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ABSTRACT

We investigate the influence of material dissimilarity on the traction fields at the corners of a contact between
an elastic right-angle wedge and an elastic half-plane. The local asymptotic fields are characterized in terms of the
properties of the leading eigenvalue for cases of slip and stick as a function of the Dundurs bimaterial parameters
α and β, and the coefficient of friction f . Permissible values of α and β are partitioned into two possible ranges,
one where behaviour is qualitatively similar to the case where the indenting wedge is rigid [α = 1], and one where
behaviour is similar to the case where the materials are the same [α = β = 0]. The results give insight into the high
local stresses at the edge of a contact between elastically dissimilar bodies, and can also be used to evaluate the
effectiveness of mesh refinement in corresponding finite-element models.

∗Corresponding author.
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1 Introduction
If an elastic body with a sharp corner is pressed against an elastic half-plane, the stress field near the corner can be

characterized by an asymptotic or eigenfunction series

σi j(r,θ) =
∞

∑
n=1

Knrλn−1 f n
i j(θ) (1)

[1], where the coordinate system (r,θ) is defined in Fig. 1(a), and the constants Kn [often called ‘generalized stress-intensity
factors’] depend on the far-field loading of the bodies. The eigenvalues, λn, and the corresponding eigenfunctions, f n

i j(θ), are
obtained by considering a single term of the series, and solving the resulting elasticity problem with traction-free conditions
at the exposed edges and appropriate contact conditions at the interface θ = 0.

Energetic considerations restrict admissible eigenvalues to the range λn > 0, or if complex, ℜ(λn)> 0. Conventionally,
the eigenvalues are arranged in order of ascending real part, so the stress field very near the corner is dominated by the first
term in equation (1). In particular, if a quarter-plane is pressed onto a half-plane as shown in Fig. 1(a), the frictional [shear]
traction q(r) and the contact pressure p(r) near the corner can be approximated as

p(r) =−σθθ(r,0)≈−K1rλ1−1 f 1
θθ(0);

q(r) = σθr(r,0)≈ K1rλ1−1 f 1
θr(0), (2)

where the sign convention for p and q is shown in Fig. 1(b). Important features of the contact problem can often be deduced
by considering this term alone [2]. We define the eigenfunctions such that f 1

θθ
(0) > 0, so the unilateral contact condition

p > 0 is satisfied only for K1 < 0. This is in accordance with the sign convention used in fracture mechanics.
The form of the eigenfunction series (1) depends on whether or not interface slip occurs near the edge. We shall identify

the two cases by the superscripts (s) [slip] and (a) [adhered] respectively. In the case of slip, q =± f p where f is the friction
coefficient, and the sign depends on the direction of slip. The motion is described as trailing-edge slip if body 2 moves to the
right in Fig. 1(b), and leading-edge slip if it moves to the left [3]. The frictional tractions must oppose the slip motion, and
hence, q > 0 at a trailing edge and q < 0 at a leading edge. These inequalities can be used to characterize the edge conditions
even in the case where there is no slip. It must be emphasized that this terminology relates to asymptotic conditions at the
corner, and is not necessarily connected to the macroscopic conditions of the problem. For example, if a rectangular block
is pressed against a half-plane and then subjected to normal and shear loads P,Q respectively, it might seem more natural to
define leading and trailing edges with reference to the direction of Q. However, the asymptotic arguments presented here can
be applied to more complex geometries where such a definition would be impractical.

If there is no slip at the edge, the ratio of the shear and normal tractions in the K1-dominated zone is defined by

q(r)
p(r)

=− fa where fa =
f 1(a)
θr (0)

f 1(a)
θθ

(0)
(3)

and is independent of K(a)
1 and r. Churchman and Hills [2] showed that fa = 0.543 for the case where the materials have the

same elastic properties and argued that if the coefficient of friction at the interface f > fa there can be no slip in the corner
[regardless of the far-field loading or geometry]. If K(a)

1 > 0, the corner must separate, whereas if K(a)
1 < 0, it will be in

contact with no slip and the shear traction q < 0 in Fig. 1(b), which by the above convention defines a leading edge. By
contrast, if f < fa, ‘stick’ is impossible, and the corner must either slip or separate.

Further information about the local fields can be obtained by including the second term in the asymptotic series (1).
Since λ

(a)
1 6= λ

(a)
2 , the constants K(a)

1 ,K(a)
2 involve different dimensions of length and hence we can define a problem-specific

length scale

d0 =

(
K(a)

1

K(a)
2

)1/(λ(a)2 −λ
(a)
1 )

(4)

[4]. This gives some indication of the range r < d0 in which the first term in the series is likely to be dominant, but in partial
slip problems with f < fa, it also allows us to estimate the length of the slip zone at the edge of the contact, as a multiple of
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Fig. 1: (a) A quarter-plane [right-angle wedge] indenting a half-plane. (b) Sign convention for normal traction p and shear
traction q. At a trailing edge, q = f p and at a leading edge, q =− f p.

d0, that depends only on the coefficient of friction [4]. Many of these results were extended to the case of dissimilar materials
by Kim et al. [5].

Notice that these effects are typically characterized by the adhered asymptotic series, even in cases where stick is
impossible in the corner. In that case, we anticipate the existence of a K(a)

1 -dominated zone away from the edge, with
an embedded corner zone involving slip and/or separation, whose properties are determined by the first two terms of the
surrounding asymptotic series. The situation is analogous to that in LEFM, where we anticipate a small region of non-linear
deformation near the crack tip whose characteristics are determined by the mode I and mode II stress-intensity factors.

If slip extends to the corner, the local field (1) will be determined by the slip asymptotic, with the leading term defining
the tractions as

p(r)≈−K(s)
1 rλ

(s)
1 −1;

q(r)≈± f K(s)
1 rλ

(s)
1 −1, (5)

where the sign depends on the direction of slip. Here, we have chosen to normalize the eigenfunctions such that f 1(s)
θθ

(0) = 1.
Karuppanan et al. [3] considered the case where an elastic block slides over a half-plane, so that q = ± f p in any contact
zone. For the trailing edge, they identified two critical friction coefficients, fb and fc, such that for f < fb, the first ‘slip’
eigenvalue λ

(s)
1 < 1 and hence the asymptotic stress field is singular, whereas for fb < f < fc, λ

(s)
1 > 1 and the field is

bounded, with stresses and tractions tending to zero in the corner. For f > fc [> fb], λ
(s)
1 becomes complex, implying

oscillatory tractions near the corner. There will then exist regions where the contact pressure is negative, which violates the
Signorini contact inequalities. It was argued that this implies slip at the trailing edge is impossible, and, therefore, a small
region near the trailing edge must separate. Karuppanan et al. [3] verified this by solving the edge contact problem under
unilateral conditions, using a distribution of climb and glide dislocations to model the displacement discontinuities. Also,
finite-element studies of particular contact problems confirm these conclusions.

At a leading edge, the first eigenvalue λ
(s)
1 is real for all friction coefficients and defines a singular stress field. However,

if f > fa [defined in equation (3)], leading-edge slip can only occur under gross-slip [sliding] conditions. For contacts
involving partial slip, a leading edge must either stick or separate if f > fa.

Except for [5], the above studies were all restricted to the case of elastically similar materials, but, in practice, complete
contact problems are frequently encountered between engineering components with different elastic properties. For example,
in nuclear reactors a complete contact can occur between a fragmented fuel pellet and cladding during a power transient [6].
This induces high tensile hoop stresses at the contact edges, leading to a pellet-cladding interaction (PCI) failure. In the
present paper, we therefore propose to examine the effect of elastic mismatch on the nature of the eigenvalues in equation
(1) and on the critical coefficients of friction fa, fb, fc. Hence, we can anticipate the qualitative behaviour of a contact edge
under both partial-slip and gross-slip conditions.
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2 Asymptotic analysis
Plane-strain contact problems involving dissimilar materials are most efficiently characterized in terms of the Dundurs

bimaterial parameters, α and β, defined as

α = E
∗
[
(1−ν1)

2G1
− (1−ν2)

2G2

]
;

β = E
∗
[
(1−2ν1)

4G1
− (1−2ν2)

4G2

]
(6)

[7], where G,ν denote the shear modulus and Poisson’s ratio respectively, the indices refer to the materials of bodies 1 and
2 in Fig. 1, and the contact modulus E∗ is defined such that

1

E∗
=

(1−ν1)

2G1
+

(1−ν2)

2G2
. (7)

With this notation, the characteristic equation defining the eigenvalues λ
(s)
i for the slipping interface is [8, 9]

(1+α)cos(λπ)

[
sin2

(
λπ

2

)
−λ

2
]
+

1−α

2
sin2(λπ)

± f sin(λπ)

{
(1−α)λ(1+λ)−2β

[
sin2

(
λπ

2

)
−λ

2
]}

= 0, (8)

where the positive sign should be taken for trailing-edge slip and the negative sign for leading-edge slip.
In order to determine the critical friction coefficient fa, below which slip must occur at the corner of a leading edge,

from equation (3), we also need the characteristic equation for the eigenvalues λ
(a)
i for the adhered interface, which is [5,10]

Aβ
2 +Bαβ+Cα

2−Bβ+2Dα+F = 0 , (9)

where

A = 4
[

sin2
(

λπ

2

)
−λ

2
]

sin2(λπ) ;

B = 4λ
2 sin2(λπ) ; C = sin2

(
λπ

2

)
−λ

2 ;

D = (2λ
2−1)sin2(λπ)+ sin2

(
λπ

2

)
−λ

2 ;

F = sin2
(

3λπ

2

)
−λ

2 . (10)

2.1 Nature of the eigenvalue λ
(s)
1 for edge slip

If Poisson’s ratio is restricted to the range 0≤ ν1,ν2 ≤ 0.5, the values of α,β must lie within the parallelograms shown
in Fig. 2. These figures show the nature of the first eigenvalue λ

(s)
1 of equation (8) for four different coefficients of friction.

In each region, the first term refers to λ
(s)
1 at a trailing edge and the second to that at a leading edge. For example, for the far

left region of each figure, λ
(s)
1 is oscillatory and the stress field is bounded [i.e. ℜ(λ

(s)
1 )> 1] at a trailing edge, and real and

singular [λ(s)
1 < 1] at a leading edge.

In region B on the right side of these figures, λ
(s)
1 is real, and the stress field is singular at both edges for all friction

coefficients. The eigenvalue is a continuous monotonic function of f , but λ
(s)
1 (trailing)< λ

(s)
1 (leading) in region B, whereas

λ
(s)
1 (trailing)> λ

(s)
1 (leading) in region A as long as λ

(s)
1 is real. The boundary between these regions is independent of the

friction coefficient.
In region A, the characteristics of the eigenvalues depend on the coefficient of friction as well as the material properties,

as shown in Fig. 2. The case of similar materials [α= β= 0] lies within this region, so it is convenient to start by summarizing
the behaviour in this case [2, 3], to serve as a reference for the more general case.
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Fig. 2: Characteristics of the first slip eigenvalue λ
(s)
1 [trailing edge – leading edge] with different friction coefficients: (a)

f = 0.2, (b) f = 0.4, (c) f = 0.6, (d) f = 0.8.

2.2 Similar materials

Figure 3 shows the dependence of the first slip eigenvalue λ
(s)
1 on f , including the real and imaginary parts in the range

where λ
(s)
1 is complex. In this figure, we identify the critical friction coefficients fb, fc and fa, the last being determined

from the eigenfunctions of the adhered equation (9). Recall that fa characterizes the behaviour of a leading edge and fb, fc
characterize that of a trailing edge.

At a leading edge, the asymptotic field is always singular and it will involve slip if f < fa. For f > fa, the leading edge
must stick [except in the case of gross slip] and the corresponding eigenvalue is determined from equation (9). Notice that if
the tangential load is increased towards the gross slip limit with f > fa, the leading edge must remain stuck until this limit is
reached, when there will be a discontinuous change to a sliding solution, since the slip eigenvalue is then lower than that for
stick. The transition to full sliding was examined by Flicek et al. [11] using a finite-element solution.

At a trailing edge, stick is impossible for all values of f and we must have either slip or separation depending on the sign
of K(s)

1 in the slip asymptotic series. In the case of slip, the asymptotic stress field is then singular for f < fb and bounded
for fb < f < fc. Finally, for f > fc, we always obtain separation in the corner.
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Fig. 3: Lowest eigenvalue .vs friction coefficient for contact between elastically similar materials (α = β = 0).

2.3 Dissimilar materials
In the more general case of dissimilar materials, the principal effect of the bimaterial parameters α,β is to change the

values of the critical friction coefficients fa, fb, fc. However, as long as these three coefficients are defined, the qualitative
behaviour of the system remains the same as for similar materials, and all the statements in Section 2.2 remain true. This
applies throughout the region labelled A1 in Fig. 4, where the Dundurs’ parallelogram is partitioned depending on the relative
magnitudes of the critical friction coefficients in cases where these can be defined.

For material combinations in region A2, the slip eigenvalue becomes complex before reaching unity, so fb is not defined.
Since fa and fc are still defined, the contact edge behaviour is qualitatively similar to that in region A1, except that in the case
of slip, the local stress field is always singular regardless of friction coefficient. Recall that throughout region A [A1 ∪A2],
λ
(s)
1 (trailing)> λ

(s)
1 (leading) for f < fc.

In region B, λ
(s)
1 is real and the stress field is singular for all friction coefficients and λ

(s)
1 (trailing)< λ

(s)
1 (leading). Region

B also defines the range of values of (α,β) in which the first eigenvalue of the adhered characteristic equation (9) is complex,
so for these material combinations, stick at the contact edge is impossible for any coefficient of friction. If the applied loads
are insufficient to support gross slip, we then anticipate either a region of edge slip or a region of separation, depending on the
sign of K(s)

1 . A special case is that where body 2 is rigid, giving α = 1,β = (1−2ν1)/2(1−ν1), which defines the right edge
of the parallelograms in Fig. 2. The problem of normal indentation of an elastic half-plane by a rigid flat punch was solved
by Spence [12], who demonstrated the existence of edge slip zones whose extent depends on both f and β. It is interesting
to note that Spence’s solution implies that finite [albeit small] slip zones are predicted for arbitrarily large coefficients of
friction.

2.3.1 Determination of the critical friction coefficients
In section 2.1, we discussed the nature of the eigenvalues for different coefficients of friction. Here, we determine the

critical coefficients of friction for which the nature of the eigenvalues changes.
The critical friction coefficients can be obtained from the characteristic equations (8, 9). For example, fb is the value at

which the first eigenvalue of (8) reaches unity. Since λ = 1 satisfies this equation for all values of the parameters, we have to
apply L’Hôpital’s rule, from which we obtain

fb =
1
π

(
1+α

1−α

)
, (11)

which we note is independent of β.
The coefficient fc is the value of f at which the first root of (8) becomes complex, or equivalently at which the first two

real roots coincide. It was determined numerically and a contour plot inside the Dundurs’ parallelogram is shown in Fig.
5(a).
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Fig. 4: Partition of the Dundurs parallelogram.

The coefficient fa can be determined as the ratio of the [adhered] eigenfunctions f 1(a)
θr (0), f 1(a)

θθ
(0) in equation (2).

Kim et al. [5] used this method to make a contour plot of fa in the Dundurs parallelogram. This requires calculation of
the eigenfunctions and hence entails significant additional algebraic manipulations. However, the case f = fa essentially
represents a pivot between the stick and slip asymptotics, so for this friction coefficient the same functions satisfy both
equations (9) and (8). A simpler calculation method is therefore to determine the first eigenvalue from (9), substitute it into
the slip characteristic equation (8) and then use the resulting equation to solve for fa. Figure 5(b) shows a contour plot for the
magnitude of fa. We note that both the magnitude of fa and fc increase without limit as we approach the boundary between
regions A and B.

2.4 Non-monotonic loading
Frictional contact problem are inherently history-dependent in that the current state of a system can depend on the pre-

vious loading scenario. The ‘memory’ of the system resides in the slip displacements locked in any region which transitions
from slip or separation to stick [13]. In particular, the detailed history of loading affects the instantaneous state of the system
when a slip zone ‘advances’ into a stick zone [14].

2.4.1 Region A
Suppose that two contacting bodies with material properties corresponding to region A are loaded in such a way that the

adhered stress-intensity factors K(a)
1 ,K(a)

2 < 0, and |K(a)
1 | increases monotonically. For f < fa, as explained in Section 2.3,

we anticipate a slip zone near the corner whose size scales with d0 from equation (4), and for this zone to be non-decreasing
we therefore also require that K(a)

1 /K(a)
2 be non-decreasing. Under these conditions, the embedded field very close to the

corner will be described by the leading-edge slip asymptotic and the corresponding local normal and tangential tractions can
be expressed as equation (5) with the positive sign.

Suppose now that K(a)
1 reaches a maximum negative value and then increases by ∆K(a)

1 . In many frictional problems, if
the tangential loading rate changes sign, the entire interface sticks instantaneously at the maximum load, after which reversed
slip zones of growing magnitude are developed. We therefore start with the provisional assumption that the entire contact
interface will stick instantaneously in which case the previous tractions would be modified by the adhered asymptotic to

p(r) ≈ −K(s)
1 rλ

(s)
1 −1−∆K(a)

1 rλ
(a)
1 −1 f 1(a)

θθ
(0);

q(r) ≈ f K(s)
1 rλ

(s)
1 −1 +∆K(a)

1 rλ
(a)
1 −1 f 1(a)

θr (0), (12)

where the first term defines the first term in the slip asymptotic series when K(a)
1 reaches its maximum negative value. Since

λ
(s)
1 > λ

(a)
1 , the contact edge behaviour is dominated by the ∆K(a)

1 term and therefore the edge separates [∆K(a)
1 > 0] with
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Fig. 5: Contour plots of the critical friction coefficients: (a) fc, (b) fa.

an adjacent ‘trailing-edge’ slip zone [2]. The sizes of these zones will vary continuously with ∆K1 and by analogy with (4)
should scale with

d1 =

(
∆K(a)

1

K(s)
1

)1/(λ(s)1 −λ
(a)
1 )

. (13)

We next consider the case where K(a)
1 is negative and decreases monotonically, but K(a)

1 /K(a)
2 reaches a maximum and

then decreases. Equation (4) would then imply a decrease in d0 and hence in the extent of the slip zone, but this defines a
state of advancing stick, where we expect the solution to depend on the precise relation between K(a)

1 and K(a)
2 during this

phase of the loading. Problems of this kind can only be solved using an incremental formulation.
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2.4.2 Region B
For material combinations in region B, the first eigenvalue λ

(a)
1 and stress-intensity factor K(a)

1 are complex, implying
oscillatory fields at the corner, which violate both the frictional and Signorini inequalities. We anticipate a small region
of leading-edge slip adjacent to the corner, embedded in the surrounding oscillatory asymptotic field. The extent of this
region will remain constant if |K(a)

1 | increases monotonically and arg{K(a)
1 } remains constant. The extent of the slip zone is

a monotonic function of arg{K(a)
1 } and hence this solution also remains valid if arg{K(a)

1 } increases monotonically. As in
Section 2.4.1, the tractions very close to the corner can then be characterized by the first term in the slip asymptotic.

If arg{K(a)
1 } is constant and |K(a)

1 | increases monotonically to a maximum and then decreases, we again assume instan-
taneous stick, leading to tractions of the form (12), except that the contribution from ∆K(a)

1 is now oscillatory. However,
ℜ{λ(a)

1 } < λ
(s)
1 (leading) for all f > 0 [they are equal for f = 0] so the change in the field is dominated by ∆K(a)

1 and we
therefore anticipate a region of separation at the corner and an adjacent region of trailing-edge slip.

Turner [15] considered the problem where an axisymmetric rigid flat punch is pressed into an elastic half space by
a normal force which is first increased to a maximum value and then decreased. During the monotonic loading phase,
Spence [12] determined the [constant] size of the leading edge slip zone as a function of f and β. During unloading, Turner
found that leading-edge slip penetrated further away from the edge, but was surrounded by an annulus of stick until the normal
load had been reduced to about half its maximum value, after which a further annulus of trailing-edge slip is developed. This
conclusion violates the present asymptotic arguments, since we now know that stick at the corner is impossible under any
loading conditions. We must conclude that Turner’s numerical solution was insufficiently refined to detect the inevitable
small regions of slip and separation once unloading commences.

3 Conclusion
In this paper, we have investigated the influence of material dissimilarity on the corner traction fields for contact between

an elastic right-angle wedge and an elastic half-plane. The material parameters define a point in the Dundurs parallelogram
of Fig. 4 and qualitatively distinct behaviour is predicted depending on whether this point lies in region A or region B of this
figure.

For material combinations in region A, the behaviour is qualitatively similar to that for the case where the materials are
the same, but the critical friction coefficients identified by Karuppanan et al. [3] and Churchman and Hills [2] are changed.
Contour plots of these coefficients are presented in Fig. 5.

For material combinations in region B, the behaviour is qualitatively similar to that for the case where the wedge is rigid
and the half-plane is elastic. If an initial period of monotonic loading is followed by a load reversal, the initial behaviour
can be predicted based on the relative strengths of the singularities associated with the locked-in shear tractions and the
incremental stick asymptotic.

The results give insight into the high local stresses at the edge of a contact between elastically dissimilar bodies, such
as those involved in PCI failure [6]. They can also be used to evaluate corresponding finite element models, in particular to
determine whether the mesh is sufficiently refined near the corner to recover the appropriate analytically predicted asymptotic
behaviour.
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