Orbits Visiting Finite Sets

Trevor Hyde
University of Michigan

Joint work with Mike Zieve
Visiting a finite set

The set-up:

- K be a field
- $f(x) \in K(x)$ be a rational function
- $p \in K$ be a point
- $S \subseteq K$ a finite set.

When does the f-orbit of p visit the finite set S?

$$\{n : f^n(p) \in S\} = ?$$
When does the f-orbit of p visit S?

- Typically finitely often, probably never.
- However, if the f-orbit of p visits S more than $|S|$ times, then it does so infinitely often!

$\{n : f^n(p) \in S\} = \text{finite union of arithmetic progressions}$
Visiting a finite set again

Let’s make this question more interesting by replacing all iterates of a single rational function

$$\langle f \rangle = \{f^n : n \geq 0\}$$

with all words in a finite set of rational functions

$$M = \langle f_1, f_2, \ldots, f_m \rangle = \{f_{i_1}f_{i_2} \cdots f_{i_k} : k \geq 0\}$$

M-orbit of $p = M(p) = \{w(p) : w \in M\}$.

When does the M-orbit of p visit the finite set S?

$$\{w \in M : w(p) \in S\} = ?$$
When does the M-orbit of p visit S?

Theorem (H, Zieve)

Let K be a field and let $M = \langle f_1, \ldots, f_m \rangle$ with $f_k(x) \in K(x)$ such that $\deg(f_k) \geq 2$. If $p \in K$ and $S \subseteq K$ is a finite set, then

$$\{ w \in M : w(p) \in S \}$$

is a *regular language*.
A **regular expression** is a type of pattern used to describe a collection of words (= sequences of letters from an alphabet.)

\{Regular expressions\} is the closure of the alphabet under

- concatenation \((w₁w₂)\)
- disjunction \(w₁|w₂\)
- Kleene star \(w^*\)

Ex. Say our alphabet consists of two letters \(f\) and \(g\).

- \((f|g)^*f\) describes all words “starting” with \(f\)
- \((f^*gf^*gf^*)^*\) describes all words with an even number of \(g\)’s

A **regular language** is the collection of all words described by a regular expression.
Theorem (H, Zieve)

Let K be a field and let $M = \langle f_1, \ldots, f_m \rangle$ with $f_k(x) \in K(x)$ such that $\deg(f_k) \geq 2$. If $p \in K$ and $S \subseteq K$ is a finite set, then
\[
\{ w \in M : w(p) \in S \} \text{ is a regular language.}
\]

Ex. Let $p = 2$, $S = \{1, 4\}$, and $M = \langle f, g \rangle$ where
\[
f(x) = x^2, \quad g(x) = \frac{-11x^3 + 57x^2 - 70x + 24}{24}.
\]
Then \{ $w \in M : w(p) \in S$ \} is the regular language described by
\[
(f^*gf^*gf^*)^*g \mid (fg)^*f
\]
Preperiodic points

Say \(p \in K \) is **preperiodic** under \(f(x) \) if for some \(j \geq 0, k \geq 1 \)

\[f^{j+k}(p) = f^j(p). \]

► What does it mean for a point \(p \) to be preperiodic under a finitely generated dynamical system \(M = \langle f_1, f_2, \ldots, f_m \rangle \)?
p preperiodic under $f \iff f$-orbit of p is finite.

Say p is preperiodic under $M = \langle f_1, f_2, \ldots, f_m \rangle$ if the M-orbit of p is finite.
Ex: Let $M = \langle f, g \rangle$ where

$$f(x) = x^2 \quad g(x) = x^2 - 1.$$

Then 0 is preperiodic under M.
Finite orbits of $\langle f \rangle$ all have the same “shape”.

But there is a wide range of finite orbit shapes for $M = \langle f_1, f_2, \ldots, f_m \rangle$.

These are deterministic finite automata (DFA)!
Deterministic finite automata (DFA)

DFA over an alphabet f_1, f_2, \ldots, f_m is a finite directed graph A with a distinguished start state p and set S of accept states.

- vertices = states
- labelled edges = transitions.
- For each letter f_k there is exactly one transition labelled f_k out of each state.
Kleene’s Theorem

An automata A is a simple machine for processing words.
- Beginning at the start state p read w one letter at a time and transition accordingly.
- If we end at a state in S, then A accepts w.
- Language of A is the set of all words $L(A)$ accepted by A.

Theorem (Kleene’s Theorem)

- If A is a DFA, then $L(A)$ is a regular language.
- If L is a regular language, then there is a DFA A such that $L = L(A)$.
Theorem (Kleene’s Theorem)

- If A is a DFA, then $L(A)$ is a regular language.
- If L is a regular language, then there is a DFA A such that $L = L(A)$.

Ex. The regular language L described by the regular expression

$$(f^*gf^*g)^*(f^*gf^*) = \text{ all words with an odd number of } g\text{'s},$$

is accepted by A shown below with $S = \{q\}$.

![Diagram of a DFA]
Theorem (H, Zieve)

Let K be a field and let $M = \langle f_1, \ldots, f_m \rangle$ with $f_k(x) \in K(x)$ such that $\deg(f_k) \geq 2$. If $p \in K$ and $S \subseteq K$ is a finite set, then

$$\{w \in M : w(p) \in S\}$$

is a regular language.
Proof sketch

- Let h be a height function on $\mathbb{P}^1(K)$
- $(\deg(f_k) \geq 2)$ There exists a B such that
 - $h(s) \leq B$ for $s \in S$ or $s = p$,
 - $h(f_k(q)) > h(q)$ whenever $h(q) > B$.
- Let A be the finite automaton with states consisting of
 - all $q \in K$ with $h(q) \leq B$
 - a “dead state” D
- Transition labelled f_k from q to D iff $h(f_k(q)) > B$.
 - D only transitions to itself.
- $L(A) = \{w \in M : w(p) \in S\}$.

Further Questions

- Given $M = \langle f_1, f_2, \ldots, f_m \rangle$ can we characterize the automata A for which there are A-periodic points?
 - Using interpolation, all automata possible for some choice of rational functions.

- If M has good reduction at a prime ℓ and p is an A-periodic point, how does the period of p modulo ℓ relate to A?
 - Does this lead to new dynamical unit constructions?

- Suppose that f is a continuous endomorphism of a real interval X. Sharkovskii proved that if f has a 3-periodic point in X, then it has periodic points of all periods in X.
 - Does this generalize to the non-cyclic setting?
Thank you!