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Abstract

If an elastic body with a sharp corner slides over an elastic half-plane, the stress and
displacement fields near the corner can be characterized by the leading term in an asymp-
totic [eigenfunction] series. However, there exists a critical friction coefficient f = fd at
which an infinitesimal increase in f appears to imply a discontinuous change from sin-
gular to bounded local fields at the leading edge. Here, we show that this conclusion is
incorrect. Instead, the contact region shrinks to zero at f = fd implying the existence of a
concentrated contact force, but the singular field associated with point contact is retained
for f > fd. We also show that a non-linear solution using a Generalized Neo-Hookean
constitutive law gives the same conclusion, and that the concentrated force generated is
well predicted by the linear analysis. However, in contrast to the linear solution, the total
strain energy in the non-linear solution is bounded.
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1. Introduction

If an elastic body with a sharp corner is pressed against an elastic half-plane as shown
in Fig. 1, the stress field near the corner can be expanded as an asymptotic series of the
form

σij(r, θ) =
∞∑
n=1

Knr
λn−1fnij(θ) (1)

[1, 2], where λn and fnij(θ) are eigenvalues and eigenfunctions respectively, (r, θ) are
polar coordinates centered on the corner, and Kn are a set of coefficients depending on
the far-field loading. The eigenvalues are generally arranged in order of ascending real
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Figure 1: A quarter-plane indenting a half-plane. At a trailing edge [body 2 slipping relatively to the right],
q = fp and at a leading edge [body 2 slipping relatively to the left], q = −fp.

part, so the local stress field close to the corner is dominated by the first term of equation
(1). In particular, if the field is singular, the strength of the singularity is determined by
λ1 and K1 plays the rôle of a generalized stress-intensity factor.

If the upper body (2) in Fig. 1 slides over the lower body (1), and if Amontons’ friction
law is assumed, the local contact pressure p(r) and the shear traction q(r) must satisfy the
condition q = ±fp, where the sign depends on the direction of sliding. Here, the sign is
positive when body 2 slides to the right [trailing-edge slip] and negative when it slides to
the left [leading-edge slip]. It is then convenient to normalize the first term of equation
(1) in the form

p(r) ≈ −K1r
λ1−1 ; q(r) ≈ ±fK1r

λ1−1. (2)

Karuppanan et al. [3] studied the case where body 2 has a right-angle corner and the
two bodies are of similar materials. The first two eigenvalues are shown as a function of
f in Fig. 2. These comprise a complex-conjugate pair for trailing-edge slip with f > fc,
but these bifurcate into two distinct real eigenvalues for f < fc, including negative values
corresponding to leading-edge slip.

Notice, in particular, that in leading-edge slip, the lowest eigenvalue decreases with
increasing f and goes to zero at f = fd = 2.04. Energetic considerations restrict the
eigenvalues to the range <(λn) > 0 for all n, so conventional wisdom would say that for
f > fd, the corner field would be determined by the first positive eigenvalue, implying
bounded stresses at the corner. However, this implies a discontinuous change in leading-
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Figure 2: Slip eigenvalues as a function of friction coefficient for the contact between elastically similar
materials.

edge behaviour over an infinitesimal change of friction coefficient near f = fd, which
seems counter-intuitive. This is the question which we explore in the present paper.

Of course, coefficients of friction in this range are rare, so the question might be
deemed rather academic, but we would like to know the answer in the interests of mathe-
matical completeness. Also, we shall show that with dissimilar materials the same effect
can occur with coefficients as low as 1.57, and there do exist material combinations where
such values are obtainable. For example, the coefficient of friction between a UO2 fuel
pellet and Zircaloy cladding under irradiation can be as large as 3 depending on the op-
erating condition [4, 5]. Also, rubbers in contact with other materials, such as glass or
silicon carbide, can yield coefficients larger than 2 [6].

2. A finite-element model

To explore this question in more detail, we developed a finite-element model of the
system shown in Fig. 3, in which a rectangular strip is pressed against a body with a plane
surface by a uniform pressure p applied to the upper edge. This edge was also subjected
to a small uniform leftward displacement d sufficient to ensure slip at all contact nodes,
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Figure 3: Plane-strain finite-element model to evaluate the asymptotic behaviour at the leading edge (left-
hand corner).

since the alternative imposition of shear traction boundary conditions would leave a rigid-
body degree of freedom. Hard contact boundary conditions were used at the interface
with the direct method to ensure no interpenetration, and a classical Coulomb model
was implemented for the tangential behavior, using the augmented-Lagrangian method.
Initially, following Karuppanan et al. [3], we used similar elastic properties for the two
bodies, but later we shall report results for the more general case.

Since we are interested specifically in the leading-edge behaviour, we refined the mesh
near the left-hand corner. The adequacy of this mesh refinement was tested by comparing
the strength of the stress singularity [λ1 − 1] from the asymptotic analysis with the slope
of a log-log plot of the finite-element stresses along the interface for f < fd. Good
agreement was obtained when the ratio of the smallest elements to the height of body 2
[the smallest linear dimension of the object] was set to be 0.001.

2.1. Results for f ≤ fd

The finite-element results show that there exists a critical friction coefficient fe such
that for fe < f < fd, an interior separation region a < r < b develops adjacent to the slip
region at the corner, as shown in Fig. 4. For similar materials fe = 1.66 and fd = 2.04.
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Figure 4: Slip and separation zones developed at the leading edge for fe < f < fd

.

For a given value of f in this range, the dimensions a, b scale with the height h of the upper
body, showing that these features are determined by the macroscopic dimensions and
loading of the system. In other words, there is no inherent length scale in the asymptotic
field.

As f → fd, a → 0, whereas b tends to a non-zero constant depending on the macro-
scopic conditions. Thus, in the limit f = fd we essentially have a point contact at the
corner. This is of course consistent with an eigenvalue of zero, since the stress field is
then proportional to r−1 as in the classical Flamant solution.

To ensure that this point contact is not an artifact of the necessarily finite mesh size,
a technique was developed which enables us to obtain results for a highly refined mesh,
which in the original model would lead to a very large ratio between the dimensions of
the largest and smallest elements. The procedure is as follows:-

1. Run the simulation with the original model as in Fig. 5 (right).
2. Consider a small circular region centered on the corner and capture the stress or

displacement field [σ or u] along the circular boundary.
3. Build a new model comprising only the circular region, and apply the obtained field

along the boundary as in Fig. 5 (left).

This procedure can be repeated if necessary to achieve any desired level of mesh
refinement in the corner. In the present case, we used it to obtain results for a corner
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Figure 5: Schematic of a finite-element simulation technique to implement a highly refined mesh near the
corner of interest.

element dimension of 10−10h, for which we still obtained only a single node in contact
at f = fd. Also, with each level of refinement, the tractions and displacements on the
circular boundary approached more closely to the sinusoidal asymptotic form, and the
concentrated force on the corner node was insensitive to mesh refinement beyond that
used in the original model.

2.2. Results for f > fd

We next conducted simulations to investigate the leading-edge behaviour for f > fd,
for which a conventional asymptotic argument based on Fig. 2 would predict bounded
stresses in the corner. Instead, we once again obtained single-node [point] contact at the
corner with an adjacent separation zone. Also, the magnitude of this force and the size
of the separation zone increase with increasing f , for given macroscopic geometry and
loading conditions.

This raises the question “Why does the system not follow the asymptotic form sug-
gested by Fig. 2 for f > fd ?” To answer this, we must remember that the first term in an
asymptotic series is a good approximation to the actual field only at values of r that are
small compared with the other dimensions in the contact geometry. In other words, there
must exist a ‘K1-dominated region’. Now Fig. 2 is based on the assumption that we have
contact with slip adjacent to the corner, so a K1-dominated region [r � a] can be found
for the configuration of Fig. 4 if and only if the extent of the leading slip zone a > 0. If
we have point contact at the corner [a = 0], no such region exists. It is of course possible
to develop an alternative asymptotic solution for the case where a slipping point contact
at the corner abuts a separation zone, but unsurprisingly this would yield stresses varying
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with r−1, corresponding to λ1 = 0.

2.3. A hyperelastic solution

Point contacts and the associated asymptotic fields are strictly inadmissible in lin-
ear elasticity, since the strain energy in a small circular region surrounding the singular
point is then logarithmically unbounded. Also, the displacement field is logarithmically
unbounded in the corner, which is reflected in the finite-element solution by corner dis-
placements that continue to increase as the mesh is refined, even though the stress field
converges.

Clearly the assumptions of linear elasticity will break down sufficiently near the corner
[this is true even for admissible singularities] due to non-linearities in the kinematics and
possibly also in the constitutive law, and it is natural to expect these effects to distribute
the concentrated force over a finite contact region. Since the mathematical objection to
the linear elastic solution is associated with unbounded strain energy, we chose to explore
the non-linear solution using a hyperelastic model, since in this context, energy is still
conserved. For a hyperelastic material, the strain energy density is defined as a function
of the invariants of the deformation tensor. In this analysis, we used the Generalized Neo-
Hookean model [7] which incorporates a range of ‘hardening’ characteristics, represented
by an exponent n [> 1/2], in the Neo-Hookean model [for which n = 1]. The effect of n
is to change the rate of strain hardening in response to uniaxial tension [8].

Surprisingly [at least to the present authors], the non-linear results continue to show
contact at a single node at the corner. Also, the contact force remains essentially constant
with mesh refinement, with a value that is only slightly [less than 1%] lower than that
of the linear solution. This implies, incidentally, that a good approximation to the non-
linear solution could be obtained by using the two-stage procedure of Fig. 5, where the
simpler linear solution is used for the first [coarse mesh] step. More generally, the non-
linear solution of Fig. 5 (left) could be patched into the corner field of any linear contact
problem exhibiting a concentrated corner force.

2.3.1. Energetic considerations

Equilibrium arguments show that the components of the Cauchy stress due to a con-
centrated force must still vary with r−1, but in contrast to linear elasticity, this singularity
is physically admissible in the framework of nonlinear elasticity and indeed has been re-
ported in hyperelastic problems involving cracks [9, 10]. If the local stress components
vary with r−1, the corresponding displacements have the form r1−1/(2n), and are therefore
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bounded as r → 0. The strain energy density then involves an r−1 singularity, and hence
the total strain energy in a small circle surrounding the singular point is also bounded.

3. Dissimilar materials

If the materials of the two bodies are different, the eigenvalues λn of equation (1)
during sliding satisfy the equation

(1 + α) cos(λπ)

[
sin2

(
λπ

2

)
− λ2

]
+

1− α
2

sin2(λπ)

±f sin(λπ)
{
(1− α)λ(1 + λ)− 2β

[
sin2

(
λπ

2

)
− λ2

]}
= 0 (3)

[11, 12], where α, β are Dundurs’ bimaterial parameters [13], and as before we take the
negative sign for leading-edge slip. Equation (3) has a trivial root λ = 0 for all α, β, f ,
so to determine the critical coefficient of friction fd, we use L’Hôpital’s rule to determine
the condition for there to be a second non-trivial root. We obtain

fd =
π

2
− π2 − 4

4π

(
α + 1

α− 1

)
=
π

2
+
π2 − 4

4π

(
1− ν1
1− ν2

)
G2

G1

, (4)

where Gi, νi are respectively the shear modulus and Poisson’s ratio for body i. The min-
imum value is fd = 1.57, which occurs when α = −1, or G2/G1 → 0 — i.e. when the
half-plane (1) has a much larger elastic modulus than the body with the corner (2).

4. Conclusions

We have shown that if an elastic body with a right-angle corner slides over an elastic
half-plane, there exists a critical coefficient of friction fd above which a concentrated
point contact occurs at the leading edge, with an adjacent separation region. This appears
to contradict the asymptotic analysis of Karuppanan et al. [3] which predicts a bounded
asymptotic field for f > fd, but this result depends on the existence of a K1-dominated
slip region which does not exist if contact occurs only at a point.

In linear elasticity, the corresponding 1/r singularity implies infinite strain energy
in a finite corner region and hence is strictly inadmissible. However, we show that a
hyperelastic solution of the problem resolves this issue and also predicts a concentrated
corner force whose magnitude is almost identical to that in the linear solution.

8



References

[1] M. L. Williams, “Stress singularities resulting from various boundary conditions in
angular corners of plates in extension,” J. Appl. Mech., vol. 19, no. 4, pp. 526–528,
1952.

[2] D. B. Bogy, “Edge-bonded dissimilar orthogonal elastic wedges under normal and
shear loading, ” J. Appl. Mech., vol. 35, no. 3, pp. 460–466, 1968.

[3] S. Karuppanan, C. M. Churchman, D. A. Hills, and E. Giner, “Sliding frictional
contact between a square block and an elastically similar half-plane,” Eur. J. Mech.,
vol. 27, no. 3, pp. 443–459, 2008.

[4] Y. V. Bozhko, A. M. Bolobolichev, A. V. Kostochka, and V. M. Shchavelin, “Coeffi-
cient of static friction of the uranium dioxide-zirconium alloy pair under irradiation,”
Soviet Atomic Energy, vol. 71, no. 5, pp. 945–948, 1991.

[5] V. M. Shchavelin, A. V. Kostochka, A. A. Kuznetsov, I. S. Golovnin, and Y. K.
Bibilashvili, “In-reactor study of the friction characteristics of reactor materials,”
Soviet Atomic Energy, vol. 61, no. 3, pp. 686–690, 1986.

[6] K. A. Grosch, “The relation between the friction and visco-elastic properties of rub-
ber,” Proc. R. Soc. Lond. A, vol. 274, no. 1356, pp. 21–39, 1963.

[7] J. K. Knowles, “The finite anti-plane shear field near the tip of a crack for a class of
incompressible elastic solids,” Int. J. Fract., vol. 13, no. 5, pp. 611-639, 1977.

[8] P. H. Geubelle and W. G. Knauss, “Finite strains at the tip of a crack in a sheet of
hyperelastic material: I. Homogeneous case,” J. Elast., vol. 35. no. 1–3, pp. 61–98,
1994.

[9] J. K. Knowles and E. Sternberg, “Large deformations near a tip of an interface-crack
between two Neo-Hookean sheets,” J. Elast., vol. 13. no. 3, pp. 257–293, 1983.

[10] P. H. Geubelle, “Finite deformation effects in homogeneous and interfacial fracture,”
Int. J. Solid Struct., vol. 32, no. 6–7, pp. 1003–1016, 1995.

[11] E. E. Gdoutos and P. S. Theocaris, “Stress concentrations at the apex of a plane
indenter acting on an elastic half-plane,” J. Appl. Mech., vol. 42, no. 3, pp. 688–692,
1975.

9



[12] M. Comninou, “Stress singularity at a sharp edge in contact problems with friction,”
Zeitschrift für Angew. Math. und Phys. ZAMP, vol. 27, no. 4, pp. 493–499, 1976.

[13] J. Dundurs, “Discussion on Edge-bonded dissimilar orthogonal elastic wedges under
normal and shear loading, ” J. Appl. Mech., vol. 36, no. 3, pp. 650–652, 1969.

10


