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Abstract

Turing’s theory of pattern formation has provided crucial insights into the behavior of various

biological, geographical, and chemical systems over the last few decades. Existing studies have

focused on moving-boundary Turing systems for which the motion of the boundary is prescribed

by an external agent. In this paper, we present an extension of this theory to a class of systems in

which the front motion is governed by the physical processes that occur within the domain. Biolog-

ical systems exhibiting apically-dominant growth and corrosion of metals and alloys highlight some

of the noteworthy examples of such systems. In this study, we characterize the nature of interac-

tion between the moving front and the Turing-instability for both an activator-inhibitor and an

activator-substrate model. Behavioral regimes of periodic, as well as non-periodic (non-constant),

growth rates are obtained. Furthermore, the trends in the former show striking similarities with

the cyclic-boundary-kinetics observed in experimental systems. In general, a stationary, periodic

structure is also left behind the moving front. If the periodicity of the boundary kinetics agrees

with the allowed range of the stable-periodic solutions, the pattern formed tends to persist. Oth-

erwise, it evolves to a nearby energy-minimum either by peak-splitting, peak-decay or by settling

down to a spatially-homogeneous state.

I. INTRODUCTION

Alan Turing proposed his pioneering theory for pattern formation in biological systems in

1952 [1]. It relies on the existence of a system of biochemical species he called morphogens

(in view of their possible role in determining the structure of living organisms), reacting

and diffusing within a tissue. He suggested that the development of patterns in an initially

homogeneous embryo, e.g, leaves arranging periodically on a plant stem, can correspond to

the stable stationary waves of the concentration of morphogens generated as the result of

an instability of the homogeneous equilibrium state. The simplicity of the theory, and its

capability to produce a wide range of distinctive patterns, has triggered significant efforts

to find specific applications. Murray’s [2] extension of this work, in a paper titled “How

the leopard gets its spots”, shows striking similarities between simulated Turing patterns

and the stripes/spots observed on various mammalian coats. Kondo et al. [3] used this
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framework to simulate stripes on the marine angelfish, Pomacanthus, showing that it can

explain the observation that the stripe spacing remains constant as the fish grows. Meinhardt

et al. [4] proposed a reaction-diffusion model that accurately reproduces the diverse patterns

observed on the shells of molluscs. A recent study [5] has indicated that the skin denticles

on sharks, the structures that allow them to swim swiftly, could also be a result of an

underlying Turing mechanism. Though originally developed and applied extensively to the

field of developmental biology, as discussed above [2–7], the mathematical formalism of the

theory has also been found to be applicable to a much broader range of scientific problems,

including the study of geological and demographic patterns [8, 9].

A. Mathematical structure

A Turing system is typically characterized by the evolution of spatial patterns in the

concentrations or values u(x, t), v(x, t) of two interacting species, where x and t correspond

to spatial and temporal coordinates respectively. Such a system with linear diffusion can be

described by the differential equations

∂u

∂t
= Du

∂2u

∂x2
+ f(u, v)

∂v

∂t
= Dv

∂2v

∂x2
+ g(u, v) , (1)

where Du and Dv are the diffusion coefficients for u and v respectively. The functions

f(u, v) and g(u, v) define the influence of each concentration on its own growth rate, and

also the coupling between the two concentrations. Instabilities can occur, leading to pattern

formation, if one species (the activator) has a promoting effect on itself, whilst the other

suppresses itself. Here we shall take v to represent the activator, in which case the inequalities

∂g(u, v)

∂v
> 0 ;

∂f(u, v)

∂u
< 0 ;

∂g(u, v)

∂u

∂f(u, v)

∂v
< 0 ; Du > Dv (2)

define a necessary but not sufficient condition for pattern formation. The inequalityDu > Dv

requires that the activator should be less mobile than u.

The third inequality in (2) implies that u and v have opposite effects on each other and

it can be satisfied in two different ways — i.e.

∂g(u, v)

∂u
< 0 and

∂f(u, v)

∂v
> 0 (3)
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or
∂g(u, v)

∂u
> 0 and

∂f(u, v)

∂v
< 0 . (4)

The conditions (II) define an activator-inhibitor system, since v activates both itself and u,

whilst the inhibitor u suppresses both itself and v. By contrast, (4) defines an activator-

substrate system, in which u suppresses itself but promotes v, whilst v promotes itself and

suppresses u. In this case u is called the substrate, since it is consumed whilst producing the

activator v.

B. Moving boundary problems

Several forms have been proposed for the interaction functions f(u, v), g(u, v), and have

been shown to be capable of predicting the development of Turing patterns in appropriate

parameter ranges [10–12]. Many of these studies have focussed on fixed spatial domains,

but the results have proved useful in interpreting the experimentally observed behaviour of

physical systems where the domain grows in time [5, 13]. Crampin et al. [14] developed a

rigorous analytical framework for problems of this class, and demonstrated the significance

of domain growth as a possible mechanism for reliability in pattern selection. In particular,

the long-time pattern is then independent of the initial conditions, in contrast to results for

fixed domains [14, 15]. This framework has been applied to systems where all elements of the

spatial domain grow either at a prescribed growth rate [14–17], or at a rate that is controlled

by the species/reactants [18, 19]. Recently, the analysis of such systems was extended to

include the effect of anisotropy in growth rates and the curvature of growing ellipsoidal

surfaces [20]. This case of bulk growth is appropriate for a wide variety of biological systems,

where each tissue within the domain grows in size. However, there is another class of

spatially-patterned systems where the domain grows only locally, at a domain boundary or

interface — for example, apically growing biological systems [21], oxide layers formed on

certain alloys [22] and cloud patterns [23].

Crampin et al. [16] simulated Turing systems with a moving domain boundary, and

observed the development of a stationary periodic structure behind the moving front. Similar

results were obtained by other authors [24–26], but all these investigations were restricted

to systems in which the boundary was prescribed to move at a constant rate. However,

we are interested in physical systems for which the boundary or interface motion is not
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prescribed by an external agent, but results from the physics within the domain, such as

local concentrations of species. For example, pollen tubes, which exhibit localized growth

at a tip [27], are observed to have oscillatory growth rates [28] and periodic depositions

of certain pectins [29]. In oxide films formed on zirconium alloys, periodic increases from

an approximately parabolic rate of the metal-oxide interface movement (which, like many

other oxidation processes [30], is controlled by the local concentration of the oxygen ions)

are observed [22]. Additionally, the oxide film exhibits a layered structure that is directly

correlated with this periodicity [22]. To the best of our knowledge, there are no existing

theories which provide a rigorous explanation of the phenomena discussed above.

In this paper, we investigate the interaction between a pattern-causing Turing instability

and the motion of a domain boundary for cases where the instantaneous boundary velocity

is driven by a local concentration. In particular, we shall document the nature of this inter-

action in the context of Gierer-Meinhardt’s activator-inhibitor model, and Schnakenberg’s

activator-substrate model, as shown in the next section.

II. ACTIVATOR-INHIBITOR SYSTEM

Gierer-Meinhardt’s activator-inhibitor model can be expressed in dimensionless form as

∂ũ

∂t̃
=
∂2ũ

∂x̃2
− ũ+ ṽ2

∂ṽ

∂t̃
= RD

∂2ṽ

∂x̃2
+ c̃3

ṽ2

ũ
− c̃4ṽ (5)

(see Appendix A), where RD = Dv/Du, c̃3, c̃4 are dimensionless constants, and ũ, ṽ, x̃ and t̃

are dimensionless versions of the parameters and coordinates introduced in Eq. (1). These

equations have a homogeneous steady-state solution

ṽ =
c̃3
c̃4

; ũ =
(
c̃3
c̃4

)2

(6)

in an infinite spatial domain, but this is unstable in the range

c̃4
RD

>
1

(3− 2
√

2)
≈ 5.82 , (7)

(see Appendix A). This instability results in the formation of the stationary, periodic con-

centration profiles in an infinite spatial domain, associated with Turing patterns [10]. In a
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finite fixed domain, the periodicity may be modified near the boundaries, in order to adjust

to the boundary conditions.

In this paper, we consider the domain defined by 0 < x̃ < h̃(t̃), where x̃ = 0 is a

fixed boundary, and x̃ = h̃(t̃) is a moving boundary whose motion is determined by local

concentrations. In particular, we assume

dh̃

dt̃
= k̃ũ(h̃, t̃) , (8)

where k̃ is a constant that might represent a reaction constant if the boundary motion is

associated with a chemical reaction [30]. At the fixed boundary x̃ = 0, we assume

ũ(0, t̃) = ũ0 and
∂ṽ

∂x̃
(0, t̃) = 0 , (9)

and at the moving boundary,

ṽ(h̃, t̃) = ṽh̃ and − ∂ũ

∂x̃
(h̃, t̃) =

[
ũ(h̃, t̃) + Q̃

] dh̃
dt̃

. (10)

The last condition represents a flux balance for the species ũ, with the constant Q̃ repre-

senting the amount of ũ consumed per unit area in moving the boundary through a unit

distance. If the species ũ acts only as a catalyst for the process that drives the boundary

motion, Q̃ may be taken as zero.

A. Numerical procedure

For the numerical solution of these equations, it is convenient to use the coordinate

transformation x̃ = ζh̃(t̃) to convert the problem to one on the fixed domain 0 < ζ < 1.

The governing equations then take the form

∂ũ

∂t̃
=
ζ

h̃

dh̃

dt̃

∂ũ

∂ζ
+

1

h̃2
∂2ũ

∂ζ2
− ũ+ ṽ2 (11)

∂ṽ

∂t̃
=
ζ

h̃

dh̃

dt̃

∂ṽ

∂ζ
+
RD

h̃2
∂2ṽ

∂ζ2
+ c̃3

ṽ2

ũ
− c̃4ṽ (12)

dh̃

dt̃
= k̃ũ(1, t̃) , (13)

with boundary conditions

ũ(0, t̃) = ũ0 ;
∂ṽ

∂ζ
(0, t̃) = 0 ; ṽ(1, t̃) = ṽh ; −∂ũ

∂ζ
(1, t̃) = h̃

[
ũ(1, t̃) + Q̃

] dh̃
dt̃

. (14)
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This system of equations was solved using the finite-element-based software package Flex-

PDE Professional version 7.15.

To start the solution procedure, we needed to define a finite initial domain size h̃(0) ≡ h̃0

and the corresponding initial spatial distributions ũ(ζ, 0), ṽ(ζ, 0). Here we used h̃0 = 1 and

simple linear distributions, with parameters chosen to satisfy Eqs. (13, 14). In general, the

numerical results were found to be insensitive to initial conditions once the domain size was

large compared with h̃0.

B. Characterization of the model response

The response of the model can be periodic or non-periodic depending on the values of

the dimensionless parameters c̃3, c̃4, RD, k̃, Q̃ and the boundary values ũ0 and ṽh̃. In this

section, we shall give illustrations of several kinds of behaviour, and some indication of the

parameter ranges in which they are to be expected.

The simplest class of behaviour is that where the inequality (7) is not satisfied, so that

the homogeneous solution is stable. In this case, the moving boundary may advance at a

constant rate, or it may show periodic variations depending on parameter values, but the

distributions of ũ, ṽ eventually converge on the homogeneous solution (6), except in regions

adjacent to the instantaneous domain boundaries.

If the homogeneous solution is unstable, the distributions far from the moving front

should be unaffected by it, and hence must converge on a steady state that is stable in an

infinite domain. In Appendix B, we determine both stable and unstable periodic steady-

state solutions of Eq. 5, using the MATLAB package pde2path [31, 32]. For given parameter

values satisfying (7), stable periodic solutions exist in a finite range of wavelengths, the

upper bound of which is significantly higher than that obtained by linear perturbation of

the homogeneous solution. For systems not satisfying (7), no periodic solutions are obtained.

1. Periodic behavior

Figure 1 shows (a) Contours of ũ and the motion of the domain boundary h̃(t̃), and

(b) the spatiotemporal distributions of ũ (following the work of Crampin et al.[14]), for

the parameter values c̃3 = 1, c̃4 = 0.6, RD = 3/40, k̃ = 1, Q̃ = 1 and boundary values
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ũ0 = 1, ṽh = 0.3. In Fig. 1(a), segments of ‘convex-upward’ boundary kinetics are separated

by rapid changes of velocity, which we refer to as ‘transitions’. Each transition corresponds

to the formation of a peak in the concentrations of both ũ (as shown in Fig. 1(b)), and ṽ.

After the passage of the moving boundary, the spatial distributions rapidly converge on a

stationary periodic pattern [except near the fixed boundary] in which the peaks of ũ and ṽ

coincide.

(a) (b)

FIG. 1. Periodic Behaviour : (a) Contours of ũ showing periodic transitions between convex-

upward segments of the boundary kinetics, each caused by a peak in ũ at the moving front. The

distance traversed between two transitions, h̃period, is equal to the wavelength (λ̃) of the stationary

pattern left behind the moving front. (b) Spatiotemporal concentration profile for the species ũ

showing development of peaks at the moving front. x̃ is the distance from the fixed surface. Results

are obtained using Gierer-Meinhardt activator (v)-inhibitor (u) kinetics with c̃4 = 0.6, RD = 3/40,

c̃3 = 1, ũ0 = 1, ṽh̃ = 0.3, Q̃ = 1 and k̃ = 1.

In Fig. 1, each transition corresponds to a peak at the moving boundary and these peaks

persist so that the resulting stationary pattern has dimensionless wavelength, λ̃, equal to

the advance, h̃period, of the moving front between successive transitions. However, if c̃4 is

increased to 1.4, keeping the other parameters unchanged, the function h̃(t̃) has a periodic

form similar to that in Fig. 1(a), but behind the moving front every second peak starts to

decay, and the pattern eventually evolves to one with a wavelength λ̃ = 2h̃period.

Fixed-domain simulations (see Appendix B) using these parameter values show that
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steady-state periodic solutions do exist with a wavelength λ̃ = h̃period, but they are unstable.

Thus, the moving front imposes a certain periodicity on the pattern, but its persistence as

a steady state or its subsequent evolution depend on features of the equation system that

are independent of the domain size or its evolution in time.

(a) (b)

FIG. 2. Random behaviour: (a) Contours of ũ showing erratic boundary kinetics. (b) Spatiotem-

poral evolution of the species ũ showing random development of peaks at the moving boundary,

and the following erratic fluctuations in the amplitude for Gierer-Meinhardt activator (v)-inhibitor

(u) kinetics with c̃4 = 1.8, RD = 3/40, c̃3 = 1, ũ0 = 1, ṽh̃ = 0.3, Q̃ = 1 and k̃ = 1. Homogeneous

initial conditions consistent with the boundary conditions are used.

2. Random behaviour

If c̃4 is increased further to 1.8 whilst keeping the other parameters unchanged from

those used in Fig. 1, the boundary velocity exhibits essentially random perturbations from

an otherwise linear trend as shown in Fig. 2(a). The corresponding concentrations of ũ at

the moving boundary also fluctuate randomly, but as the boundary recedes, the distributions

evolve into relatively isolated peaks as shown in Fig. 2(b). The amplitudes of these peaks

fluctuate erratically, with some decaying eventually to zero. The others stabilize at a more

or less reproducible maximum value, which for these parameter values is ũmax ≈ 0.64, ṽmax ≈

1.56. Throughout this transient process, peaks in ũ and ṽ remain spatially coincident.
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3. Periodic boundary motion without patterns

If c̃4 in the above case is increased beyond about 1.9, the boundary motion reverts to a

convex-upward periodic form like that in Fig. 1(a), but the distributions of ũ and ṽ then

decay asymptotically to zero, so that regions away from the boundaries eventually become

completely devoid of both species. At first sight, this appears to be inconsistent with the

presence of the term c̃4ṽ
2/ũ in Eq. (5). However, if we assume that ũ, ṽ are spatially

homogeneous and that ṽ � ũ, these equations can be approximated as

dũ

dt̃
+ ũ = 0 ;

dṽ

dt̃
+ c̃4ṽ = 0 , (15)

with solution ũ = C exp(−t̃), ṽ = D exp(−c̃4t̃) where C,D are constants. The condition

ṽ � ũ then reduces to
D

C
exp

[
(1− c̃4)t̃

]
� 1 , (16)

which will be satisfied for all t̃ if c̃4 > 1 and the initial conditions are chosen such that

D/C � 1. Thus c̃4 > 1 is a necessary but not sufficient condition for ũ and ṽ to decay

towards zero, as is shown by the results described above for c̃4 = 1.4 and 1.8.

C. Dependence of Turing-pattern wavelength on boundary kinetics

For the Gierer-Meinhardt model, Turing patterns correspond to stable time-invariant

periodic solutions of Eq. (5). The results described above show that boundary kinetics have

a significant effect on the distributions generated immediately behind the moving front, but

the resulting patterns persist only if they lie in the appropriate stable wavelength range (see

Appendix B), or if they can evolve to such a wavelength.

Figure 3 shows the wavelength of the resulting steady-state pattern as a function of the

growth-rate parameter k̃ in Eq. (8) for two sets of parameter values, A: [RD = 1/16, c̃3 =

0.83, ṽh = 0.3] and B: [RD = 3/40, c̃3 = 1.0, ṽh = 0.1]. The remaining parameters c̃4 = 0.5,

ũ0 = 1 and Q̃ = 1 are common to both cases. The dashed lines in Fig. 3 represent the

lower (λ̃1) and upper (λ̃2) bounds of the range of wavelengths of stable periodic patterns

obtained numerically, as discussed in Appendix B. Notice that the upper bound for case [A]

is approximately λ̃A2 ≈ 21 so does not appear in Fig. 3.

Case [A] corresponds to the ratio c̃4/RD = 8, which is well above the boundary for

instability defined in (7). At lower values of k̃, the wavelength generated at the moving

10



FIG. 3. Turing pattern wavelength as a function of the growth-rate parameter k̃ in Eq. (8). Hollow

symbols [A] are for RD = 1/16, c̃3 = 0.83, ṽh = 0.3 and solid symbols [B] are for RD = 3/40, c̃3 =

1.0, ṽh = 0.1. In both cases, c̃4 = 0.5, ũ0 = 1 and Q̃ = 1. Triangles identify cases leading to peak

decay, whilst circles identify cases of peak splitting. Dashed lines represent bounds on wavelengths

of stable patterns (see Appendix B).

front is retained in the steady state, and it decreases monotonically as k̃ is increased over

five orders of magnitude. However, for k̃ > 1 some of the peaks generated decay, leading

to a larger steady-state wavelength, as discussed in Section II B 1 above. These results are

indicated by triangles in Fig. 3.

Case [B] corresponds to c̃4/RD = 6.7, for which a narrower range of wavelengths is stable

in the steady state. The actual wavelength increases with decreasing k̃ down to k̃ ≈ 0.1 ,

below which some of the generated peaks split into two through a transient process that we

describe in more detail in Section II C 1, below. Steady-state patterns generated by peak

splitting are indicated by circles in Fig. 3. Notice that peak splitting occurs before h̃period

reaches values for which steady-state patterns are unstable. To elucidate this behaviour, we

performed numerical simulations on a large fixed domain with periodic initial conditions of

wavelength close to the upper boundary in Fig. 3. Results show that the pattern converges

on the steady state only if the initial distributions are very close to those in the steady state.

With all other initial conditions, the system preferentially evolves towards a pattern with a

different wavelength.
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1. Peak-splitting

In the previous section, we noted that peak splitting causes the wavelength of the final

pattern for case [B] to differ from that generated at the moving front as this wavelength

approaches the upper boundary of the range of stable Turing patterns for certain parameter

values. Fig. 4 shows this evolutionary process for ũ(x̃, t̃) with k̃ = 1. For instance, Fig.

4(a) shows that at t̃ ≈ 1475, a peak develops rapidly near x̃ = 41. The shape of this peak

changes relatively slowly until t̃ ≈ 1620, at which time it starts to split into two peaks.

As these new peaks develop, they also move apart. The right peak moves to the right,

and eventually stabilizes at x̃ ≈ 40, whilst the left peak moves a larger distance to the

left, reaching the location x̃ ≈ 47.5. Such an event is observed to occur periodically. The

corresponding influence on the motion of the boundary is shown in Fig. 4(b). The initial

peak development is associated with a large increase in boundary velocity ˙̃h labelled ‘strong

transition’ whilst the peak-splitting event gives only a minor perturbation in the velocity.

Strong transitions are separated by a distance 2λ̃, where λ̃ is the wavelength of resulting

Turing pattern.

The number of peaks that split in case [B] depends on the value of k̃ and appears to self-

select a value that results in a wavelength well within the steady-state bounds. For example,

the points shown in Fig. 3 for case [B] as k̃ is decreased in the range 0.01 < k̃ < 0.05 include

cases where (i) one out of four, or (ii) two out of every five peaks split, or (iii) each newly

generated peak splits four times. In each case, the resulting pattern then adjusts as in Fig.

4 to give a uniform spacing in the steady state.

At even lower values of k̃, a single peak is generated at the moving boundary when the

process starts; thereafter, all subsequent peaks are generated by splitting the peak nearest

the moving boundary. In this case, there are no strong transitions of the form shown in Fig.

4(b), and the boundary kinetics are only slightly perturbed from linear.

These results are obtained using numerical simulations, and, hence, we can only inves-

tigate cases with particular parameter values. However, to give a broader picture of the

system behaviour, Appendix C presents a map in showing the dependence of qualitative

features of the behaviour as functions of ṽh and c̃4.
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(a) (b)

FIG. 4. Periodic behaviour with peak-splitting: (a) Spatiotemporal evolution of the species ũ

showing each peak formed at the boundary splitting once. (b) Contours of ũ showing a strong

transition in the boundary kinetics for each peak formed at the boundary. The peaks farther away

from the moving front are observed to be stationary with a wavelength of λ̃. Strong transitions

are separated by a distance h̃period = 2λ̃. Results are obtained using Gierer-Meinhardt activator

(v)-inhibitor (u) kinetics with c̃4 = 0.5, RD = 3/40, c̃3 = 1, ũ0 = 1, ṽh̃ = 0.01, Q̃ = 1 and k̃ = 1.

III. ACTIVATOR-SUBSTRATE SYSTEM

We next consider Schnakenberg’s activator-substrate model [11], which can be described

in the dimensionless form
∂ũ

∂t̃
=
∂2ũ

∂x̃2
+ ã− ṽ2ũ

∂ṽ

∂t̃
= RD

∂2ṽ

∂x̃2
+ b̃+ ṽ2ũ− ṽ , (17)

[see Appendix D], where ũ, ṽ act as substrate and activator respectively, and RD � 1. As

in Section 2, we assume that the velocity of the moving front is determined by Eq. (8), and

the remaining boundary conditions by (9, 10).

Figure 5 shows the response of the system for parameter values RD = 3/400, ã = 0.9, b̃ =

0.1, ũ0 = 1, ṽh = 0.1, Q̃ = 1 and k̃ = 0.05. Troughs in the substrate concentration ũ (Fig.

5(a)), and simultaneous peaks in the activator concentration ṽ (Fig. 5(b)), are developed

periodically at the moving boundary. These events are associated with a transient reduction

in domain growth rate, leading to the concave-upwards boundary kinetics, in contrast to the
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convex-upwards kinetics of the Gierer-Meinhardt model in Fig. 1(a).

Figure 5 also shows that for these set of parameters, every second peak generated at the

moving boundary splits. Also, the splitting process initiates when this peak is two peaks

away from the boundary. The distribution, therefore, eventually converges on a stationary

periodic pattern, with λ̃ = (2/3)h̃period.

(a) (b)

FIG. 5. Behavior of Schnakenberg’s activator-substrate model for RD = 3/400, ã = 0.9, b̃ = 0.1,

ũ0 = 1, ṽh = 0.1, Q̃ = 1 and k̃ = 0.05: (a) Contours of ũ showing troughs developed at the

boundary causing periodic transitions between concave-upward segments, in contrast with the

convex-upwards behaviour in Fig. 1(b). (b) Contours of ṽ show every second peak formed at the

boundary splitting. The peaks farther away from the moving front are observed to be stationary.

Peaks in ṽ coincide with troughs in ũ. Transitions are separated by a distance h̃period = (3/2)λ̃. x̃

is the distance from the fixed surface.

IV. CONCLUSIONS

In this paper, we have examined the interaction between pattern-forming Turing insta-

bilities and a domain boundary whose motion is governed by the local concentration of one

of the species. Results for both the Gierer-Meinhardt activator-inhibitor model [10] and the

Schnakenberg activator-substrate model [11] show parameter ranges in which the velocity

of the boundary is periodic, with the former exhibiting convex-upward segments and the
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latter concave-upward segments, in each case separated by rapid changes in velocity [tran-

sitions]. Both convex-upward [22, 28] and concave-upward kinetics [33] have been observed

in experimental systems.

Periodic boundary motion leaves behind a spatially-periodic pattern, whose wavelength is

determined by the mean velocity and the frequency of transitions. If this wavelength is one

for which stable Turing patterns can exist in an infinite domain, the pattern will generally

persist, but in other cases it may evolve through peak decay or peak splitting to a different

[and stable] wavelength, or it may decay to a homogeneous state.

APPENDIX

A: Gierer-Meinhardt model: Dimensionless formulation

Gierer and Meinhardt [10] define their activator-inhibitor model through the equations

∂u

∂t
= Du

∂2u

∂x2
+ c1v

2 − c2u ;
∂v

∂t
= Dv

∂2v

∂x2
+
c3v

2

u
− c4v . (18)

For the moving boundary problem we use the boundary conditions and growth law

u(0, t) = u0 ;
∂v

∂x
(0, t) = 0 ; v(h, t) = vh ; −Du

∂u

∂x
(h, t) = [u(h, t) +Q]

dh

dt
;
dh

dt
= ku(h, t) .

(19)

A dimensionless form of these equations can be obtained by defining

ũ =
c1u

c2
; ṽ =

c1v

c2
; x̃ = x

√
c2
Du

; t̃ = c2t ; h̃ = h

√
c2
Du

. (20)

Using these expressions in the governing Eqs. (18) and the boundary conditions (19) we

obtain (5) and (8–10) respectively, where

RD =
Dv

Du

; c̃3 =
c3
c2

; c̃4 =
c4
c2

; ũ0 =
c1u0
c2

; ṽh =
c1vh
c2

; Q̃ =
c1Q

c2
; k̃ =

k

c1

√
c2
Du

(21)

are the independent dimensionless parameters defining the system.

Nesterenko et al.[29] derived the condition

Du

Dv

>
c2

(3− 2
√

2) c4
(22)

for the homogeneous solution of (18) to be unstable, leading to the formation of Turing

patterns. Using the notation (21), this can be expressed in the form (7).
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B: Stationary solutions of the Gierer-Meinhardt model in fixed-domains

In this appendix, we discuss the numerical procedure for determining stable and unstable

steady-states of the Gierer-Meinhardt model of Eq. 5 in a fixed domain. We achieve this

using MATLAB’s continuation and bifurcation package - pde2path [31, 32].

We use h̃ as the bifurcation parameter for analyzing the PDEs in Eqs. 11 and 12, while

neglecting the advection terms containing dh̃/dt̃ (i.e in a fixed domain 0 < ζ < 1 where

ζ = x̃/h̃). Zero-flux boundary conditions are used. For the purpose of demonstration, we

show results for parameters of case [B] of Section II C (RD = 3/40, c̃3 = 1.0, c̃4 = 0.5) in

Fig. 6.

FIG. 6. Bifurcation diagram for Gierer-Meinhardt activator (v)-inhibitor (u) kinetics with RD =

3/40, c̃3 = 1.0, c̃4 = 0.5 (case [B] in Fig. 3), assuming the domain to be fixed. Solid squares

represent the stable steady-states while hollow squares mark the unstable steady-states, obtained

under zero-flux boundary conditions. Stable patterns are obtained in the wavelength range of

3.1 < λ̃ < 6.8 (bounds λ̃B1 , λ̃
B
2 ). H.S.S stands for the homogeneous-steady-state solution of Eq. 6.

The trajectory of concentration of species ũ is represented by its maximum absolute value,

max(|ũ|). Solid and hollow squares represent the stable and unstable solutions, respectively.

The horizontal branch at max(|ũ|) = 4 corresponds to the homogeneous steady-state of Eq.

6. The other two branches, λ̃ = 2h̃ and λ̃ = h̃, correspond to stationary periodic solutions,

found to be stable in the range 3.1 < λ̃ < 6.8. Notice that the boundary conditions

support solutions with an integer number of half-waves in the domain. Note that for this

case, the homogeneous-steady-state is unstable to small perturbations with wavelengths in
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a significantly smaller range of 3.1 < λ̃ < 4.8. This shows that a linear stability analysis

about the homogeneous solution gives only an imperfect guide to the range of wavelengths

to be expected in a transient simulation.

For case [A] of Section II C, stable patterns in the range 2.6 < λ̃ < 21 were obtained

using a similar procedure. Note that pde2path permits fairly general dependence of the

coefficients on ũ, ṽ and ζ but not on time t̃, so it cannot be applied to the moving-boundary

problem of Eqs. 11,12, even if the domain growth h̃(t̃) were specified or approximated.

C: Behavioral map of the activator-inhibitor model

FIG. 7. The solid symbols in this map indicate numerical simulations that resulted in pattern

formation, and the open symbols indicate numerical simulations that did not result in pattern

formation. The triangular symbols indicate conditions under which the boundary moved in a

linear fashion, rather than in a periodic fashion. The lower shaded area, and the corresponding

circular points, represent a region in which peak-splitting was observed. The upper shaded region

represents where chaotic, random behavior was observed that was very sensitive with respect to

small changes in the values of input parameters. The lower dotted line corresponds to the condition

c̃4 = 5.8RD, which is the instability condition of (7). These results were obtained using Gierer-

Meinhardt activator (v)-inhibitor (u) kinetics with RD = 0.075, c̃3 = 1, ũ0 = 1, Q̃ = 1 and

k̃ = 1.
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Shifts in the response of the activator-inhibitor model of Section II, with respect to

change in the dimensionless parameters ṽh̃ and c̃4, are shown in Fig. 7. While non-linear

boundary kinetics of convex-up segments (as shown in Fig. 1a) are observed for lower values

of the activator concentration ṽh̃, increasing it beyond ∼ 1 results in a local build-up of the

inhibitor concentration (ũ) at the moving front, which then moves linearly in response. For

regions not satisfying the instability condition of (7), i.e for c̃4 < 5.8RD, no patterns are

observed. However, boundary kinetics still shows a periodicity for some of such cases. As we

move away from this region by increasing c̃4, a general trend of pattern formation, chaotic

concentration distribution, followed by no pattern formation, is observed. Notice that as the

solution is numerical, this map does not provide any general conclusions for all parameter

ranges, as opposed to a linear stability analysis [34–36]. However, as shown in Appendix B,

a linear stability analysis only provides a subset of wavelengths which form stable patterns

in reaction-diffusion systems of Eqs. 5 and 17.

D: Schnakenberg model: Dimensionless formulations

The governing differential equations for the Schnakenberg model [11] are

∂u

∂t
= Du

∂2u

∂x2
− c1v2u+ a ;

∂v

∂t
= Dv

∂2v

∂x2
+ c1v

2u− c2v + b . (23)

We use the same boundary conditions and growth law (19) as in the Geirer-Meinhardt

model. A dimensionless formulation can then be obtained by defining

ũ = µu ; ṽ = µv ; x̃ = x

√
c2
Du

; h̃ = h

√
c2
Du

; t̃ = c2t (24)

[16], where µ =
√
c1/c2. Substituting these relations in (23), we obtain the dimensionless

governing Eqs. (17). The corresponding dimensionless boundary conditions and growth law

are unchanged from (8–10). In this case, the independent dimensionless parameters defining

the system comprise

RD =
Dv

Du

; ã =
µa

c2
; b̃ =

µb

c2
; ũ0 = µu0 ; ṽh = µvh ; Q̃ = µQ ; k̃ =

k√
Duc1

. (25)
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