Euler's Formula.

The founders of calculus understood functions in on incredibly deep way that comes from years of using, computing, and thinking about them. Ow modern pedagological approach is historically completely backwards: we finish our courses where they began, which was with power serves. Ore of their best tricks was to think of smooth functions as poverseries which is like a polynomial that goes on forever.

For example, the morally correct way to define the function e^{x} is by its power series:

$$
e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\cdots=\sum_{n \geq 0} \frac{x^{n}}{n!} .
$$

Then we define the number e to be what we get when we ping in $x=1$:

$$
e=e^{\prime}=\sum_{n \geq 0} \frac{1}{n!} \quad \text { (there ore other definitions which came first.) }
$$

Given a function $f(x)$ which is smooth (has all of its derivatives) we can find a "power series expansion" also called a "Taylar series expansion" by the (kind of scary) formula
$f(x)=\sum_{n \geq 0} \frac{f^{(n)}(c)}{n!}(x-c)^{n} \quad$ where c is any number we want, called the evaluated at $x=c$ ".

Let's not get too sidetracked with this formula for Taylor senes; it's cool, but it's a lang starry. The point is, if we Start with our favorite function and some center c, we con coot up the Taylor series for the function centered at $x=c$.

You con derive these!

$$
\begin{aligned}
& \text { For example, let } c=0 \text {, then } \\
& \sin x=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\frac{x^{7}}{5040} \cdots=\sum_{n \geq 0} \frac{(-1)^{1} x^{2 n+1}}{(2 n+1)!} \\
& \cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}=\frac{x^{6}}{720}=\sum_{n=0} \frac{(-1)^{1} x^{2 n}}{(2 x)!}
\end{aligned}
$$

Ready? Here is Euler's great insight:

$$
e^{i x}=1+i x+\frac{(i x)^{2}}{2}+\frac{(i x)^{3}}{6}+\frac{(i x)^{4}}{24}+\frac{(i x)^{5}}{120}+\frac{(i x)^{6}}{720}+\cdots
$$

(powers of i repent with period 4)

$$
=1+i x-\frac{x^{2}}{2}-i \frac{x^{3}}{6}+\frac{x^{4}}{24}+i \frac{x^{5}}{120}-\frac{x^{6}}{720}+\cdots
$$

(collect real and imaginary parts)

$$
\begin{aligned}
& =\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}-\cdots\right) \\
& +i\left(x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\frac{x^{7}}{5040}+\cdots\right) \\
& =\cos x+6 \sin x
\end{aligned}
$$

So, $e^{i x}=\cos x+i \sin x$!
woah.

Remark: The naive definition of exponentiation a^{b} tellsus to multiply together b copies of a. This gets confusing when b is nat a whole number and profandly mystifying when b is not a real number. This is ore benefit of using the power series definition for e^{x}, since it only requires us to do addition and multiplication with x which we know how to do.

Things to try:

1) Compute derivatives of both sides of $e^{i x}=\cos x+i \sin x$, are the answers consistent?
2) Plug-in nice values for x (think: angles where we con compute $\cos x$ and $\sin x$) to derive famas identities. Hint: try $x=\pi$.
3) If a, b are real numbers, then $a+b i$ is a complex number. The real numbers live on a number line, the complex numbers live on a number plane. Think: $a+b i \longmapsto(a, b)$ with this in mind, where is the paint $e^{i x}$ on the complex place? To reduce cognitive dissonance, maybe wite this as $e^{i \theta}$. Con you see why mathematicians write complex numbers as re ce and call this "polar form"?
4) Follow-up: if $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$ are two camplex numbers, the we con multiply them to get

$$
z_{1} z_{2}=\left(r_{1} r_{2}\right) e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

Con you use this to give a geometric interpretation of multiplication of complex numbers?
5) Follow-Follorn-up: when we were yang, our another's told us that $(-1)(-1)=1$ but they never told as why Writing -1 in poor form it is $-1=e^{i \pi}$. Can you use 4) to explain why $(-1)(-1)=1$ is reasonable?

