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Abstract

Traditional analyses of slip at corners of contacts, based on linear elasticity
and a Coulomb friction law, are very sensitive to the details of local geometries,
owing to the effects of elastic singularities. Following the use of cohesive-zone
models to address such issues in mode-II fracture, we present analyses of slip
and wear at corners of contacts when a finite interfacial shear strength is incor-
porated with a Coulomb friction law. We show that the concept of an instan-
taneous cohesive-length scale, borrowed from the field of fracture mechanics,
can be used to describe the nature of stress fields around corners, and defines
when linear-elasticity and Coulomb friction can provide an accurate description
of the interfacial behavior. We also show that the sensitivity of slip analyses
to geometrical details decreases when the cohesive-length scale increases. We
also show that the cohesive strength of an interface plays a crucial role in the
propagation of a wear scar across an interface. If only Coulomb slip is assumed
to occur, a wear scar may not progress beyond the original stick-slip boundary.
If a finite interfacial shear strength is introduced into the analysis, the wear
scar can propagate along the interface.
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1 Introduction

The life of many engineering components can be limited by fretting wear [1] induced

by cyclic slip between two contacting surfaces [2]. This wear is often initiated at

the corners of contacts, where there are high stresses that can be singular in elastic

analyses. However, an assumption of Coulomb friction in these analyses leads to a

prediction of slip and wear only if the coefficient of friction, µ is low enough, with the

critical value of µ depending on the details of the corner geometry. Similar issues of

sensitivity to local geometry are inherent for problems of crack propagation in inter-

facial fracture mechanics. In that field, cohesive-zone models, which incorporate the

concept of a finite interfacial strength, have been found to be useful tools to resolve

some of the unrealistic complexities associated with singular stresses, while retaining

the general features of fracture mechanics that make it useful at larger scales [3, 4, 5].

In this paper we apply the insight provided by the field of interfacial fracture mechan-

ics to interfacial slip, showing that the assumption of a finite shear-strength changes

the slip and wear behavior at corners in important ways.

The contact across an interface between two bodies can be described by three

regimes of behavior that depend on the geometry and the loads [6]. The first regime

is full-stick, where the interface is effectively bonded across its entire length, and

the two bodies act as a single entity. The second regime is full-slip, where there is

relative motion between the two bodies along the entire interface. The third regime

is partial-slip, where the two materials slide relative to each other along some parts

of the interface, and are effectively bonded along others. Wear is associated with the

energy dissipated by sliding [6, 7], and the analysis of wear requires modeling the

relative slip along the interface between the two bodies. The full-stick and full-slip
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regimes can be relatively easy to describe; partial-stick can provide more of a chal-

lenge. However, this last phenomenon is an important aspect of wear at the corners

of contacts and, therefore, forms the focus of this study.

Coulomb’s law is a common criterion used to determine when slip occurs. This law

states that the magnitude of the interfacial shear stress, q, is limited by the product

of the local applied pressure across the interface, p, and the coefficient of friction, µ:

|q| ≤ µp . (1)

Slip occurs if this condition cannot be satisfied without allowing a relative shear dis-

placement across the interface. The coefficient of friction is generally assumed to be

a constant that is characteristic of the interface; if it is assumed to vary, non-linear

effects are introduced [8].

Coulomb’s law allows for the possibility of an arbitrarily high interfacial shear

stress, if the local pressure is high enough. Indeed, Coulomb slip at a corner results

in singular shear stresses. This unphysical result can be avoided by assuming that the

magnitude of the shear stresses is limited by an interfacial shear strength, τ̂ , that is

independent of local pressure [9, 10]. For example, the shear strength of the contacting

materials could provide an upper bound to this parameter. Local equilibrium then

requires a second condition that

|q| ≤ τ̂ . (2)

This concept of a single-valued interfacial shear strength is commonly used in fiber-

composite models [11, 12], as well as in thin-film and composite-laminate cracking

problems [3, 13].
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The stresses along an interface near a corner are generally singular for elastic bod-

ies in contact. The strength of the singularity depends on the details of the geometry,

and is the same for both the shear stress and the pressure [14, 15, 16]. This means

that the ratio of the shear to normal stress is constant near the corner, no matter

how high the stresses are. So, depending on the magnitude of the friction coefficient,

either slip by the Coulomb criterion occurs everywhere within the singular region, or

there is complete sticking within the singular region. Partial slip occurs when the

Coulomb condition is met within the singular field, but not outside it. However, the

stress field associated with Coulomb slip is still singular, both the contact pressure

and the shear stress increase without limit as the corner is approached.

The purpose of this paper is to examine how the assumption of a limiting value for

the interfacial shear stress, as given by Eq. (2), affects slip at the corner of contacts,

and how this might influence the evolution of wear. In the next section we give a

brief summary of how the interfacial stresses near corners depend on geometry and

slip conditions. We then show how these stress distributions and the slip are affected

by the assumption of a finite interface strength. This is followed by a demonstration

of how the sensitivity of slip to details of the corner geometry is reduced by invok-

ing a finite interfacial strength. The final part of the paper demonstrates how the

assumption of a finite interface strength can have a significant effect on the evolution

of a wear scar, allowing it to propagate across an interface, rather than arresting at

the initial slip-stick boundary.
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2 Background

2.1 No slip

In this paper, we consider two elastic bodies with the same properties, contacting

each other along flat surfaces. Figure 1 shows a magnified view near the corner of

the contact for such a system. If the interface does not satisfy either of the two slip

conditions of Eqns. (1) and (2), the stresses are given by the elastic solution for a

wedge. Close to the corner, the stresses are singular. For example, along a line that

bisects the corner (Fig. 1), the singular components of the normal and shear stresses

are given by [17, 18]

pθθ(r) = KIr
λI−1 ,

qrθ(r) = KIIr
λII−1 , (3)

where r is the distance from the corner, KI and KII are the mode-I (symmetrical)

and mode-II (anti-symmetrical) stress-intensity factors, and the strengths of the sin-

gularities, λI and λII , depend on the exterior angle, φ. The two stress-intensity

factors depend on the detailed geometry of the corner, but they also depend on the

macroscopic geometry, and on the applied loads. They are analogous to those used

in fracture mechanics, and describe the effects of the geometry and loads1.

Equation (3) describes the singular stresses along a line that bisects the exterior

angle. Of particular interest are the normal pressure, p, and shear stress, q, along the

1As can be seen from the definition of the singular stress field, the stress-intensity factors usually
used in the fracture mechanics literature differ from those used in the friction literature by a factor
of
√

2π.
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interface [18]:

p(x) = f1KIx
λI−1 + f2KIIx

λII−1 ,

q(x) = f1g1KIx
λI−1 + f2g2KIIx

λII−1 , (4)

where x is the distance along the interface (Fig. 1), and f1, f2, g1 and g2 are functions

of φ. The geometry we will generally consider in this paper is one for which φ = 90o.

For this case, the stresses along the interface are given by [18]

p(x) = 0.7303KIx
−0.4555 − 1.0873KIIx

−0.0915 ,

q(x) = 0.3966KIx
−0.4555 + 0.2381KIIx

−0.0915 . (5)

2.2 Coulomb slip

A comparison between Eqs. (4) and (1) reveals that slip will always occur in the

singular region at the corner of a contact if µ < g1(φ), since λI dominates the stress

field close to the corner. In particular, Eq. 5 shows that slip will occur if µ < 0.543

for the right-angled geometry considered in this paper. If the Coulomb slip condition

is met within the singular region, the asymptotic stress field develops a different

singularity, λs, that is a function of both φ and µ. The interfacial stresses close to

the corner are then given by [18]

p(x) = Ksx
λs−1 ,

q(x) = µKsx
λs−1 , (6)

where Ks is a stress-intensity factor that depends on the geometry and loads. For a

right-angled corner, λs is given by the solution to [19, 20]

[
sin2 (πλs/2)− λ2s

]
cos (πλs) + (1/2) sin2 (πλs) + µλs (1 + λs) sin (πλs) = 0. (7)

6



Coulomb slip does not resolve the issue of singular stresses. Theoretically, even if

slip occurs, the shear stresses are infinite at the corners. Obviously, in practice, the

stresses are limited by a finite strength of the interface. The question addressed in

this paper, is the extent to which the assumption of a finite interface strength affects

the slip and wear conditions at the corner of a contact. This is examined by adapting

the concept of cohesive-zone models for interfacial fracture, where the introduction of

finite strengths allows smooth transitions between regimes in which singular elastic

fields dominate (albeit, limited by the finite strengths), and regimes where these fields

provide very poor descriptions of the interfacial mechanics.

2.3 Cohesive zones

Linear-elastic fracture mechanics is predicated on an assumption that the only inter-

facial property controlling fracture is the interfacial toughness. Cohesive-zone models

incorporate a cohesive strength into the description of the interface. Mode-II cohe-

sive laws provide an analogue for sliding problems without adhesive bonding. For a

homogenous system in plane stress, a nominal mode-II fracture length can be defined

as [5, 21, 22]

ζII = EΓII/τ̂ , (8)

where E is the modulus, and ΓII is the mode-II toughness of an interface. If the nom-

inal fracture length is small compared to any appropriate geometrical length, then

the toughness controls crack propagation, and the interfacial stresses follow the elas-

tic stress field close enough to the crack tip for the singularity to be experienced. If

the nominal fracture length is large compared to any appropriate geometrical length,

then the cohesive strength controls crack propagation, and the interfacial stresses are
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essentially uniform along much of the interface.

If one assumes there is no fracture associated with slip, the concept of a nominal

fracture length is not useful, because ΓII isn’t defined. However, the concept of

a fracture length has been generalized to the notion of an instantaneous cohesive

length, which has meaning at any point during the loading of an interface [5, 3]. For

mode-II cracks, this instantaneous cohesive length is given by

ξII = Ē∗δ2s/WIIo , (9)

where Ē∗ is the effective modulus of two materials contacting across an interface

(which is E for the plane-stress, homogeneous case considered here2), δs is the slip

distance at the crack tip (defined as the point where the shear tractions go to zero),

and WIIo is the work done in sliding (per unit area) by the shear tractions at the

crack tip.

It appears that this definition of an instantaneous cohesive length should be useful

for slip problems, since there is no reference to fracture. In particular, if a cohesive slip

displacement of magnitude δs occurs at a critical shear stress of τ̂ , the instantaneous

cohesive length is given by

ξII = Ē∗δs/τ̂ . (10)

The instantaneous cohesive length can be compared to the smallest relevant dimen-

sion of the system to give a cohesive-length scale. By analogy to fracture mechanics,

the magnitude of this cohesive-length scale is expected to determine whether slip can

be considered to be small-scale (and controlled by elasticity), or not. If the ratio

2Ē = E in plane stress and E/(1− ν2) in plane strain, where ν is Poisson’s ratio. In the fracture
literature, it makes sense to define Ē∗ = 2Ē1Ē2/(Ē1+Ē2), where the subscripts refer to the materials
on either side of an interface, so Ē is recovered in the homogeneous case.
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is significantly smaller than unity, it is expected that a portion of the elastic stress

field will exhibit the singularity appropriate to the geometry of the corner. If the

cohesive-length scale is larger, it is expected that the stresses will be constant over

a relatively large portion of the interface. These concepts will be illustrated in the

results that follow.3

3 Numerical model

The results in this paper were generated using a finite-element model to calculate

the stresses and slip along an interface near a sharp corner. The geometry and mesh

used is shown in Fig. 2. It was a plane-stress model consisting of a rectangular block

of height, h, and length, l, in contact with a large substrate with the same elastic

modulus E. The macroscopic exterior angle between the block and substrate was

always 90o. Attention was focussed on the left-hand corner of this geometry (the

portion of the interface in which the two objects always remain in contact). We

used an aspect ratio of l/h = 20, and confirmed that this was large enough for the

solutions that are presented to be unaffected by the right-hand boundary. We also

confirmed that the substrate was deep enough for the effects of the bottom boundary

(which was constrained in all directions) to be negligible within a reasonable level of

numerical error. The absolute values of the parameters were varied to explore the

utility of the non-dimensional groups used. In the results that are presented, only the

non-dimensional groups that affect the results are reported.

3We simplify the problem in this paper by neglecting any physical limit on the normal pressure.
Therefore, the solutions that follow have singular normal stresses. These are not expected to influ-
ence the slip behavior, but could be accommodated by an appropriate mode-I cohesive law for the
interface. We also ignore the fact that imaginary components of the stress field can be introduced
by elastic mismatch across an interface [14]. These complications can be resolved by invoking a
cohesive-zone model for the interface [4]. Furthermore, when ξII is sufficiently small, it needs to be
compared to microstructural or interfacial asperity length scales, not geometrical scales [3].
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The block was subjected to a uniform distributed normal pressure, p∞, and a

uniform distributed tangential stress, q∞. The normal pressure was applied first as a

pre-load, and the tangential stress was then applied to explore the subsequent slip.

The coefficient of friction µ was varied to explore the stick and slip regimes predicted

by Coulomb’s law. The cohesive strength of the interface, τ̂ , was given an infinite

value when exploring Coulomb friction, and a finite value when exploring the effect of

a cohesive strength. Only conditions in which there was no global slip were considered;

no-slip equilibrium conditions were always satisfied from a macroscopic perspective.

In all cases, the contacting bodies were perfectly elastic, so the only non-linear effects

were associated with slip at the interface.

The simulations were performed using the commercial finite-element package ABAQUS.

Four-node, bilinear, coupled temperature-displacement elements (CPE4T) were used.

Standard options available in the package were used for the contact elements [23]. A

master-slave contact was defined along the contact interface; in every time increment,

the slave nodes were adjusted so that there was no penetration between the contact

surfaces. The contact was formulated according to the “surface-to-surface” option.

The particular method for the discretization was set to the “surface-to-surface” op-

tion, in which the contact conditions are enforced over neighboring nodes. The slip

conditions for Coulomb friction and a finite shear strength were also set within the

usual options available in the program. However, since very small amounts of relative

motion across an interface can evolve from the finite-element calculations, a separate

sub-routine was used to compare the values of q and q/p to τ̂ and µ and to establish

whether these displacements were associated with slip or numerical uncertainty. This

was useful for determining slip-stick boundaries.
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In order to capture the singular stress field correctly, we refined the mesh around

the contact corners using a bias seeding. Typically, the mesh had more than 18,000

elements, with the smallest elements being refined to a value of 0.002h. Validation

that the mesh was fine enough was achieved by plotting the stresses along the in-

terface on a log-log plot, and comparing the slope of the line close to the interface

with the expected dominant singularity. For example, the numerical solutions re-

sulted in a predicted singularity of λI = 0.544 ± 0.003 for a non-slipping interface,

and λs = 0.651 ± 0.001 for a slipping interface with µ = 0.27. These are in ex-

cellent agreement with the expected values of 0.5445 and 0.6503, respectively, and

confirms that the quality of our mesh and technique is acceptable to within a very

reasonable level of uncertainty. Once it was confirmed that the strength of the singu-

larity in the numerical solutions was correct, the values of the stress-intensity factors

could also be found from the plots. For example, when q∞/p∞ = 0.25, these values

areKIh
λI−1/p∞ = 0.558±0.003, and Ksh

λs−1/p∞ = 0.796±0.001 for µ = 0.27. Error

bars indicating estimates of our numerical uncertainties have been included on all the

plots.

4 Results and discussion

4.1 Larger coefficients of friction

The distributions of the shear and normal stresses along the interface are shown in

Fig. 3 for a case in which µ > 0.543, so slip would not occur if only Coulomb friction

acted. Since l/h � 1 in these calculations, the characteristic length scale used to

normalize the parameters in these plots is h. The plot labelled ξII/h = 0 corresponds
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to the limiting case of an infinite shear strength. Since there is no slip, this stress

field corresponds to the elastic solution for the fully-bonded case. In particular, the

straight-line portion of this plot has a slope that is in excellent agreement with the

expected singularity of λI = 0.5445. The curves for the two non-zero values of ξII/h

were calculated using different values of the applied stresses, keeping the values of

both q∞/p∞ and ξII/h constant. ξII/h was kept constant by trail and error: using

the values of δs computed for different values of q∞/E to determine ξII . All the stress

plots were coincident for fixed values of both q∞/p∞ and ξII/h. This indicates that

the instantaneous cohesive-length scale provides a means of characterizing the slip.

Figure 3 shows that when ξII/h is reasonably small, slip is embedded within the

singular elastic field, so that the slip can be described as being small-scale. The instan-

taneous cohesive-length scale increases as the extent of slip increases, and large-scale

slip occurs when it extends so far that there is no region where the stresses exhibit

singular behavior. As expected, outside the slip region, the shear stresses follow

the far-field elastic solution. This behavior is exactly what is expected by analogy

to cohesive-zone models for cracks with similar instantaneous cohesive-length scales.

While the shear stresses are limited by the interfacial strength near the corner, the

normal pressures still show singular fields, even in the slip region (although the sin-

gularity is weaker than predicted by the no-slip condition). In practice, of course,

these normal stresses will be limited by yield of the contacting materials.

Whether there is any regime of Coulomb-controlled slip or not can be seen by

looking at the ratio of q/p, as plotted in Fig. 3(c). There is a peak in this ratio at the

edge of the slip regime. If the value of µ is greater than the magnitude of this peak,

then the strength-controlled slip regime ends in a region of sticking. If the value of
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µ is smaller than the magnitude of this peak, there will be two regions of slip: one

controlled by the interfacial strength, the other controlled by Coulomb’s law. This

peak rises from 0.543 to a maximum of 0.74 ± 0.02, as ξII/h increases from zero to

0.005. The peak then falls with a further increase in the cohesive-length scale.

4.2 Smaller coefficients of friction

Figure 4 shows plots similar to those of Fig. 3, but with a much smaller friction

coefficient of µ = 0.27. This is below the critical value of 0.543 for this geometry,

so Coulomb slip can occur. In these plots the stresses have been normalized by the

stresses for the singular field with slip, so they are of the form of q/Ksh
λs−1, where

λs = 0.6503 is the appropriate singularity for slip with µ = 0.27 (see Eq. (6)).

In this case, since there is both Coulomb slip and finite-strength slip, we need

to distinguish between the two regions, so as to obtain the appropriate value of δs

needed to evaluate ξII/h from Eq. (10). The regions where slip is controlled by τ̂

can be identified from the regions of constant shear stress in Fig. 4(a). The regimes

of Coulomb slip can be identified from the regions where the ratio of q/p = µ in

Fig. 4(c). Coulomb slip extended out to beyond the limits shown in Fig. 4(c), but

this was always embedded in the elastic field corresponding to a stuck (or bonded)

interface, with no influence from the other boundary.

There will always be a regime of strength-limited slip in the partial slip zone near

the corner of a contact. However, as discussed above, Coulomb slip can also occur

just outside this region before the fully-stuck zone is encountered. It is also possible

for the strength-limited slip region to end at a stick region. These different types of
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behavior are illustrated in the map of Fig. 5, showing the effect of µ for one specific

value of cohesive strength.

4.3 Sensitivity to corner geometry

One of the major effects of a cohesive zone in fracture is that it reduces the sensitivity

to the details of any defects. Larger cohesive-length scales result in less sensitivity

to singularities that arise in elastic analyses, and are associated with reduced notch

sensitivity [22]. In this section, we examine how a cohesive zone might affect the

sensitivity of slip predictions to the assumed details of a corner. This is done by

examining three different models, each with the same macroscopic geometry of a con-

tact with a 90o external angle (Fig. 6), but with different details for the corner at a

smaller length scale. One of these models has a 90o external angle to the smallest

scale of the numerical model. Another of these geometries has a small notch, so that

the actual angle of contact with the interface is 45o. The last of these geometries has

a smooth contact with the interface, formed by the arc of a circle meeting the inter-

face tangentially. The calculations are performed for a coefficient of friction given by

µ = 0.34 for all three geometries.

The stresses for the three geometries are shown in Fig. 7 when there is an infinite

shear strength, so slip is controlled by Coulomb friction only. The extent of slip can

be seen most easily from Fig. 7(c), which shows the ratio of the shear to normal

pressure along the interface. As can be seen in that figure, both the 90o and smooth

corner exhibit Coulomb slip near the corner, with the 90o corner having a longer slip

distance. The 45o corner exhibits interesting behavior of being stuck at the corner,
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but with a region of internal slip.4

The stresses for the same three geometries are shown in Fig. 8 for the case when

there is a finite shear strength, assumed to be τ̂ /q∞ = 4.8. This fixed value of τ̂ /q∞

leads to slightly different values for the instantaneous cohesive-length scales for the

three geometries: ξII/h = 0.13, 0.24 and 0.21 for the 90o, 45o and smooth contacts,

respectively. As can be seen from Fig. 8(c), the slip conditions are much less sensitive

to the precise details of the contact than in the previous case. Furthermore, the total

slip distances at the corners of these three geometries very by less than a factor of

50%. When only Coulomb friction operates, there is an order of magnitude difference

in the slip distances, even for the two cases where slip did occur at the corner.

4.4 Effects of interfacial shear strength on wear propagation

Partial slip can cause wear. This modifies the profile of the contact surfaces and

redistributes the stress. Studies have shown that if Coulomb’s law is assumed for fric-

tion, the stick-slip boundary does not move as wear progresses [24, 25]. This can be

rationalized from a fracture-mechanics perspective. The local wear in the slip region

evolves to a crack-like feature. The shear stresses and normal pressure will, therefore,

have an inverse square-root dependence ahead of the wear scar, with the mode-I and

mode-II stress-intensity factors being proportional to the applied shear and normal

tractions. This means that q/p = q∞/p∞, so, if the conditions for macroscopic slip

4The local singularity at a 45o corner has a value of λI = 0.4950, and there is complete stick at
the edge if µ > 0.2132. The singular field associated with a small 45o notch within a macroscopic
90o corner, may be embedded within a larger-scale singular field corresponding to the macroscopic
geometry, resulting in the possibility of either full stick or partial internal slip, depending on the
value of µ and the size of the notch. For the geometry shown in Fig. 6(b), there would be no slip
anywhere if µ is greater than about 0.38, whereas the geometry of Fig. 6(a) would exhibit partial
slip for this value of µ.
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are not met (i.e., q∞/p∞ < µ), partial-slip in the singular region ahead of the wear

scar will not be occur either. This is of practical importance, because it would imply

that a wear scar cannot proceed beyond the initial stick-slip boundary. However, as

will be shown in the calculations that follow, a finite shear strength always results

in slip ahead of a crack-like feature, so a finite interface strength can result in the

propagation of a wear scar across an interface.

To demonstrate this effect, we generated a worn contact interface and simulated

a slip problem. As an example, we used a model with the dimensions and loading

conditions of Figure 2. The friction coefficient was set equal to 0.38, and the shear

strength was switched on or off by setting τ̂ /q∞ equal to either 3 or ∞. These values

were chosen to establish a relatively small initial slip zone. We then developed a wear

scar by modeling wear according to Archard’s law [26]:

w = Apδ; (11)

where A is the wear coefficient, and δ is the nodal slip.5 We analyzed one cycle of

increasing q∞ from zero up to a maximum value, and back again. We computed the

normal pressure and slip distance at each node in the contact region during each

increment of a single cycle. We then used Eq. 11 to compute the integrated wear for

each node, and then modified the mesh at the interface to create a wear scar, using

the updating method of fictitious eigenstrains described in Ref. [27].

A wear scar typically forms during many loading cycles, with each cycle changing

the morphology slightly. We ignored this aspect of the problem for the purposes of

5Archard’s law might be better expressed in terms of q, not p, to account better for the frictional
work done with a finite shear strength. However, this consideration doesn’t matter here, since we
focus on whether there is slip, or not, to determine whether there is wear.
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this study, and investigated the limit of the process by scaling the wear coefficient, A,

so that contact was completely lost within the slip zone after just one cycle of loading.

Using the new geometry with this computed wear scar at the interface (Fig. 9), we

examined the stress state along the interface when q∞ was increased to its original

maximum value.

The distributions of the shear stress, normal stress, and the corresponding ratios

of the shear and normal stress are shown in Fig. 10. With an infinite shear strength,

corresponding to Coulomb slip, the interfacial stresses exhibit a crack-like singularity

(inverse root) for the stresses (not that the normal pressures also exhibit singular

behavior, because the wear scar has some depth). The ratio of the stresses in the

singular field scales with q∞/p∞, as might be expected from a fracture mechanics

analysis of the crack problem. This means that if the coefficient of friction is high

enough to prevent general slip along the interface, it will also prevent partial slip

ahead of a wear scar. This is consistent with the analysis of Ref. [24], and may sug-

gest a general result that the stick-slip boundary does not move in response to wear

if only Coulomb friction is assumed.

However, when the calculations are repeated with a finite shear strength (with

τ̂ /q∞ = 3), slip occurs ahead of the wear scar. Again, this is expected by analogy to

cohesive zones at crack tips. This extended zone of partial slip means that a wear scar

can propagate across an interface. Its formation is not limited to the initial region of

partial slip, as would be predicted from an assumption of only a Coulomb law. This

provides an important example of why the introduction of finite shear strengths can

have a significant role in the analysis of wear at the corners of contacts.
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5 Conclusions

The integration of a finite interfacial strength with a Coulomb friction law has a

significant influence on slip and wear at the corner of a contact. It is possible to

define an instantaneous cohesive length in terms of the modulus, slip distance and

interfacial strength. A comparison of this length with a characteristic geometrical

scale gives an indication of when small-scale conditions are appropriate, and when

the stress field approaching the corner can be reasonably approximated by the singular

field. In particular, when the instantaneous cohesive-length scale, ξII/h, is small, the

stresses along the interface near the corner are uniquely described by

qh1−λ

K
= f

(
x

h
,
ξII
h
, µ

)
, (12)

where K and λ are functions of µ. For larger values of ξII/h, the ratio of q∞/p∞

is no longer captured by the stress-intensity factor, so this becomes an additional

non-dimensional group that affects the stresses.

Cohesive zones have an advantage of capturing the essence of elastic solutions

where they are appropriate, while describing behavior in the regimes and length

scales where elastic solutions are not valid. As with fracture, the use of cohesive-zone

concepts reduces the sensitivity of the problem to local details of the singular stress

field. Depending on the scale at which a corner is described, the singular fields and

corresponding description of slip along the interface can be very different for geome-

tries with similar macroscopic descriptions at a larger scale. The introduction of a

cohesive length reduces this sensitivity.

If there is partial slip, the resulting wear will cause a crack-like geometry to evolve

along the interface up to the slip-stick boundary. However, with the assumption of
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Coulomb friction, the wear scar will not evolve beyond the original partial-slip bound-

ary, as has been established for the Hertz contact problem [28], in which the normal

stresses are not singular, but the shear stresses are [24]. The introduction of a finite

interfacial strength results in the slip-stick boundary moving with the propagation of

wear. This is expected to be of significance to models of wear, since it allows a wear

scar to propagate across a macroscopically non-slipping contact.
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Figure 1: Geometry of a corner with an exterior angle φ, and an interface along which
sliding can occur
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Figure 2: Finite-element mesh of the geometry studied in this paper.
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(a)

(b)
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(c)

Figure 3: Interface stress distributions with µ ≥ 0.6. Unless the interfacial shear
strength is finite, no slip can occur since µ > 0.543. (a) Distribution of shear stresses
along the interface for three representative cases: (i) no slip, with ξII/h = 0, (ii)
small-scale slip, with ξII/h = 0.18, and (iii) large-scale slip, with ξII/h = 3.4. (b)
Normal stress distributions along the interface for the same three values of ξII/h. (c)
The corresponding ratios between the shear and normal stresses.
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(c)

Figure 4: Interface stress distributions with µ = 0.27. The slip zone controlled
by a finite interfacial shear strength is embedded in the Coulomb slip zone. (a)
Distribution of shear stresses along the interface for three representative cases: (i) no
slip (ξII/h = 0),(ii) small-scale slip (ξII/h = 0.08), and (iii) large-scale slip (ξII/h =
2.5). (b) Normal stress distributions along the interface for the same three values of
ξII/h. (c) The corresponding ratios between the shear and normal stresses.
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Figure 5: Slip-mechanism map showing how the slip mechanism depends on the
coefficient of friction µ and the distance ahead of the corner, for the specific conditions
of q∞/p∞ = 0.25. and τ̂ /q∞ = 4/3. For these conditions, and partial slip, the
corresponding values of ξII/h are in the range of about 2.4 to 3.4. Below µ = 0.25,
there is complete slip along the interface.
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Figure 6: Three corners with the same macroscopic geometry as Fig. 2: (a) a 90o

external corner; (b) a 45o external angle for a depth of 0.04h; (c) a smooth corner
formed by an arc of a circle of radius h meeting the interface at a tangent at a distance
of 0.04h from the edge.
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(a)
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(c)

Figure 7: Plots of how the (a) shear stress, (b) normal pressure, and (c) ratio of
shear stress to normal pressure vary along an interface for the three different corners
of Fig. 6, with a coefficient of friction given by µ = 0.34, q∞/p∞ = 0.25, and an
infinite shear strength.
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(c)

Figure 8: Plots of how the (a) shear stress, (b) normal pressure, and (c) ratio of
shear stress to normal pressure vary along an interface for the three different corners
of Fig. 6, with a coefficient of friction given by µ = 0.34, q∞/p∞ = 0.25, and τ̂ /q∞ =
4.8.
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Figure 9: The wear scar is created by adjusting the nodal coordinates of the mesh on
the basis of a wear calculation that results in all contact being lost within the initial
slip zone, after a single cycle of slip.
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(c)

Figure 10: (a) Shear stress and (b) pressure distributions along the interface ahead of
a wear scar with µ = 0.38, comparing the behavior of an interface that follows a pure
Coulomb law with one that has a finite shear strength. The asymptotic stress fields
correspond to those expected at the tip of an interfacial crack. (c) The corresponding
distributions of the ratio between the shear stress and pressure. If only a singular
Coulomb law is assumed for the interface, the ratio of the stresses at the crack tip is
given by the ratio of KII/KI , which is equal to q∞/p∞. Therefore, there is no partial
slip ahead of the wear scar, and, hence, no propagation of the wear. Conversely, the
assumption of finite shear strength, results in a slip zone being generated ahead of
the wear scar. This will lead to further wear, and the propagation of wear across the
contact.
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