Reduction Stability and Iterate Decomposition Stability

Trevor Hyde

University of Michigan

July 25, 2016
Let $K = \overline{K}$, $\text{char}(K) = 0$.

Let f, u be non-constant rational functions defined over K with $\deg f \geq 2$.

$$f^n(x) = u(y)$$

C_n arise in the study of the dynamical Mordell-Lang problem.

Is C_n irreducible? What can we say about the components of C_n?

For each n we have a finite map

$$C_{n+1} \rightarrow C_n$$

$$(x, y) \mapsto (f(x), y)$$
\(u_n : C_n \rightarrow \mathbb{P}^1 \) defined by \(u_n(x, y) = x \).

Total degree of the projection \(u_n \) is \(\deg u \).

Restricting \(u_n \) to irreducible components gives a partition of \(\deg u \).

Hence the branching must eventually stabilize.
Question

- How long does it take for the C_n to stabilize?
- Can we have a situation like this for large n?

\[C_{n-3} \rightarrow C_{n-2} \rightarrow C_{n-1} \rightarrow C_n \rightarrow C_{n+1} \]
Theorem (H, Zieve) Let $K = \overline{K}$, $\text{char}(K) = 0$. Suppose f, u are non-constant rational functions defined over K such that $\deg f \geq 2$.

- (RS) There exists a constant $b = b(\deg u)$ such that if $C_b : f^b(x) = u(y)$ is irreducible, then C_n is irreducible for all $n \geq 0$.

- (RS') There exists a constant $b' = b'(\deg u)$ such that for all $n \geq b'$, C_n has the same number of irreducible components as $C_{b'}$.

- (IDS) There exists a constant $b'' = b''(\deg u)$ such that if $f^n = u \circ v$ for some $n \geq 1$ and rational function v, then $f^{b''} = u \circ w$ for some rational function w.

RS' follows from RS by induction.
\(f^n = u \circ v \) iff \(C_n : f^n(x) = u(y) \) has a genus 0 component of the form \(y = v(x) \) iff \(C_n \) has a component \(D \) for which the \(x \)-coordinate projection \(u_n : D \to \mathbb{P}^1 \) has degree 1.

RS’ provides \(b' \) so that \(C_{b'} : f^{b'}(x) = u(y) \) must have genus 0 component for which the \(x \)-coordinate projection has degree 1.
Theorem (Fried) Let g, h be non-constant rational functions defined over a field K. If $g(x) = h(y)$ is reducible, then we have

$$g = g_0 \circ g_1$$

$$h = h_0 \circ h_1$$

such that g_0, h_0 have the same Galois closure and $g_0(x) = h_0(y)$ is reducible.

- Suppose $C_n : f^n(x) = u(y)$ were reducible. Let $u = u_0 \circ u_1$ and $f^n = f_0 \circ f_1$ be the decompositions given by Fried’s theorem.
- u_0 and f_0 having same Galois closure implies $\deg f_0 \leq \deg u_0! \leq \deg u!$.
- IDS provides b'' so that $f^{b''} = f_0 \circ f_2$ for some f_2.
- Then $f_0(x) = u_0(y)$ reducible implies $C_{b''} : f^{b''}(x) = f_0(f_2(x)) = u_0(u_1(y)) = u(y)$ reducible.
Using Fried’s theorem we reduce to the case where $C_b : f^b(x) = u(y)$ is irreducible of genus 0.

Riemann-Hurwitz argument to show that if $b \geq \log \left((2 + 1/42) \deg u \right) / \log(2)$, then the x-projections $u_i : C_i \to \mathbb{P}^1$ have Galois closure of genus at most 1 for $i \leq b/2$ and $\# \{p : p$ is a critical value of u_i for some $i \leq b/2\} \leq 4$.

Rational functions $u(y)$ with Galois closure of genus at most 1 can be classified up to change of coordinates.
• $u(y)$ is, after a change of coordinates, either $y^m, y^m + y^{-m}, \pm T_m(y)$, or one of finitely many functions with Galois group $A_4, S_4, \text{or } A_5$; or comes from an isogeny of elliptic curves (for example, Lattès maps.)

• In each case, knowing the ramification of u and assuming C_b is irreducible of genus 0, R-H limits the possible ramification of f over the critical values of u.

• If b is sufficiently large, the ramification of f is constrained enough that we can classify all possibilities.

• But then we conclude in each case that C_n is always irreducible.
Theorem (H, Zieve) Let B, C be projective curves defined over an algebraically closed field K of characteristic 0. Suppose

\[u : C \to B \]
\[f : B \to B \]

are finite morphisms defined over K such that $\deg f \geq 2$.

- (RS) There exists a constant $b = b(\deg u)$ such that if the fiber product C_b of f^b and u is irreducible, then C_n is irreducible for all $n \geq 0$.

- (RS’) There exists a constant $b' = b'(\deg u)$ such that for all $n \geq b'$, the fiber product C_n of f^n and u has the same number of irreducible components as $C_{b'}$.

- (IDS) There exists a constant $b'' = b''(\deg u)$ such that if $f^n = u \circ v$ for some $n \geq 1$ and $v : B \to C$, then $f^{b''} = u \circ w$ for some $w : B \to C$.
Thank you!

These slides may be found on my website:

www-personal.umich.edu/~tghyde/