent with optical observations in these systems, and sug-

gests that, once formed, uniform crack arrays in compliant systems should provide

repeated consistent opening and closing cycles if required.
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Figure Captions

Figure 1: (a) If there is a single value for the cracking strength, a shear-lag

model predicts the formation of a crack array at one level of the applied

stress, and the crack spacing is given by the solution to the ”car park-

ing” problem. (b) If there are multiple cracking strengths, a shear-lag

model predicts an increasing density of cracks until a saturated array is

formed. (c) In an elastic problem, the stresses can continue increasing

between two cracks, and further cracks can always channel between

them, provided there is a suitable flaw to initiate the crack.

Figure 2: The energy-release rate for channeling a crack across the surface of a

film depends on the distance to its two nearest neighbors (assumed to

be equi-distant in this plot).

Figure 3: A schematic showing the process by which the energy changes asso-

ciated with a crack channeling between two pre-existing cracks are

calculated. In (a), the stress distribution σ(y) along the mid-plane

between two cracks at a distance 2s apart is calculated for an applied

strain of εo. In (b), a crack is introduced along this plane, with surface

tractions corresponding to −σ(y) applied along the new crack surface,

and the resultant crack opening displacements u(y) are calculated.

Figure 4: Plots showing the regimes of strains and feature spacing in which pe-

riodic crack arrays contained within the film can be obtained for (a)

a film with no modulus mismatch, and (b) a film with a modulus

mismatch corresponding to a value of α = 0.98, and β = 0. (The

film-to-substrate thickness ratio is 10−4.)
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Figure 5: Micrographs showing the three regimes of cracking for an oxidized

structure made from PDMS, with a feature separation of 48 µm. As

the strain is increased, (a) a random array with too few cracks is first

formed, then (b) a periodic array corresponding to a single crack initi-

ating from each geometrical feature is formed, and finally (c) additional

cracks propagate from between the geometrical features. The region

of interest for crack formation is in the middle of the micrographs, be-

tween the geometrical features. This region is isolated from the rest of

the structure by the channel that forms the geometrical features. The

cracks that can be seen outside this region of interest were triggered

from random flaws elsewhere in the system. Since they are isolated

from the array of interest, they have no effect upon it.

Figure 6: A schematic showing the process by which the energy changes associ-

ated with channeling a crack that penetrates into the substrate between

two existing cracks of depth ao, separated by a distance 2s. In (a), the

strain that would just cause the existing cracks to penetrate deeper into

the substrate is determined. The stress distribution, σ(y), along the

mid-plane between these two cracks is computed for this strain level.

In (b), a crack is introduced to an arbitrary depth a, with surface

tractions corresponding to −σ(y) along its surface. The corresponding

crack-opening displacements, u(y), are calculated.

Figure 7: The secondary crack of depth a2 is initially shallower than the primary

cracks that reach a depth of a1 before it is energetically favorable for the

secondary crack to form. A second set of calculations is then required to

compute which cracks will grow, and the conditions for when a tertiary
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set of cracks can channel between the other two sets.

Figure 8: A graph of strains over which periodic arrays of cracks can be obtained.

An identical figure is obtained if the calculations are repeated with

Γf/Γs = 0, but the cracks can not form unless the strain in the film is

1%. (The film-to-substrate thickness ratio is 10−4.)

Figure 9: Plots of how the crack depths vary with strain within the regime for

which there is a uniform crack spacing. The solid lines correspond to

the primary cracks, and the dashed lines correspond to the secondary

cracks formed at the beginning of each strain range. (The film-to-

substrate thickness ratio is 10−4.)

Figure 10: Micrographs showing the three regimes of cracking for a sample of

PDMS coated with a 10 nm Cr layer (used as an adhesion layer) and

40 nm of Au: (a) with too few cracks, (b) with one crack from each

geometrical feature, and (c) with too many cracks. The region of inter-

est is that in the middle of the micrographs, between the geometrical

features. This region is elevated to isolate it from the surrounding ma-

terial. The cracks that can be seen in the exterior region were triggered

from random flaws elsewhere in the system; they have no effect on the

array of interest. The buckling patterns that can be seen are induced by

Poisson’s ratio effects and stress relaxation from the cracks. The dark

shadows correspond to surface depressions in the strained film, and to

the edges of the elevated region between the geometrical features.

Figure 11: A schematic of a structure showing cracks and geometrical features.

Elliptical features with major and minor axes a and b are separated

by a distance So. Flaws are introduced along the free edge of the
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structure with a density ρ, with a statistical variation in crack length.

The energy-release rate is based on the length of an individual crack

and the distance to its nearest neighbor, as defined in this figure.

Figure 12: A plot showing cumulative distribution functions of the natural crack

spacing in a structure with no geometrical features at different strains,

for the limiting case of a very dense and long flaw population.

Figure 13: A plot showing the relationship between the mean crack spacing and

the applied strain for a structure with no artificial features, as a func-

tion of the flaw population (described by different values of the density

and characteristic flaw size).

Figure 14: Plots showing the three regimes corresponding to Fig. 4 for systems

with a sufficient density of large intrinsic defects. These plots show

the effect of changing the spacing, So/h, and aspect ratio, a/b, of the

geometrical features. In (a), So/h = 10 and a/b = 2; in (b), So/h = 10

and a/b = 5; in (c), So/h = 50 and a/b = 2. In (a) and (b), the

separation of the geometrical features is small, which allows a relatively

wide strain range for the second regime. It will be noted that the aspect

ratio of the features, is not particularly significant. In (c), the onset

of the second regime occurs just above the critical strain for a single

crack to channel across the specimen, and a very narrow strain range

is allowed for the second regime; again, consistent with Fig. 4.

Figure 15: Plots showing the effects of the aspect ratio, a/b, and spacing, So/h,

of geometrical features on the cumulative distribution of the resultant

crack arrays. In (a), the crack spacing is So/h = 10, and in (b), the

crack spacing is So/h = 50. The short defects results in the require-
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ment of a relatively high strain to get a uniform pattern. This strain is

sensitive to the aspect ratio, and, at low aspect ratios, it can be much

larger than that required to create uniform arrays when the flaws are

very long. This results in unstable crack arrays, since any single rela-

tively long flaws between the geometrical features can initiate a channel

crack, and break the periodicity. Sharper aspect ratios for the geomet-

rical features lower the strain required to generate uniform flaws. In

the limiting case of very sharp features, the critical strains would be

reduced to the level of those in Fig. 14.
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