Exploring the Topograph
Trevor Hyde
Binary Quadratic Forms (BQF)

- **Binary quadratic form:**
 Degree 2 homogeneous polynomial in 2 variables.

 \[f(x, y) = ax^2 + bxy + cy^2 \]

- **Ex.** \(f(x, y) = 3x^2 - 2xy + y^2 \).

- Seems easy?
Popular with old-timey Europeans like Fermat, Lagrange, Legendre, Euler, Gauss.

Classic questions:

- Which primes are the sum of two squares?
 \[p = x^2 + y^2? \]
- When is a BQF invariant under change of coordinates?
 \[f(x, y) = x^2 - xy + y^2 = f(x - y, x). \]
- When are two BQF the same after change of coordinates?
What’s the Big Deal?!

Legendre writing about BQF in 1798.

David A. Cox writing about BQF in 1989.

A primitive positive definite form $ax^2 + bxy + cy^2$ is said to be reduced if

$$|b| \leq a \leq c, \text{ and } b \geq 0 \text{ if either } |b| = a \text{ or } a = c.$$

(Note that a and c are positive since the form is positive definite.) The basic theorem is the following:

Theorem 2.8. Every primitive positive definite form is properly equivalent to a unique reduced form.

Proof. The first step is to show that a given form is properly equivalent to one satisfying $|b| \leq a \leq c$. Among all forms properly equivalent to the given one, pick $f(x, y) = ax^2 + bxy + cy^2$ so that $|b|$ is as small as possible. If $a < |b|$, then

$$g(x, y) = f(x + my, y) = ax^2 + (2am + b)xy + c'y^2$$

is properly equivalent to $f(x, y)$. Since $a < |b|$, we can choose $m \in \mathbb{Z}$ so that $|2am + b| < |b|$, which contradicts our choice of $f(x, y)$. Thus $a \geq |b|$, and $c \geq |b|$ follows similarly. If $a > c$, we need to interchange the outer coefficients, which is accomplished by the proper equivalence $(x, y) \mapsto (-y, x)$. The resulting form satisfies $|b| \leq a \leq c$.

The next step is to show that such a form is properly equivalent to a reduced one. By definition (2.7), the form is already reduced unless $b < 0$ and $a = -b$ or $a = c$. In these exceptional cases, $ax^2 - bxy + cy^2$ is reduced, so that we need only show that the two forms $ax^2 \pm bxy + cy^2$ are properly equivalent. This is done as follows:

- $a = -b : (x, y) \mapsto (x + y, y)$ takes $ax^2 - axy + cy^2$ to $ax^2 + axy + cy^2$.
- $a = c : (x, y) \mapsto (-y, x)$ takes $ax^2 + bxy + ay^2$ to $ax^2 - bxy + ay^2$.

The final step in the proof is to show that different reduced forms cannot be properly equivalent. This is the uniqueness part of the theorem. If $f(x, y) = ax^2 + bxy + cy^2$ satisfies $|b| \leq a \leq c$, then one easily shows that

$$|f(x, y)| \geq (a - |b| + c) \min(x^2, y^2)$$

(see Exercise 2.7). Thus $f(x, y) \geq a - |b| + c$ whenever $xy \neq 0$, and it follows that a is the smallest nonzero value of $f(x, y)$. Furthermore, if $c > a$, then c is the next smallest number represented properly by $f(x, y)$, so that in this case the outer coefficients of a reduced form give the minimum values properly represented by any equivalent form. These observations are due to Legendre [74, Vol. 1, pp. 77–78].
Where are the primitive vectors in the topograph?

If $\pm e_1$ is in a base $\{\pm e_1, \pm e_2, \pm e_3\}$ which is in turn in a superbase $\{\pm e_1, \pm e_2\}$, then $\pm e_1$ is in just one of the other two bases in the superbase, namely $\{\pm e_1, \pm e_2\}$. So in our picture, in which we have suppressed the \pm's, the nodes and edges that involve e_1 form a path. We can therefore add a face bounded by this path to our topograph and identify it with $\pm e_1$ (so that the picture becomes more like a travel map on a surface). In the resulting fully labelled topograph, each region is labelled with a (lax) vector $\pm v$ (but we usually omit the sign), two vectors separated by an edge form a (lax) base, and three around a vertex form a (lax) superbase.

Norms of vectors

Up to this point in our discussion of the topograph, the values of f haven’t even been mentioned. (So we see that the shape of the topograph does not depend on f.) We now fix on a particular quadratic form f and, for this f, call $f(v)$ the norm of v.

The arithmetic progression rule

Suppose we know the values of a quadratic form f at the three vectors $\{e_1, e_2, e_3\}$ of some superbase. How do we find its values elsewhere? We use the formula

$$f(v_1 + v_2) + f(v_1 - v_2) = 2[f(v_1) + f(v_2)],$$

which is essentially equivalent to a well-known geometrical theorem of Apollonius. To verify this, let $B(v_1, v_2)$ be the bilinear form asso-
Introducing: the Topograph
Introducing: the Topograph
Introducing: the Topograph
Introducing: the Topograph
Topographical Facts

- No vector ever repeats.
- Vectors $\begin{bmatrix} a \\ b \end{bmatrix}$ and $\begin{bmatrix} c \\ d \end{bmatrix}$ are adjacent if and only if
 \[ad - bc = \text{det} \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \pm 1. \]
Say $\begin{bmatrix} a \\ b \end{bmatrix}$ is **primitive** if $\gcd(a, b) = 1$.

- Every primitive vector shows up in the topograph.
- Define the **Top** and **Bottom** operations by
 $$ T \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a + b \\ b \end{bmatrix} \quad B \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ a + b \end{bmatrix}. $$

- Every primitive vector can be made from $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ or $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ using a sequence of top and bottom operations.
Topographical Facts

Idea: work backwards!

\[
\begin{bmatrix}
3 \\
11
\end{bmatrix} = B^3 \begin{bmatrix}
3 \\
2
\end{bmatrix} = B^3 T^1 \begin{bmatrix}
1 \\
2
\end{bmatrix} = B^3 T^1 B^2 \begin{bmatrix}
1 \\
0
\end{bmatrix}.
\]

Can you see why this works? Try more examples!
Idea: work backwards!

\[
\begin{bmatrix}
3 \\
11
\end{bmatrix} = B^3 \begin{bmatrix}
3 \\
2
\end{bmatrix} = B^3 T^1 \begin{bmatrix}
1 \\
2
\end{bmatrix} = B^3 T^1 B^2 \begin{bmatrix}
1 \\
0
\end{bmatrix}.
\]

Can you see why this works? Try more examples!
BQF on the Topograph

\[f(x, y) = ax^2 + bxy + cy^2 \]

- \[f(kx, ky) = a(kx)^2 + b(kx)(ky) + c(ky)^2 = k^2 f(x, y) \]
- \[f(-x, -y) = f(x, y) \]
- Enough to know the values of \(f(x, y) \) on primitive vectors.
BQF on the Topograph
$f(x,y) = x^2 + y^2$
The Arithmetic Progression Law

\[f(v_1 - v_2) \]

\[f(v_1) + f(v_2) \]

\[f(v_1 + v_2) \]
We don’t even need to know the vectors!

Coordinate free way to study BQF.
From (Almost) Nothing to Everything!
Formula Found

\[f(x,y) = ax^2 + hxy + cy^2 \]
The Climbing Lemma
The Climbing Lemma

Keeps Climbing
Race to the Bottom

- We can always head downhill!

- What happens at the bottom?
Stuck in the Well

- **Climbing Lemma**: At most one well.
- If $f > 0$, then it has a well and f is called **positive definite**.
 - To tell if two positive definite forms are equivalent, go meet at the well.
Climbing Lemma: At most one river!

If \(f \neq 0 \) and has a river, then \(f \) is called **indefinite.**
Climbing Lemma: At most one river!

If $f \neq 0$ and has a river, then f is called **indefinite**.
Discrimination

If a and c are adjacent values of f with common difference h between them, then the **discriminant** of f is

$$\Delta = h^2 - 4ac.$$

- Same value measured anywhere on the topograph!
- **Ex.** $\Delta = -8$.

`\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{topograph.png}
\end{figure}`
River or Well?

Well: \(\Delta < 0 \)

\[
\Delta = 0^2 - 4 \cdot 1 \cdot 2 = -8
\]

River: \(\Delta > 0 \)

\[
\Delta = 1^2 - 4 \cdot 3 \cdot (-2) = 25
\]
Suppose f has a river.

- Finitely many options for a, c, h.
- Therefore the river must always repeat!
The Repeating River

\[f(x, y) = x^2 + 3xy - 2y^2 \]
If f has a lake, then $\Delta = h^2$ is a square.

One lake $\implies f(x, y) = ax^2$.
If both ± appear, there are two lakes connected by a river.
Sometimes the river floods and the lakes merge.
A **symmetry** of a BQF f is a linear change of coordinates that leaves f invariant,

$$f(Ax + By, Cx + Dy) = f(x, y).$$

Alternatively, it is a transformation of the topograph that preserves the f labelling.
Symmetries

- A **symmetry** of a BQF f is a linear change of coordinates that leaves f invariant,

 $$f(Ax + By, Cx + Dy) = f(x, y).$$

- Alternatively, it is a transformation of the topograph that preserves the f labelling.
Symmetries

Symmetries preserve all special features!

- Wells, rivers, and lakes, are preserved.
Another Perspective

\[\gamma_0 = \infty \]

[Diagram of a circle with labels]
Another Perspective

The mediant of reduced fractions $\frac{a}{b}$ and $\frac{c}{d}$ is $\frac{a + c}{b + d}$.
Another Perspective

The **mediant** of reduced fractions $\frac{a}{b}$ and $\frac{c}{d}$ is $\frac{a+c}{b+d}$.
Equivalence
Two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$ are adjacent if and only if their difference is an Egyptian fraction $\frac{1}{m}$.

$$\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd} = \pm \frac{1}{bd}.$$
Every reduced fraction eventually appears.

- Define Top and Bottom operations on fractions by

\[T\left(\frac{a}{b}\right) = \frac{a + b}{b} \quad \quad B\left(\frac{a}{b}\right) = \frac{a}{a + b}. \]

- Notice: T is “add one” and B is “flip, add one, flip.”

\[T\left(\frac{a}{b}\right) = 1 + \frac{a}{b} \quad \quad B\left(\frac{a}{b}\right) = \frac{1}{\frac{a+b}{a}} = \frac{1}{1 + \frac{b}{a}} = 1 + \frac{1}{\frac{a}{b}}. \]

- Applying T and B repeatedly is easy.

\[T^m\left(\frac{a}{b}\right) = m + \frac{a}{b} \quad \quad B^m\left(\frac{a}{b}\right) = \frac{1}{m + \frac{1}{\frac{a}{b}}}. \]

- (flip, add one, flip)(flip, add one, flip) = (flip, add two, flip)
Recall that
\[
\begin{bmatrix}
3 \\
11
\end{bmatrix} = B^3 T^1 B^2 \begin{bmatrix}
1 \\
0
\end{bmatrix}.
\]

Check it out:
\[
B^3 T^1 B^2 \left(\frac{1}{0} \right) = \frac{1}{3 + \frac{1}{1 + \frac{1}{2 + \frac{1}{\infty}}}} = \frac{1}{3 + \frac{1}{1 + \frac{1}{2}}} = \frac{1}{3 + \frac{2}{3}} = \frac{3}{11}
\]
Continued Fractions

Continued fraction expansion of \(\frac{a}{b} \) is a path from \(\infty \) to \(\frac{a}{b} \):

\[
\frac{3}{11} = 3 + \cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{\infty}}}
\]
But wait, there’s more!

New model shows there are hidden cells in our topograph living off near the horizon.

\[\sqrt{2} = 1 + \cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{\ldots}}}} \]
Back to the River

\[
f(x, y) = x^2 - 2y^2 \quad \Rightarrow \quad \frac{f}{y^2} = \left(\frac{x}{y}\right)^2 - 2
\]

Lagrange: If \(d \geq 0 \) and \(a, b, d \) are integers, then the continued fraction expansion of \(a + b\sqrt{d} \) is eventually periodic.
Topographical Trinitarianism
The End

Thanks!
Want More?

The Sensual (Quadratic) Form by John H. Conway.

Topology of Numbers by Allen Hatcher.