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Abstract 

 

This paper uses computer simulations to reveal unprecedented details about linearization of 

DNA inside dynamic nanochannels that can be repeatedly widened and narrowed. We first 

analyze the effect of rate of channel narrowing on DNA linearization dynamics. Quick (~0.1s) 

narrowing of nanoscale channels results in rapid overstretching of the semi-flexible chain 

followed by a slower (~0.1-10s) relaxation to an equilibrium extension. Two phenomena that 

induce linearization during channel narrowing, namely elongational-flow and confinement, 

occur simultaneously, regardless of narrowing speed. Interestingly, although elongational 

flow is a minimum at the mid-point of the channel, and increases towards the two ends, 

neither the linearization dynamics nor the degree of DNA extension vary significantly with 

the center-of-mass of the polymer projected on the channel axis. We also noticed that there 

was a significant difference in time to reach the equilibrium length, as well as the degree of 

DNA linearization at short times, depending on the initial conformation of the biopolymer. 

Based on these observations, we tested a novel linearization protocol where the channels are 

narrowed and widened repeatedly, allowing DNA to explore multiple conformations. 

Repeated narrowing and widening, something uniquely enabled by the elastomeric 

nanochannels, significantly decreases the time to reach the equilibrium-level of stretch when 

performed within periods comparable to the chain relaxation time and more effectively 

untangle chains into more linearized biopolymers. 
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I. Introduction 

Deoxyribonucleic acid (DNA) is the bio-molecular storage medium of genetic information 

for living organisms. DNA is a linear polymer whose size is extremely disproportionate in 

that the ratio of its length to width is on the order of 109 in human cells. DNA in the nucleus 

therefore exists in highly compact and condensed structures. Even purified and decondensed 

DNA in vitro forms a globular and coiled structure in solution. However, a number of 

analysis techniques, such as DNA mapping [1-3], require DNA chains to be linear, rather than 

coiled. 

 

There are a number of mature techniques to linearize DNA, which have been reviewed 

extensively in recent papers [4-8]. An early method to stretch DNA was to tether each end of 

the molecule to a bead, and to apply an extensional force using optical or magnetic tweezers 

[9]. Later, various flow-based stretching methods were investigated [5]. These usually relied 

on applying a moving boundary, a pressure gradient, or an external electrical field. The 

resultant flows induced by these driving forces tend to be simple shear, cross, or converging 

flows that all result in extensional-strain distributions. 

 

Recently, confinement of linear polymers in one or two dimensions has attracted attention as 

an effective tool to linearize them [6, 10-16]. Nanoscale slits or channels can drastically 

reduce the degree of freedom of DNA and induce linear conformations. More recently, a 

method to linearize DNA using squeezing flows generated inside elastomeric nanochannels 

was reported (Fig. 1) [17]. The method uses tunneling cracks generated in an elastomer 

whose channel dimensions can be adjusted by applied strain [18, 19]. Two features of this 

method stand out from the other methods described in the literature. One is that the geometry 
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of the channels is not fixed, and is easily tunable. Another is that effects of both flow and 

confinement are used together, leading to effective linearization of linear bio-polymers under 

low-shear-stress conditions. This method will therefore improve the mature technologies 

involving DNA linearization [20, 21]. However, while nearly full-linearization of DNA and 

chromatin has been demonstrated, variables in the procedure are yet to be fully understood 

and controlled.  

 

The aim of the present study is to enhance the understanding of the physical processes behind 

the method, and to build a knowledge base upon which efficient and reliable experimental 

protocols can be developed. There are, however, a number of non-trivial modeling tasks 

required to simulate squeezing-flow-mediated DNA linearization. For example, the flow is 

strongly transient in the initial phase of the squeezing process. Because there are significant 

three-dimensional elongational flows, as well as potential hydrodynamic effects between the 

chain components, the solvent is better modeled explicitly. In addition, because the length 

scales and the configurational regimes in the problem are quite varied, no existing single 

modeling approach can cover the entire process from the globular state to the fully-linearized 

state of the DNA. Here, we focus on the dynamic processes occurring during the early stages 

of channel narrowing and DNA linearization, where the channel starts out relatively wide and 

then narrows down to a few persistence lengths in width. DNA is modeled as a semi-flexible 

polymer, using the bead-spring model of Underhill and Doyle [22]. Furthermore, we use a 

particle-based mesoscale-modeling method called the dissipative-particle-dynamics (DPD) 

technique to model the solvent [23]. The flow condition within a narrowing curved wall is 

modeled by adopting an image-particle-based technique [24, 25], and the condition at the exit 

is modeled by using selective deletion proportional to the velocity profile. In all, the 
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integrated modeling approach ensures that the DNA linearization in squeezing flow is 

accurately simulated with modest computational cost.  

 

We analyze the basic features of DNA extension during the process of narrowing the 

nanochannel, focusing on the effects of elongational flows and confinement effects. We also 

investigate how simple differences in the sample, and practical changes in the narrowing 

procedures, might significantly affect the outcomes. More specifically, we consider the 

effects of chain length, initial degree of extension, and squeeze-relax-squeeze operations on 

the process.  
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II. Simulation Method 

The experimental procedure that we are simulating is referred to as “nanoscale squeezing.” It 

starts with the application of tensile strains to an elastomeric bulk substrate that has normally-

closed nanochannels constructed within it. Super-resolution microscopy measurements 

indicate that a strain of about 10% on the substrate causes the normally-closed channels to 

open to about 750nm in width.  The open channels are then filled with DNA solution (the 

experiments used DNA from λ-phage, which we will refer to as λ-DNA). When the applied 

strain is completely released, the fluid is squeezed out, and the channels fully relax in less 

than a few seconds. The equilibrium state of a λ-DNA chain confined within a narrow 

channel can be estimated from previously published results [26, 27]. This literature suggests 

that, if the cross-sectional diameter of a circular channel, D, is greater than 1500 nm, the λ-

DNA is in its bulk state. If the diameter is in the range 600 nm < D <1500 nm, then the de 

Genes regime applies. If the diameter is in the range 100 nm < D < 600 nm, then the extended 

de Genes regime applies. If the diameter is less than 50 nm, the Odijk regime applies, with a 

cross-over regime exiting in the range of 50 nm < D < 100 nm. 

 

Experimentally, the most significant change in the degree of linearization occurs in the early 

stages of the squeezing process, when the channel is larger than the persistence length. This 

corresponds to the de Gennes and the extended de Gennes regimes, in which both flow-

mediated elongation and confinement effects are important. On the other hand, confinement 

effects will dominate in the Odijk regime. Our simulations, therefore, focus on the dynamic 

process occurring during the early stages of channel narrowing and DNA linearization. This 

contrast with the linearization by confinement without flow where the biggest slope in the 

extension versus channel size is in the cross-over regime [28]. 
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The simulation model consists of four basic components: elastic channel, DNA, solvent, and 

channel-solution interaction. First, the governing equation for the narrowing of liquid-filled 

elastic channels is solved to obtain the radial boundary condition as a function of time. We 

consider the relatively simple geometrical case of a circular tube widened under 

axisymmetric strain applied on the outer walls. When the applied strain is released, the tube 

starts to narrow from the tube ends. The geometry is simpler here than that in the model 

experiment [17] where a channel of a large aspect ratio is under uniaxial strain. The effect of 

the difference would not be trivial [29-31] but is not pursued further in this work. The 

evolution of the tube inner radius is governed by the following equations [29]: 

  

         (1) 

with 

	 x, 0 ; x ,             

(2) 

 

where 	 is the local inner radius of the tube,  is the initial inner radius before strain 

release,  is the final inner radius after complete narrowing of the tube after the strain is 

released,  is the ratio of the initial outer radius to the initial inner radius. E is the Young’s 

modulus, μ is the liquid viscosity, and z is the axial coordinate. The tube ends are located at 

x x , respectively. The fluid flow is modeled as Poiseuille flow in the limit of narrow 
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tubes, and the velocity profile is given as 

 

,         (3) 

 

The term 	, along with , varies with x and imparts the axial dependence of the flow 

field. Equation (3) is the velocity distribution that is not perturbed by the DNA chain in the 

collapsing channel, and will be the basis for the boundary conditions of DPD at the axial ends. 

We chose initial conditions to match values from experiments. The initial inner radius is 

chosen as 0.75 , which is the channel width under 10% strain as determined from 

super-resolution microscopy [32]. In a normal experiment, the strain is released not at one go, 

but with multiple steps for gentler linearization. Because we also focus on the early stages of 

channel narrowing, we set the final inner radius in the simulation as Rie = 0.43 m, which is 

within the range of the extended de Gennes regime. Equation (1) is in a form of diffusion 

equation with a constant C ≡ E 24μ⁄ 1 / μ ⁄  that is a measure of the 

spreading speed of collapsing front. For reference, dimensioned parameters that give a value 

of C = 106 [m2/s] are an outer radius of 1000[m], a solvent viscosity of 0.001[kg/(m.s)], 

and E = 4.27x104 [kg/(m.s2)]. The shear rate and strain rate developed by the channel are 

estimated to be about 85.2 and 73.2 [1/s], respectively (See Appendix I). 

 

Next, the DNA, a semi-flexible linear polymer, is modeled in the simulation as beads 

connected with extensional non-linear springs. The spring model by Underhill and Doyle [33] 

is used. The spring force between the beads is: 
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̂

̂

̂

̂
̂

. . ⁄
. . ⁄

̂ 1 ̂ ,     (4) 

 

where r is the distance between interacting particle centers, v /  and ̂ / . 

 is the maximum extensible length of the spring.  is the persistence length. k  is the 

Boltzmann constant. T is the absolute temperature. This bead-spring chain model is a 

coarse-grain model of the continuous worm-like-chain; it is reported to be reliable for long 

polymers in both the small and large extension limits [33, 34]. The spring in the model can 

also represent dimensions as small as two persistence lengths, which is consistent with our 

simulations, where the smallest channel size is comparable to the persistence length.  

 

In a dilute polymer solution, it is important to consider the hydrodynamic interaction through 

which one segment of a polymer can influence another, even if they are far apart in the 

sequential order along the molecule. In addition, the polymer is actively acted upon by the 

squeezing flow that is established within the solvent in response to the wall movement. To 

include these influences effectively, it is useful to model the solvent explicitly using a coarse-

grained model based on dissipative particle dynamics [23]. The dissipative particles represent 

an average effect of a large number of molecules. The collective behaviors of the particles 

simulates the behavior of molecules at a much coarser scales and, thus, at a lower 

computational cost. The equations of motions in dissipative-particle dynamics (DPD) are 

 

 ,          (5) 
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∑ .        (6) 

 

 and  are the particle position and velocity vectors, respectively, and the subscripts i, j 

are the particle numbers.  is the force between two interacting particles with the 

conservative, dissipative, and random forces being indicated with the superscripts C, D, and 

R, respectively. 

 

1 ̂ ,			 	
0,																											

,       (7) 

̂ ∙ ̂ ,        (8) 

̂ ,             (9)  

where, 

; 	 ;		 ̂ , 

 

and rc is the cutoff radius for the interaction. As will be elaborated later, rc is the basic unit of 

DPD simulation and set as twice the persistence length of DNA so that all the other length 

scales are based on rc or 2lp. In these equations, ij is a Gaussian white noise function with 

symmetry, , to ensure the momentum conservation and satisfies the following 

stochastic properties: 

 

〈 〉 0; 〈 〉 .         (10) 
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The fluctuation-dissipation relationship gives  

 

2 ,              (11) 

and 

1 ⁄ ,			
0,																							

  .         (12) 

 

All the parameters and functions except for  and s, defined below, are given according to 

the original DPD prescription by Groot and Warren [23]. The values of  of the non-

bonded conservative force are given by 

 

75 / ,  (13) 

 

where  is the number density of the solution, including both the solvent and DNA 

particles. The values of 	were derived by matching the compressibility of water, based on 

the equation of state of a DPD fluid. This is used for all the non-bonded interactions between 

solvent particles and beads in the chain. σ 3 is used as a random-force coefficient, which 

was recommended in terms of stability and performance in the dissipation. Equation (11) then 

gives γ 4.5. While the original choice in [23] is 3/  and s 2, we set the density 

and exponent as 4/  and s = 1/2, respectively. These values give a higher rate of 

collisions and, thus, higher viscous dissipation, improving the ability to model the viscosity 

of water [35].  

 

In this DPD representation of DNA solution, the beads in the DNA chain and solvent are of 
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the same size and under the same interaction-forces of Eqs. (7-9), constituting an athermal 

solvent, while the beads in the chain are under the additional spring force of Eq. (4). The 

simulated chain dynamics in equilibrium agrees well with the Zimm model for a chain in 

good solvent [36]. The hydrodynamic interactions between the segments of the chain are then 

well represented. So are the interactions between the chain segment and the wall by 

introducing s = 1/2 in Eq. (12) [37]. It also turns out that additional force is not necessary for 

enforcing excluded volume interaction between DNA chain segments. The repulsive force of 

Eq. (7), while soft, is enough for simulating the chain with excluded volume interaction under 

less than extremely high temperature [36]. 

 

Because fluid-solid interfaces confine the DNA and drive the fluid flow, it is essential to 

apply accurate boundary conditions. Three types of boundary conditions must be satisfied at 

the surfaces of the channels, which are assumed to be cylindrical in this simulation. First, the 

no-penetration condition is applied by a straightforward method in which any particle that 

crosses the boundary in the simulation is, instead, specularly reflected. Second, the no-slip 

condition is obtained by distributing mirror-image particles outside the boundary; these have 

an opposite axial velocity to the original particles and interact with the same DPD forces [24, 

38]. Third, the motion of the wall during the collapse of the channels is prescribed by as a 

function of time. This time history of the wall position is obtained by solving the Eq. (1), as 

described before. An alternative way to prescribe the wall motion is to apply a pressure on the 

cylinder surface. However, the pressure in the simulation fluctuates considerably, so 

displacement-controlled boundary conditions are used. 

 

The boundary conditions at the exits require special modeling. The axial length of a typical 
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nanochannel (~300μm) is far larger than the radius (~1μm-50nm), so it is radial confinement 

that dominates the DNA dynamics. Even fully-linearized λ-DNA, which has a contour length 

of about 22 μm, occupies only a small fraction of the axial length of the channel. The rest of 

the channel volume is composed of solvent molecules that have only an indirect influence on 

the DNA, but would require the major part of the computation if they were directly modeled. 

Therefore, we conduct the simulation over a shorter axial domain, with a boundary condition 

assuming fully-developed flow at the ends of the domains. The boundary regions at these 

ends have a length of 2.5  (see Fig. 2a). The particles in the regions become the candidates 

for deletion whenever the particle number in the region exceeds the equilibrium number. It 

can be mentioned that, in a real experiment, a situation can typically arise where multiple of 

DNA occupy a channel, for example, for high throughput genome mapping [39]. 

 

We devised a simple method to apply the required velocity profile on the end boundaries: 

each solvent particle is selected randomly in the deletion operation, but the probability of the 

selection is weighted according to the parabolic velocity profile of the fully-developed flow. 

The average density of the system is then controlled to be approximately constant when the 

volume decreases during the squeezing process. Whenever a portion of the DNA enters the 

boundary region, the simulation is repeated with a larger initial volume. Most of the results in 

this study concern the squeezing process, but a reverse, relaxing-back, process is also 

considered later in the context of a periodic squeeze-relax process. At the boundaries, to keep 

the system density constant, the particles are inserted similarly at the selected positions 

proportional to parabolic profile. Because the particle interaction potential is of soft nature, 

the particle overlap is not a major concern in selecting the insertion position as in the 

molecular dynamics. The resultant compact domain size makes the computational load less 
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demanding. More comprehensive multiscale approaches combining a continuum solver and 

particle simulation are available, but are not pursued here because this simple passive 

condition appears to be sufficient [40]. 

 

To make the model of the DNA chains and water representative of the experimental system, 

we first set the basic scales of the simulation to be consistent with those of the experiments. 

Energy is normalized by kBT in the simulation. Therefore, the temperature is set to 1, 

recognizing that this corresponds to a dimensioned value of [kBT]/kB. The cut-off length, rc, 

which is the basic length in DPD, is set equal to 2lp. The maximum bond length is set as 5lp. 

The λ-DNA is assumed to have a contour length of 22 μm and a persistence length of 53 nm. 

The third basic dimension in DPD simulations is usually chosen to be that of the mass of the 

solvent. However, this results in a viscosity that is far less than that of water because the soft 

interaction potential generally used in DPD models [23] results in less dissipation within the 

fluid than occurs within real liquids [35]. In our model system, the transfer of matter by the 

flow in the channel is a critical element in assessing the linearization dynamics of DNA. 

Therefore, the viscosity in the DPD simulation is chosen to match that of water. The time unit 

in the simulation is then [3.61x10-5s]. The inevitable consequence of this choice is that the 

density of the solvent is much larger than that of water, so the speed of sound is lower than it 

is in water.  This imposes an upper bound on the wall speed required to keep the solvent 

approximately incompressible. 

 

On the modeling side, we first validated the basic simulation code in three ways. Two of the 

validations involved consideration of static configurations: one in the bulk state, and the other 

in a confined state. In the former case, polymer chains of various contour lengths were put 
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into a cylinder of 4 µm in length and diameter. The radii of gyration resulting from the 

simulations were compared to experimental results available in the literature [41], as shown 

in Fig. 2(b). We next considered the configuration of chains confined in narrow tubes. There 

are few relevant experimental data on DNA linearization in channels of similar geometry and 

size in the literature. Therefore, we compared the simulation results with separate theoretical 

predictions based on analyses in the de Gennes regime (Fig. 2(c)). The contour length of 

DNA is 22µm. The following relationship between the mean extension and channel diameter 

was used: 

 

〈 〉/ / ,                               (14)   

 

where 0.5877, as recommended in [28], and 9.72 were used to generate the 

results shown in Fig. 2(c). Both sets of comparisons show reasonable agreements. The 

disagreement in the smallest tube diameter in Fig. 2(c) is likely to indicate lack of sufficient 

resolution rather than transition to the crossover regime. The tube diameter there is less than 

twice the bead diameter while it is about the border between the extended de Gennes and 

crossover regimes [28]. The parameters in the fitting can be compared with those in 

〈 〉/ ≅ 24.7 .  of [42], which covers extended de Gennes and crossover regimes. 

Finally, we examined whether the simulation can produce a correct profile of the axial flow in 

the channel. When the tube diameter was much greater than the size of the beads, a fully-

developed flow corresponding to the expected Poiseuille flow was obtained after applying an 

axial body force on the solvent (Fig. 2(d)). When the ratio of the tube diameter to the bead 

size was less than about 2, the flow deviated from Poiseuille flow. When the size of the bead 

becomes comparable to that of the tube, the particulate feature of the beads became 
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noticeable near the wall, and the solvent became less homogeneous. This, along with the 

results in Fig. 2(c), puts a lower limit of about 3 on the tube diameter with respect to the bead 

size in the simulation. This limit corresponds to 6 times the persistence length of DNA in our 

simulation. Therefore, the bulk and blob regimes, de Gennes and extended de Gennes, are 

within the capability of our simulation study. 

 

III. Simulation results 

In the following results, we describe the state of the DNA chain mainly in terms of the 

extension. There are several different measures of the extension that can be used: the end-to-

end distance, the chain span along the channel axial direction, and the radius of gyration are 

examples. We chose the chain span in the channel axial direction, X, which is often used in 

related literature because it is easier to measure in experiments. Many simulation results 

presented are time trajectories of the axial chain span where the mean axial span, <X>, 

implies ensemble-averaged data. In the ensemble average, several trajectories for the same 

boundary conditions, including the initial and boundary conditions, are averaged for the same 

given time. 

III-1. Single squeeze operation: We first consider single-squeeze results, in which the channel 

diameter changes in response to a single decrement of strain. The governing equation for 

collapsing channel (Eq.(1)) was numerically solved using the finite difference method with 

Rie = 0.43 m and a half-channel length of zmax = 150m (See Appendix II). In Fig. 3(a), the 

change in the channel diameter with time at z=0 is shown for four collapsing channels with 

collapse constants in the range of C = 104 to 107 [m2/s]. For example, the diameter of a tube 

containing the DNA solution decreases from 750 nm to 430 nm in about 1 sec for 
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C=105[m2/s] and in about 0.1 sec for C=106[m2/s], respectively, according to the solution 

of Eq. (1). This can be compared with the experimental observations that the rate of the 

nanochannel squeeze is comparable to a second [17]. In Fig. 3b, two DNA linearization 

results are shown according to the collapse constants of C=105[m2/s] and C=106[m2/s], 

respectively. The time history of the mean axial span is obtained by ensemble averaging over 

10 trajectories. The squeezing flow in the narrowing nanochannel induces the linearization of 

the DNA by two distinct processes. First, the DNA chain is over-stretched in a short period of 

time by the strong elongational flow. It next relaxes back slowly to a new equilibrium state 

with the newly-narrowed confinement. The latter process can, therefore, be characterized as 

the confinement effect. The former can be characterized as the elongational-flow effect. After 

a sufficiently long time, the final degree of linearization would depend only on the degree of 

confinement. However, the path and time to reach the equilibrium state depend on both the 

effects. 

 

The axial distribution of the monomers clearly shows the process of over-extension and 

relaxation back to the confined state (Fig. 3(c)). During the long relaxation period, the 

monomers become more evenly distributed. The radial distribution of monomers initially 

shows a rather monotonic decrease from the centerline towards the tube wall (Fig. 3(d)). In 

Fig. 3(c,d), the distributions are obtained by centering the center-of-mass and ensemble-

averaging 37 trajectories. The monomers are then concentrated toward the centerline right 

after the squeezing period and slowly relax back to the more monotonic distribution with time. 

 

III-2. Effect of initial conditions on extension: We next investigate the extension dependence 

on the initial conditions such as the extension and the center-of-mass (CM) position in the 
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channel axis of chains at the start of the squeeze. The axial CM position of the DNA in a 

channel varies in a typical experimental setting, owing to thermal fluctuations, as does the 

initial extension to a lesser degree. We first set up the DNA in various axial CM positions and 

compared the maximum extensions induced by squeezing. The axial CM positions are 

determined by the average of bead x-coordinates. Fig. 4(a) shows the dependence on the axial 

CM position at the start of the squeeze. Because any chain whose CM is initially in a positive 

x-coordinate is under the same physical condition as the chain in a negative x-coordinate of 

the same absolute value and the outcome will be the same on average, only the chains whose 

CM is located in a positive x-coordinate is considered. It turns out that the axial-CM-position 

variation does not affect the degree of extension significantly even at the short times. In a 

squeezing flow, the strain rate  is highest at the centerline and is constant with respect to 

the axial CM position, while the shear rate of | | increases with distance away from the 

center of the tube, in both the radial and axial directions. The relatively low dependence on 

axial CM position suggests that, although chains in different locations in the channel axis 

may undergo different shear rates, the chain is distributed mostly around the centerline, where 

the effect of the shear is always low. On the other hand, it is clear that the maximum 

extension is positively correlated with the extent of the initial channel-axial extension for the 

same data (square symbols in Fig. 4(b)). 

 

This dependence of the extent of linearization on the initial extension may also explain other 

phenomena. Figure 4(c) shows the single-squeeze results of chains of various contour lengths. 

The degree of over-extension and recoiling time increases with contour length. The recoiling 

time must increase, because the extended length for the recoiling increases with the span of 

the chain in the channel-axial direction. However, the maximum extension ratio, represented 
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by <Xmax>/L, is a relative parameter, and would not increase with contour length if the initial 

extension ratio were the same. As we discussed, the elongational flow near the centerline 

gives the most dominant effect on linearization, and the centerline strain rate is constant in 

the axial direction. A more plausible explanation is that a longer chain under the same 

confinement conditions would have a larger (initial) extension ratio, which leads to a larger 

maximum extension (See solid circles in Fig. 4(b)). In other words, the initial chain 

configurations that give the DNA a more ellipsoidal, rather than spherical, shape overall, are 

more effectively stretched by elongational flows. This indicates that the squeezing method is 

very effective in linearizing longer chains, and that the longer chains need a smaller strain 

change, or a longer relaxation period, to prevent cleavage. 

 

III-3. Periodic-squeeze operation: In experiments, some DNA ends up in tangled states that 

make further linearization difficult [10]. Based on the afore-described characteristics of chain 

dynamics in squeezing flow, use of repeated application of strain was simulated to investigate 

the ability of the procedure to alleviate such tangled states. Three distinctive chain 

distributions were prepared, and their responses to the application of a periodic strain were 

studied (Fig. 5(a)). These were the globular, dumbbell, and half-dumbbell configurations. In 

Fig. 5, the numbers associated with the identification of the configurations indicates the 

fraction of the chain in the linear form (See also Appendix III). The cross-sectional profile 

was imposed by repeated application of a squeeze-relax-squeeze-relax operation in which the 

diameter changed between 629.3 nm and 449.5 nm over periods varying between 0.07 and 

1.06 seconds (see the inset in Fig. 5(b)). Four evolution trajectories are ensemble-averaged in 

Fig. 5(b-e). Most of the profiles simulate gentle periodic squeeze-relax operation that should 

be possible to realize experimentally.  
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When the period of the squeeze-relax-squeeze operation is sufficiently large, the DNA 

conformation approaches an equilibrium state, well before the next cycle. The response of the 

DNA is then periodic, following the imposed operation. However, the period of the squeezing 

procedures can be made to not allow the chains to reach complete equilibrium (Fig. 5(b)). 

When the period of the squeeze is sufficiently smaller than the relaxation time of the chain, 

repeated squeezes linearize more effectively, even though the final tube diameter and degree 

of confinement are the same for all cases. The relaxation time of DNA can range from 0.64 s, 

based on a rough fit of the data in [12], to as short as 0.07 s. (Fig. 5(c-e)). The dumbbell-like 

distribution benefited most from repeated squeeze-relax operations because it is in the most 

linearized state to begin with in terms of having large X/L values and small globular fractions. 

Also, in some cases, the standard deviation grows rapidly in time when a chain among the 

ensemble is linearized much faster than the rest. The dumbbell-like distribution is linearized 

more consistently than the half-dumbbell whose ensemble shows large deviations at later 

times. More quantitative analysis may be possible by comparing the responses of different 

configurations according to a single squeeze. For the purpose, the period of the operation is 

set sufficiently long, Tinterval=4(sec). In Table I, dumbbell 0.1 and half-dumbbell 

configurations have larger initial degree of extention, / , than the rest. This leads 

to higher maximum extensions. Furthermore, of the two configurations, the dumbbell 0.1 has 

longer relaxation time. The difference is likely to come from the hydrodynamic drag the 

fractions of the chain overcome to recoil back. The two fractions of globular sub-

configurations at both ends in a dumbbell configuration may face larger drag than the region 

of linear sub-configuration in a half-dumbbell configuration. These points again underscore 

the fact that the initial degree of linearization is one of the most dominant factors that 
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determine final linearization result.  
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IV. Conclusion 

This work uses computer simulations to provide a deeper mechanistic understanding of a 

previously published experimental method that uses cross-sectional size-adjustable 

nanochannels to effectively linearized biopolymer chains such as DNA and chromatin. The 

mesoscale simulations were performed using a dissipative-particle-dynamics method that 

allows analysis of DNA linearization by both squeezing-induced hydrodynamic flow as well 

as by confinement in elastomeric nanoscale channels. The model specifically targeted the 

configurational change from the de Gennes regime to extended de Gennes regime, and the 

solvent was modeled explicitly. Semi-flexible chain dynamics were modeled by the bead-

spring model of Underhill and Doyle, and the characteristic time for the squeezing rate was 

obtained by solving the governing equations for axisymmetric collapse of liquid-filled elastic 

channels. The insights obtained not only explain previous experiments but additionally point 

to new experimental procedures that may further enhance biopolymer linearization in these 

systems through the use of optimized sequential and repeated nanoscale squeezing 

procedures.  

The major findings from the simulation are summarized as follows. 

1. Squeezing DNA solutions in nanoscale channels causes a quick initial overstretching 

of the chain followed by a far slower relaxation of the chain to its equilibrium state in 

the newly narrowed channel. The dual existence of the initial elongational flow and 

the subsequent confinement effects makes the process effective in linearizing 

biopolymers.  

2. A larger degree of initial extension positively affects the linearization performance. 

On the other hand, there was no noticeable influence of the initial CM position of the 
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chain. The latter fact suggests that the hydrodynamic flow effect mainly comes from 

the elongation near the centerline, rather than from the shear flow near the walls. A 

chain with a larger contour length is more effectively linearized by a given channel 

and squeezing procedure because the initial degree of extension will be larger.  

3. A periodically repeated application of squeeze-and-expand was helpful in 

linearization. It was found that, if the applied period is in the same order as that of the 

relaxation time of the chain, repeated channel narrowing rewidening and renarrowing 

may be helpful in gently unraveling the chain from an entangled state. 

 

Although our model analyzes cylindrical channels which are different from the more 

diamond-shaped cross-sectional shape of experimentally utilized channels, we believe that 

the essential physical features and biopolymer linearization characteristics are shared by both 

geometries. The effect of geometrical shape on linearization performance also has practical 

importance and deserves further study. Other outstanding topics of future study are the chain 

dynamics in the cross-over and Odijk regimes, the linearization of polymers more structured 

than DNA such as chromatin, and experimental testing of new procedures suggested by the 

simulation studies. 
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Appendix I: shear and strain rates in collapsing channel 

Based on the solution of Eq. (1) and (2) with Eq. (3), the shear rate and strain rate in the 
collapsing channel can be expressed, respectively, as 

r, x, ,      (A.3) 

r, x, 2 .   (A.4) 

The channel profile at the time of the maximum collapsing rate at the center, max  

is used in the following estimation. If the shear rate and strain rate then is averaged over the 
cross-section and 0.3L/2 x 0.3L/2  ( 0.3L X ), we obtained | |

85.25  and | | 73.21 . 

Appendix II: analytical solution of equation for collapsing channel 

An analytical solution of Eq. (1) in a series form is available by using separation of variables 
[43]. 

x, ∑ sin x     (A.1) 

Then, we have 

0, ∑ .     (A.2) 

 

Appendix III: generation of various DNA configurations 

The globular, dumbbell, and half-dumbbell configurations are generated by following 
procedures. For the globular configuration, the position of the first bead is selected inside the 
channel. The position of the next bead is selected randomly among those in the equilibrium 
distance from the first bead on the condition that the nominal position is still inside the 
channel. The rest of the bead positions are selected in the same way as the second bead. The 
dumbbell configuration can be divided into three regions, two regions of globular 
configurations in both ends and one region of linear configuration in the middle. The globular 
configurations in the two regions are generated similarly as before. For the linear 
configuration in the middle, the positions of the next beads are randomly selected as before 
but the relative position in the channel axis direction, , of all the beads have the 
same sign.  is the bead index. The half-dumbbell configurations are generated similarly. 
The fraction of chain in the linear form then represents the number of the bead generated in 
the linear configuration over the total bead number. 
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Table I. Comparisons for responses of various configurations according to periodic 

squeeze*  

 Globular Dumbbell 0.1 Dumbbell 0.05 Half-dumbbell 0.2 
/  0.058 0.099 0.068 0.107 

/  0.13 0.24 0.15 0.20 
∗∗(sec) 0.93 1.59 0.88 0.94 

* The time interval is Tinterval =4(sec). 

**  is defined in Fig. 3(b). 
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Figure 1  Schematic description of the experimental system. Channel narrowing create 
hydrodynamic effects and nanoconfinement effects to induce biopolymer linearization. The relative 
contribution of each effect changes with the diameter of the channel. The channel diameter effects 
follow biopolymer scaling regimes where D > 1547 nm puts λ-DNA is in the bulk state regime, 611 < D 
<1547 the de Gennes regime, 106<D<611 the extended de Gennes regime, 53<D<106 the crossover 
regime, and D < 53 the Odijk regime. Our simulation are of the de Gennes to extended de Gennes 
regimes.  
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Figure 2  Validation of the simulation methods: (a) Schematic of the simulation performed. The 
number of water particles in the boundary regions is kept constant by removing randomly selected 
ones from the boundary. 
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Figure 2  (b) Simulation results (square) compare well with experimental data (circle;[33]) for the 
radius of gyration (Rg) of DNA in bulk solution. 
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Figure 2  (c) Simulation results (square) compare well with theory (line) for the mean extension of 

DNA in confined geometries. The contour length is 22µm. The blob theory for the de Gennes regime 

is used where <X>/L=aD(ν-1)/ν with ν=0.5877 [34]. The coefficient a=9.72 is obtained by fitting. 
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Figure 2  (d) Velocity profiles of flows driven by axial body forces within the cylindrical channels. 
Tube size relative to bead and maximum velocity [mm/sec] are varied as follows: 6.6, 5.2 for cross; 
6.6, 53 for plus; 3.3, 0.036 for circle; 3.3, 0.069 for pentagon; 3.3, 1.4 for star; 3.3, 14 for hexagon; 1.7, 
0.01 for right arrow; 1.7, 0.0025 for left arrow; 1.5, 0.62 for diamond; 1.5, 6.2 for down arrow. The line 
is for Poiseuille flow. All the error bars indicate the standard deviation. 
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Figure 3  DNA over-stretches then recoils to new equilibrium length for when the channel 
diameter changes from 750 to 430 nm (L=22[µm]; 10 samples for (b) and 37 for (c,d)): (a) time 
history of the channel diameter at x=0 for  =104 (diamond), 105 (circle), 106 (square), and 107 

(triangle). ≡ ⁄ / ⁄  is the collapse constant in Eq.(1). 
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Figure 3  (b) ensemble-averaged channel-axial extension (X) of biopolymer normalized by its contour 
length (L) with channel for  =105 (open circle with thin line) and 106 (open square with thick line). 

time history of the channel diameter at x=0 for  =105 (filled circle with thin line) and 106 (filled 
square with thick line). The theoretical mean extensions are also given for the channel diameter of 
430nm(dotted line) and 750nm(dashed line). The channel diameter results are the same as in (a). The 
vertical axis on the left is for the extension and the vertical axis on the right is for tube-diameter history. 
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Figure 3 (c,d) time evolution of the fractional bead distribution (FBD) in the x and r coordinates for  
=106. FBD is defined as the number of beads in a bin divided by total number of beads in chain. The 
bin size is 0.21[µm]ⅹπD2/4 for the distribution in x, and (2πr)0.053[µm]ⅹL for the distribution in r. 
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Figure 4  Simulation results for effect of CM position in channel-axial direction, starting state, 
and contour length: (a) maximum relative extension vs. initial CM position in channel-axial direction 
(L=22[µm]), 
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Figure 4  (b) maximum relative extension vs. initial relative extension for various initial positions 
(open square;L=22[µm]) and for various contour length(filled circle; L=10-80[µm]; Init. axial CM 
pos.=0.), 
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Figure 4  (c) ensemble-averaged maximum relative extension (square) and recoil time 	  (circle) 
vs. contour length.  	  is the period from the maximum extension to first arrival to equilibrium 
extension (See Fig. 4b.). The error bars indicate the standard deviation. 
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Figure 5 Simulation results for time evolution of DNA chains with various initial chain 
conformations in response to multiple narrow-widen operations (L=22[µm]; four evolution data 
are ensemble-averaged.) : (a) Three distinctive conformations that the chain can take: (i) globular, (ii) 
dumbbell, (iii) half-dumbbell. 
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Figure 5  (b) time history of the tube diameter (inset) and X/L of the globular-initial-distribution case 
for time intervals, Tinterval[sec]=0.07(diamond), 0.097(triangle), 0.1(square), and 0.32(circle). 

  

http://dx.doi.org/10.1063/1.4967963


 44

 

Figure 5  (c) time history of X/L for various chain conformations: dumbbell 0.1(diamond), dumbbell 
0.05(triangle), half-dumbbell 0.2(circle), and globular(square). The numbers indicate the fractions of 
the linear distribution in the chain. Tinterval[sec]=0.07 
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Figure 5  (d,e) Fractional distributions (FBD) of the dumbbell (d), globular (d), and half-dumbbell (e) 
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chains vs. time. FBD is defined in Fig. 3. 
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Figure 5  (continued from previous page) 
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