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Abstract 

Fretting wear and creep can occur simultaneously when two surfaces in contact vibrate against 

each other at relatively high temperatures.  An ability to analyze combined creep and wear is 

important for applications involving engines, contacting surfaces within fluids of high-

temperature heat exchangers, such as fuel rods in nuclear power stations, and contact with 

polymers close to their glass-transition temperatures.  The two phenomena of creep and wear 

interact with each other through their roles in affecting the shape and stress fields at contacts.  

Wear is a phenomenon that is generally considered to have no inherent time scale associated 

with it, beyond the period of the fretting oscillations.  Traditional computational models for wear 

do not require a specific reference to time, but creep models do.  Currently, a reliable and 

efficient numerical algorithm to couple the relatively long time scales of creep to the, generally, 

short periods of vibrations is not available.   In this paper, we present such an algorithm, using an 

approach of adaptive effective vibration cycles.  We demonstrate how to ensure the efficiency 

and reliability of the modeling by bounding the magnitude of the stress redistribution along the 

interface during the effective cycle.  This approach enables the simulation of problems involving 

coupled wear and creep.  We show that this approach is robust, and that it can be used during 

full-slip and partial-slip fretting for geometries with smooth or discontinuous interfaces at the 

edge of the contact.  In particular, we use these examples to illustrate some of the crucial roles of 

creep in wear, such as transitions between partial and full slip. 
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1. Introduction 

When an interface is subjected to oscillating loads at elevated temperatures, both wear 

and creep may occur. Both wear and creep can cause geometrical changes and stress relaxation 

that can affect the wear rate. This may affect the performance and lifetime of many structures 

such as biomechanics components (Bevill et al., 2005; Jacobs et al., 2002; Lee and Pienkowski, 

1997; Teeter et al., 2015), fuel rods in nuclear power stations (Kim et al., 2008; Kim, 2010a; Lu 

et al., 2016), thermal heat exchangers (Lai, 1979), and engine components (Gan et al., 2017a; 

Narasimhan et al., 1981; Takahashi et al., 2002).  While numerical models for the individual 

phenomena of wear or creep are fairly well established, algorithms to couple the two behaviors 

acting in concert have not been discussed in the literature.  

The period of fretting vibration is usually much smaller than the time scale associated 

with the development of a significant amount of wear.  In wear simulations, the wear depth is 

usually predicted using the Archard’s law (Archard, 1953; Johnson, 1984), in which the local 

wear depth is proportional to the product of the local shear tractions and the local slip distance. 

Meaningful amounts of wear accumulate only over many cycles, since the wear in each loading 

cycle is very small.  Therefore, it would be unnecessary and computationally expensive to update 

the contact geometry (or mesh) every cycle.  Instead, the wear in one cycle is computed, and then 

multiplied by the number of cycles over which wear is assumed to be occurring without 

significant geometry changes so that the amount of wear in each subsequent cycle is the same.  

This algorithm is usually referred to as the Euler method (Gan et al., 2017b; Hegadekatte et al., 

2005; McColl et al., 2004; Mukras et al., 2009; Põdra and Andersson, 1999).  The efficiency and 

reliability of the method depend on the choice of the number of cycles represented by one cycle, 

N.  A value of N that is too large will cause excessive error because of stress redistribution, while 



a value of N that is too small will reduce the efficiency.  Therefore, a value of N that is 

reasonable at the beginning of the simulation can become inappropriate as wear propagates. An 

improved method is to determine the scale factor N dynamically so that the maximum wear 

increment is set to a threshold value (Põdra and Andersson, 1999).  This method is reliable and 

efficient in simulations for which the worn interface is relatively smooth.  However, in many 

engineering problems, the worn interface may not be smooth, and small local increments of wear 

may cause very large variations in the contact pressure.  For example, in partial slip problems, 

very small increments of wear around the stick-slip boundary may result in very large changes of 

local contact pressure (Goryacheva et al., 2001; Hu et al., 2015).  In these situations, using a 

wear-increment threshold may miss some dramatic changes of contact pressure, causing large 

errors in the predictions of wear.  This suggests the need for an alternative criterion such as that 

presented in this paper as part of our desire to couple the effects of creep and wear. 

It should be noted that the approach described above works because there is no inherent 

time scale associated with the wear model.  Conversely, consideration of creep does bring in 

time scales associated with the creep mechanisms that may change as the stress or temperature 

changes.  Constitutive laws associated with various creep mechanisms are used to describe the 

relationships between the strain rate and stress in different regimes of stress and temperature 

(Frost and Ashby, 1982; Wang et al., 2013), and can be incorporated in finite-element codes 

(Wang et al., 2013). When wear and creep act together, one cannot simply multiple the amount 

of wear in one cycle by the number of cycles to get the total effect, since creep happens 

continuously over time and is different between each cycle. There is no such concept that the 

creep in one cycle can represent the creep in subsequent cycles. 



The fundamental problem in developing efficient algorithms for combined creep and 

wear is that creep has an inherent time scale associated with it, but is independent of sliding 

distance, while wear is independent of time except through the vibrational frequency, which does 

not enter directly into the analysis.  Efficient algorithms for wear use criteria based on sliding 

distances or wear depth.   Efficient algorithms for creep use criteria based on characteristic times 

for stress relaxation.  Although one can convert the wear criteria to ones based on time through 

the vibrational frequency, the choice of a computational time increment based on either one of 

them may be inappropriate for the other, and cause excessive error.  Therefore, one goal of this 

research was to determine an efficient algorithm to couple the time scales of vibration and creep, 

through their effects on wear.  A second goal of this research was to explore how creep might 

affect wear.  In this context it is noted that stress relaxation could have two competing effects:  (i) 

reduction of normal pressure could enhance slip and, hence, the wear rate; (ii) reduction of 

normal pressure could reduce Coulomb friction and, hence, the associated frictional work and 

wear rate.  Both of these effects will be observed in the results presented in this paper. 

We consider stress redistribution along the contact surface to be the concept that connects 

creep and wear.  For example, the stress redistribution caused by creep can affect the local 

contact pressure and, hence, the propensity to slip, which affects the wear rate.  It should also be 

noted that, unless diffusional (linear) creep is the dominant creep mechanism, creep changes the 

singularity of the stress fields near the corners of contacts.  This may affect the critical 

coefficient of friction for slip.  Furthermore, in many engineering applications, preloaded 

components are designed to achieve full-stick conditions at the contact interface.  However, 

creep can relax the contact pressure.  In some circumstances, this can lower the shear tractions 

(through Coulomb's Law) resulting in lower wear rates.  In other circumstances, this relaxation 



can enable a zone of partial slip to spread across the interface until full slip occurs, perhaps 

increasing the wear rate.  There are also problems in which wear occurs within a partial slip zone 

at a contact edge that cannot spread according to traditional wear analyses (Goryacheva et al., 

2001; Hu et al., 2015), but may spread if the ratio of the normal and shear tractions are affected 

by non-linear deformation (Hu et al., 2015).  Finally, it should be noted that geometrical changes 

in the contact surface that result from wear may redistribute contact pressures, and affect the 

local creep rates.   

In conclusion, creep and wear interact through stress redistribution along the contact 

surface.  Therefore, the use of a criterion that limits the change in contact pressure to within a 

pre-defined threshold should be useful to couple creep and wear accurately and efficiently.  This 

concept is developed in more detail within this paper. 

2. Methodology  

2.1 Coupling vibration, creep and wear by effective cycles 

The period of fretting vibration is usually much smaller the time scale over which 

significant wear or creep occurs.  For example, the period of vibration for grid-to-rod fretting in 

nuclear reactors is seconds or less (Kim, 2009, 2010b), while the time scale for significant stress 

redistribution associated with creep or wear can be months or years.  This huge difference in 

time scales poses a significant challenge when attempting to couple their effects in a numerical 

simulation of this important problem. 

According to Archard's law (Archard, 1953), the local increase in wear depth during any 

increment of time is proportional to the local frictional work done during that increment.  With 

an assumption of Coulomb friction, the local frictional traction is given by the product of the 



coefficient of friction and the local contact pressure.  Therefore, at any time t and location, x, 

along a contacting surface, the increment of wear depth accumulated during a small increment of 

time δt is given by 

 ( , ) ( , ) ( , )ow x t p x t s x tδ δ α µ δ δ= , (1) 

where αo  is the wear coefficient, µ is the coefficient of friction, p(x, t) is the local contact 

pressure, and δs(x, δt) is the local slip during the time increment.  This equation is always valid, 

provided friction is governed by Coulomb's law.  (In the trivial case where there is no slip, the 

equation is still valid, since δs(x, δt) = 0.)  In the equation given above we have assumed that the 

contact pressure varies in only one dimension along an interface; obviously, the equation can be 

readily generalized to two dimensions. 

Generally, Archard's law with a constant wear coefficient is applicable for full slip, when 

wear debris is continuously removed.  With partial slip there is a possible issue in that wear 

debris may accumulate.  In this context, it is noted that it has been shown experimentally that 

with debris accumulation, wear behavior can reach a steady state in which the Archard’s law 

with a constant wear coefficient is also appropriate (Costa et al., 2017; Hong et al., 2017; 

Williams, 2005). In the transient state before a steady state is reached, a varying friction or wear 

coefficient would need to be used, so Archard’s law would not be strictly appropriate.  However, 

in the absence of published experimental data on how the wear coefficient might vary during 

partial slip when debris might not be ejected from the contact, we follow a simplifying 

assumption used by others in the field (Ding et al., 2004; Fouvry et al., 2001; Goryacheva et al., 

2001; Johansson, 1994; Kasarekar et al., 2007; Oqvist, 2001; Põdra and Andersson, 1999; Rezaei 

et al., 2012), and assume a constant wear coefficient throughout the wear process. 



 To implement Archard's law with Coulomb friction in a finite-element model, it is 

necessary to monitor the distribution of the contact pressure for all the nodes along an interface 

at time ti, and the corresponding slip distance for each of those nodes that accumulates during a 

computational-time increment δtm.  Equation (1) then gives the incremental increases in wear 

depth for each node during δtm.  These wear depths can then be integrated for all subsequent time 

steps and added to the wear distribution at time ti, w(x,ti), to find the total wear depth at a time 

ti+Δt: 

 
1

( , ) ( , ) ( , ) ( , )
M

i i o m m
m

w x t t w x t p x t s x tα µ δ δ
=
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Here M is the total number of computational increments to advance Δt, i.e. 
1

M

m
m

t tδ
=

Δ =∑ .  

An efficient algorithm is provided by analyzing two full cycles, and recognizing that the 

slip distances for any point x remain the same in the second and subsequent cycles, provided p 

remains unchanged between cycles, i.e. p(x,t)= p(x,t+To), where To is the period of the physical 

oscillation. Therefore, the wear at any point after an arbitrary number of cycles, N, is 

approximately given by N times the wear in a single cycle.  This is the basis of many numerical 

wear models.  The limit to how many cycles can be represented by this approach depends on the 

extent to which geometry changes associated with wear affect the pressure distribution along the 

interface.  Eventually, the geometry will need to be updated, and a new pressure distribution 

calculated.  

If one chooses to think of the algorithm described above as resulting in an effective cycle, 

one should note that any consideration of the period of the effective cycle is irrelevant; 

effectively, it is the wear coefficient that is changed.  This marks a point of departure from the 



algorithm proposed in this paper, in which the period of the effective cycle needs to be 

considered when accounting for creep.   

The creep laws and their corresponding time-scales depend on the relevant creep 

mechanism (Frost and Ashby, 1982; Wang et al., 2013). In this paper, we will use a simple 

power law of 

 !"ε = A !σ n   (3) 

where !"ε  is the von Mises effective creep strain rate, !σ  is von Mises effective stress, and A and n 

are constants depending on the temperature and microstructure1.  We will not consider the effects 

of temperature or mechanism change in this paper, but note that the numerical approach we 

develop here can be used with multi-mechanism creep models (Wang et al., 2013), as illustrated 

by a specific example related to wear in a nuclear-power plant (Wang et al., 2017).   

 Linear isotropy is assumed to link the stress and strain tensors within the contacting 

bodies.  During any increment of computational time, incremental changes in the strain tensor 

are computed using the Levy-Mises flow rule (Akhtar S. Khan and Huang, 1995) for creep, and 

modified stresses are re-calculated from the new strain tensor.  These calculations allow the 

pressure distribution to be calculated as a function of time along the interface.   

In order to compare the effects of creep and wear on the change in the contact pressure, it 

is necessary to introduce the concept of a time scale into the effective cycle.  This is illustrated in 

Fig. 1.  Not only does the wear coefficient have to be magnified so that the wear depth is 

calculated correctly in a single effective cycle, but the period must also be increased so that the 

stress relaxation is calculated correctly.  If the period of the physical oscillations is To, and the 
																																																													
1	Note	that	for	an	oscillating	stress	whose	amplitude	is	considerably	smaller	than	the	mean,	frequency	has	no	
effect	on	the	accumulated	creep	strain.	



period of the effective cycle is Ti, then the effective wear coefficient is αoTi/To.  The wear depth 

after one effective cycle Ti  from time ti is given by 

 ( )0

1
( , ) ( , ) , ( , )

M
i

i i i m m
mo

Tw x t T w x t p x t s x t
T

α µ
δ δ

=

+ = + ∑ .  (4) 

Notice that the contact pressure needs to be updated after every computational increment. When 

there is only wear, Eqn. (2) can be used to calculate the amount of wear in one cycle by setting 

tΔ = To. Time advances NTo by multiplying the wear in one cycle with N, giving the wear after N 

cycles. When wear and creep act together, Eqn. (4) should be used. In contrast to Eqn. (2), time 

advances by iT  ( i oT T> ) in Eqn. (4) and the accumulated wear during an effective cycle should 

not be used to multiple any cycle number for projection. Time advances by repeating Eqn. (4) 

one effective cycle after another. 

Once the wear depth at the end of the effective cycle has been computed, the geometry is 

updated and the calculation repeated.  However, it is important to appreciate that after updating 

the geometry, one cycle of a regular length needs to be computed to ensure that steady-state 

conditions have been met before proceeding with calculating the full effective cycle again.  

2.2 Determining the period of the effective cycles 

While the concept described above may appear to be obvious in retrospect, the challenge 

lies in establishing the criterion for calculating the length of Ti, and recognizing that it can 

change throughout a calculation.  The length of the effective cycle Ti needs to be small enough to 

achieve a desired level of accuracy.  The magnitude of Ti scales the wear in a proportional 

fashion.  If Ti is too large, the development of the wear may cause excessive errors in the stress 

that is used for both the creep and wear calculations.  Conversely, if Ti is too small, the 

computational efficiency is reduced.  These constraints are valid even in the two limits where the 



effects of creep are small and where the wear rate is small.  In particular, wear during one cycle 

over a long period during which the contact pressure relaxes is not the same as wear during many 

cycles over which the same relaxation occurs.  

Our approach is to use the change in contact pressure at any point along the interface as a 

measure of how the problem is affected by wear and creep during one effective cycle.  It should 

be emphasized that we only need to focus on the change in contact pressure, since we use a 

Coulomb assumption that the local shear stress along a slipping contact, where wear is occurring, 

is proportional to the local contact pressure.  We define a threshold for the maximum allowable 

change in contact pressure as φpm,i, where pm,i is the maximum contact pressure along the contact 

surface at the end of the ith cycle.  The parameter φ is chosen to balance accuracy and efficiency.  

One can run a simulation using a relatively large φ, say 10%, for a certain number of effective 

cycles, and then repeat the simulation using a smaller φ, say 5%.  If the difference in contact 

pressure at the end of simulation for the two simulations is less than the numerical uncertainty of 

the model (and input parameters) or simulation requirement, then φ is considered to be 

sufficiently small.  Otherwise one can reduce φ and continue with the testing. In this paper we 

give some indications of the appropriate choice for φ. 

Figure 2 shows a flow chart of how the concept of an effective cycle is used in a 

numerical simulation.  We start with an assumed period for the effective cycle, T1, chosen to be 

small enough so that the maximum change of contact pressure at all points is expected to be 

much smaller than the threshold.  After computing the maximum contact pressure and maximum 

change in contact pressure from this cycle, we then proceed with the next step in the calculation 

using an effective cycle set according to the relationship 
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where Ti+1 denotes the length of the next effective cycle to be used, Ti denotes the length of the 

current effective cycle, and ipΔ  denotes the maximum change of contact pressure among all 

points at the contact surface during the ith cycle.  Note that the maximum change of contact 

pressure and the maximum contact pressure may be at different nodal points on the contact 

surface.  Using this approach, we can dynamically predict and update the length of the next 

effective cycle based on the stress relaxation observed during the current cycle.  In this way the 

change of contact pressure during each effective cycle will be close to, but not more than, the 

threshold. 

3. Finite-element modeling 

We have implemented the effective-cycle approach in ABAQUS to couple creep and 

fretting wear. In this section we will demonstrate a few examples.  A Hertz contact under 

conditions of full slip will first be used to demonstrate the approach when creep and wear cause a 

global stress relaxation.  A second set of calculations will show the effect of creep on wear in a 

problem where there is initially only partial slip in a Hertzian contact.  The last set of 

calculations will illustrate the technique when there is a corner with a singular field and partial 

slip.  In this last case, creep also has the effect of changing the singular field.  In all these 

calculations, the morphological changes in the surface caused by wear were modeled by 

assigning eigenstrains to the surface elements, as described in an earlier work (Hu et al., 2015), 

rather than by re-meshing.  In all the calculations, the contacts were formulated using surface-to-

surface contact pairs, with a kinematic constraint that the slave-surface nodes do not penetrate 

the master surface being enforced (Simulia, 2013).  The frictional force was always modeled 



using a Coulomb-friction law, with a constant coefficient of friction, µ.  Both the indenter and 

the substrate are assumed to have identical material properties, but only the substrate wears.   

A full set of the appropriate non-dimensional parameters for the different cases is 

presented in Table 2.  In particular, it will be noted that we have chosen to normalize the wear 

coefficient, αo, in terms of the Young's modulus, E, as αoE.  The magnitude of the creep constant, 

A, is normalized by the modulus, power-law exponent, and period of vibration, as AEnTo. 

3.1 Full slip with a Hertz contact  

Figure 3 shows the geometry of Hertz contact between a cylindrical surface of radius R 

and a flat substrate.  A fixed displacement, Dy, was applied to the top of the indenter in a 

direction normal to the interface so as to apply a pressure across the contact.  An oscillating 

tangential displacement of fixed magnitude Dx was applied to the top surface, parallel to the 

interface.  We used displacement-controlled boundary conditions, rather than force-controlled 

boundary conditions, to address the effects of stress relaxation.  In the first set of calculations, 

the amplitude of the tangential displacement, Dx, was chosen to be large enough for the contact 

to experience full slip from the first cycle.   

First we considered a scenario in which the initial wear and the initial creep make 

comparable contributions to stress relaxation at the interface.  The case chosen corresponds to a 

ratio of the non-dimensional groups describing the effects of creep to wear of AEn-1To/αo = 1.1× 

1018, with n = 4 (Scenario 1 in Table 2).  Figure 4 shows the contact pressure and wear profile at 

t/To=1×104 (Figs. 4a and 4b) and t/To=5×104 (Figs. 4c and 4d).  It can be seen from Figs. 4a and 

4c that although the initial effects of wear and creep on stress relaxation are comparable, the 

effects of creep decay with time compared with those of wear, since power-law creep is very 



sensitive to the magnitude of the stresses, while wear has only a linear dependence on contact 

pressure.  The effects of ϕ were much smaller than any numerical uncertainty below a value of 

ϕ = 10%.  ϕ could be increased to as much as about 30% before the discrepancy had a magnitude 

comparable to the numerical uncertainty.  Little numerical efficiency is gained by increasing ϕ  

above 20%.  Since one aspect of this study was to explore situations in which creep has a 

significant effect on the problem of wear, all of our wear calculations were repeated without 

creep, which was obtained by setting A to zero.  In this particular case, the additional stress 

relaxation contributed to a reduced wear rate.   

3.2 Partial slip with a Hertz contact 

Even if a contact exhibits macroscopic stick, partial slip may occur around the edge of a 

contact edge, owing to local geometrical effects.  For a Hertz contact, the partial slip region does 

not propagate owing to wear (Goryacheva et al., 2001).  However, we will show in this section 

that the effect of creep is to reduce the stress level, extend the region of partial slip across the 

interface, and turn the problem into one involving full slip. 

In order to demonstrate the capability of an approach using effective cycles to model this 

scenario, we used the same parameters as in the previous two cases, but reduced the magnitude 

of the tangential displacement by a factor of two, so only the region of the interface around the 

circumference of the contact slipped initially (Scenario 2 in Table 2).  The simulations were 

repeated with a range of φ up to 20%.  Figures 5a and 5c show the evolution of contact pressures 

at t/To = 1×104 and t/To = 1×105, respectively, while Figs. 5b and 5d show the corresponding 

wear scars.  In particular, one can note the non-slip region, corresponding to a region of no wear, 

at the center of the contact in Fig. 5b.  At the start of simulation the slip region was limited to a 



distance of |x|/l > 0.18 from the center.  When φ is as high as 20% there is a slight effect on the 

wear scar beyond numerical error. 

The effects of creep on the development of the wear scar can be seen very clearly in 

Fig. 5d.  Without creep, the inner boundary of the wear scar remains at |x|/l = 0.18; it doesn't 

propagate towards the center, consistent with earlier observations (Goryacheva et al., 2001).  The 

relaxation associated with creep allows the slip region to propagate towards the center of the 

contact, eventually causing full slip along the interface.  This results in much greater slip, and an 

enhanced wear rate, leading to a very different wear profile, which is particularly evident in Fig. 

5d.  

3.3 Contact with a sharp corner 

In this last section, we consider a contact with a sharp corner, as shown in Fig. 6.  The 

stress field is singular at a corner, providing an extreme example for modeling creep and wear.  

We chose a coefficient of friction equal to 0.35, so that partial slip occured near the corner under 

the initial conditions according to elasticity analysis (Churchman and Hills, 2006).  In order to 

capture the behavior around the corner of interest, the mesh size was refined to 0.001l.  However, 

to ensure computational efficiency we only refined the corner on the left hand-side. We validated 

that the length of indenter was long enough so that the right corner of the contact had a negligible 

effect on the contact at the left corner, and that symmetrical meshing would have had a 

negligible effect on the stress distribution.  As shown in Fig. 6, a fixed displacement Dy was 

applied at the top of the indenter, with an oscillating tangential displacement, Dx, parallel to the 

interface.  The parameters used that corresponded to this case are listed as Scenario 3 in Table 2.   



Figure 7 shows the contact pressure and wear depth.  Figs. 7a and 7c show that the 

contact pressure field has a singularity of -0.380±0.008 at t = 0 near the corner.  This confirms 

the accuracy of the numerical calculations, as it matches the theoretical value of -0.382 for the 

singularity with slip at a right-angled corner between two identical elastic materials and a friction 

coefficient of 0.35 (Churchman and Hills, 2006).  In this case, this order of singularity is rapidly 

lost as a result of the creep, and drops to a steady-state value of -0.140±0.010.  Although, we are 

unaware of published singularities for creeping materials with this particular contact geometry, 

this seems to be a reasonable value, and creep singularities have been calculated for bonded 

sharp notches with power-law creep (Zhu et al., 2011).  Figures 7b and 7d show the wear scar at 

t/To = 1×104 and t/To = 1×105, respectively.  Similar to Fig. 5, the stick-slip boundary does not 

move when there is no creep, and the wear depth is significantly underestimated. It should be 

noted that a value of ϕ = 20% approximately correspond to the condition when the discrepancy 

caused by the use of an effective cycle was comparable to numerical uncertainty.  

3.4 Discussion 

As shown in the previous sections, our effective cycle approach is robust in terms of the 

choice of ϕ . We further computed all three scenarios in the spirit of Archard's law, modeling the 

physical cycle explicitly, without using effective cycles. We compared the results of this explicit 

model with those from the effective cycle. Figure 8 shows the comparison. Owing to the high 

computational cost to calculate each physical cycle one by one, we let the system evolve for a 

shorter time in these calculations, since the goal was only to show that we lost no significant 

information by invoking effective cycles. Four effective cycles were invoked in the calculations, 

while this small number of effective cycles generated the same result of calculating many 

physical cycles. 



 For Scenario 1 in Fig. 8(a), the differences between the contact pressure and the wear 

depth using effective cycles with ϕ = 10% and without using effective cycles are less than 0.03% 

and 0.2%, respectively. We did similar validations for the other two scenarios in Fig. 8(b) and (c). 

These confirmed that the effective-cycle approach is reliable. 

4. Conclusions 

We have developed an effective cycle approach to couple the disparate time scales of 

creep, and vibration, which has enabled coupled creep and fretting-wear simulations.  The length 

of the effective cycle is adjusted dynamically, on-the-fly, by limiting the change of contact 

pressure during each cycle to within a threshold consistent with both accuracy and efficiency.  In 

real applications, a threshold that balances efficiency and accuracy can be determined by trials 

from large to small values until the contact pressure and wear depth curves converge.   

In this study we investigated the effects of creep on wear for a range of scenarios.  The 

relaxation of stress by creep has two effects.  In problems involving full slip creep can have the 

effect of reducing the contact pressure, and hence the frictional work and wear damage.  In 

problems involving partial slip, the reduction in contact pressure can cause the stick-slip 

boundary to move, leading to enhanced wear rates.  

The method developed in this paper has been demonstrated to be robust in modeling 

various problems, where creep and wear cause global or localized stress redistribution.  The 

approach automatically determines the appropriate time scale without the need of knowing which 

stress relaxation mechanism dominates. This approach may be useful to modeling various 

engineering problems where creep and wear interact and act simultaneously. For example, in a 



peer project (Wang et al., 2017), we have used this approach to couple creep and wear on the 

grid-to-rod interface in a pressurized water reactor.  
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Figures 

 

Figure 1:  The concept of an effective cycle with a period Ti that uses a magnified wear 
coefficient to represent many physical vibration cycles. Wear and creep 
calculations are fully coupled using the effective cycle.  In the finite-element 
calculations the period Ti is discretized into several time steps to calculate the 
evolution of the stress and displacement fields.  The effective-cycle approach 
greatly accelerates the calculation since Ti/To is a large number. The length of the 
effective cycle is adjusted dynamically, on-the-fly, by limiting the change of 
contact pressure during each cycle to within a threshold consistent with both 
accuracy and efficiency.  

	

	 	



 

Figure 2:  Flow chart to illustrate the process for the coupled wear and creep calculation.   



 

Figure 3:  A Hertz contact between a cylindrical surface of radius R (top) and a flat substrate.  
A fixed normal displacement of magnitude Dy applied to the top surface, along 
with an oscillating tangential displacement of magnitude Dx.   



 

Figure 4:  The conditions of Scenario 1 in Table 2 correspond to a case where creep and 
wear initially have comparable effects on stress relaxation.  The resultant stress 
distributions are shown for (a) t/To=1×104 and (c) t/To=5×104.  The contact 
pressures that evolve when only creep or wear occurs are shown for reference, 
which were obtained by switching off the wear or creep calculation.  The wear 
depths that evolve are shown for (b) t/To=1×104 and (d) t/To=5×104, with the 
effects of wear only being shown for reference. The contact pressure is relatively 
insensitive to the choice of φ.  The wear depth is slightly more sensitive, with 
effects larger than the numerical uncertainty being observed for φ > 10%.  
However, even for φ = 30%, the effects are relatively minor.  



 

Figure 5:  Contact pressure and profile of the wear depth for a partial-slip Hertz contact at 
t/To=1×104  for (a) and (c), and t/To=1×105 for (b) and (d), using the conditions of 
Scenario 2 in Table 2.  The stress relaxations for creep only and wear only are 
shown for reference, which were obtained by switching off the wear or creep 
calculation.  Without creep, the inner boundary of the wear scar remains at |x|/l = 
0.18; it doesn't propagate towards the center. The relaxation associated with creep 
allows the slip region to propagate towards the center of the contact, eventually 
causing full slip along the interface. 



 

Figure 6:  A complete contact with sharp corners under a fixed normal displacement Dy 
applied to the top, along with an oscillating tangential displacement of magnitude 
Dx.   

 

	 	



 
Figure 7:  Contact pressure and profile of the wear depth for a complete contact with sharp 

corners that experiences partial slip, using the conditions of Scenario 3 in Table 2. 
Shown are at time t/To=1×104 for (a) and (c), and t/To=1×105 for (b) and (d).  
Creep dominates the stress evolution. The singularity of the contact pressure at 
t/To =0 matches the theoretical value of -0.382 and drops due to creep.  The stick-
slip boundary does not move when there is no creep, and the wear depth is 
significantly underestimated. 

  



 



Figure 8:  Comparison of results using effective cycles (dots) and without using effective 
cycles (line) for the conditions of (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3 in Table 2. 
Four effective cycles were invoked in the calculations, while this small number of effective 
cycles generated the same result of calculating many physical cycles.  



 

Tables 

Table 1: Nomenclature  

l Semi length of the indenter 
h Height of the indenter 
Dx Tangential displacement 
Dy Normal displacement 
R Radius of the indenter in the Hertz contact 
E Young’s modulus 
v Poisson’s ratio 
αo Wear coefficient 
wi 
w 

Wear depth increment during the ith cycle 
Wear depth 

p Contact pressure 
µ Friction coefficient 
Δ Slip distance 
σ%  Von Mises effective stress 
ε% Von Mises effective creep strain 
A Creep coefficient 
n Creep power order 
t Time 
To Period of vibration 
Ti Period of the ith effective cycle 
φ Percentage threshold of allowable contact pressure change during one effective 

cycle 
Δpi Maximum change of contact pressure among all points at the contact surface 

during the ith cycle 
pm,i Maximum contact pressure along the contact surface at the end of the ith cycle 

or at the beginning of the next (i+1)th cycle 
 

  



Table 2: Dimensionless parameters 

 Scenario 1 
(Hertz full slip) 

Scenario 2 
(Hertz partial slip) 

Scenario 3 
(Complete full slip) 

Dx/l 8×10-3 4×10-3 2×10-5 

Dy/l 0.01 0.01 0.004 

R/l 20 20 NA 

l/h 1 1 1 

µ 0.2 0.2 0.35 

ν 0.25 0.25 0.25 

n 4 4 4 

AEnTo 4×1015 4×1015 4×1012 

αoE 3.5×10-3 7×10-3 7×10-3 
 

 

 


