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ABSTRACT 
A dynamic system model is proper for a particular 

application if it achieves the accuracy required by the 
application with minimal complexity. Because model 
complexity often – but not always – correlates inversely with 
simulation speed, a proper model is often alternatively defined 
as one balancing accuracy and speed. Such balancing is crucial 
for applications requiring both model accuracy and speed, such 
as system optimization and hardware-in-the-loop simulation. 
Furthermore, the simplicity of proper models conduces to 
control system analysis and design, particularly given the ease 
with which lower-order controllers can be implemented 
compared to higher-order ones. The literature presents many 
algorithms for deducing proper models from simpler ones or 
reducing complex models until they become proper. This paper 
presents a broad survey of the proper modeling literature. To 
simplify the presentation, the algorithms are classified into 
frequency-, projection-, optimization-, and energy-based, based 
on the metrics they use for obtaining proper models. The basic 
mechanics, properties, advantages and limitations of the 
methods are discussed, along with the relationships between 
different techniques, with the intention of helping the modeler 
to identify the most suitable proper modeling method for their 
application. 

Keywords: proper modeling, model simplification, model 
reduction, model deduction, model partitioning 

I. INTRODUCTION 
Mathematical simulation models are indispensable to 

engineering system analysis, design, and control development, 
particularly during preliminary design stages. They enable 
virtual experiments when physical experimentation is either too 
expensive, time consuming, infeasible or even impossible to 
conduct. 

The viability of a model for system development purposes 
rests on its accuracy and simplicity. Model accuracy is critical 
for understanding, optimizing, and controlling the dynamics of 
a given system effectively. Model simplicity, on the other hand, 
is essential for tractability in system identification and 
optimization. Simpler models are also easier to inspect for 
physical insights than more complex ones, and can lead to 
lower-order controllers that are easier to implement. Finally, 
simpler models are often – but not always – faster to simulate, 
which can be crucial for applications such as hardware-in-the-
loop simulation or embedded model-reference control. In 
summary, model accuracy and simplicity are often both crucial 
for effective system identification, analysis, optimization, and 
control.  

Seeking model accuracy and simplicity simultaneously, 
however, typically engenders a tradeoff: increasing the 
accuracy of a system model often necessitates increasing the 
complexity of the model to a level more commensurate with the 
complexity of the real system. In other words, the requirements 
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of model accuracy and simplicity often compete, and must 
hence be traded off. This competition typically grows as 
engineering systems become larger, more complex, and more 
integrated: a trend in many engineering disciplines. There is a 
growing need for system models that mitigate this competition 
and balance accuracy and simplicity by only capturing the 
dynamics necessary for their respective applications. 

The literature, in recognition of this need, deems a dynamic 
system model proper [1] if it provides the accuracy required for 
a given application with minimal complexity. By balancing 
accuracy and simplicity, proper models prove useful in 
optimization [2], real-time simulation [3], control design [4], 
and other applications requiring both model accuracy and 
simplicity, such as sensitivity analysis, Monte Carlo simulation, 
or system identification. 

Obtaining a proper model, however, is not an easy task. It is 
not always obvious which phenomena are important for a 
specific application, i.e., what to include in a model and what to 
neglect. Hence, dynamic system models are seldom proper at 
the outset. To remedy this problem, the literature proposes 
many techniques for obtaining proper models. 

This paper provides a broad review of the proper modeling 
literature. Some of these techniques begin with simple models 
and increment their complexity until they meet their respective 
accuracy requirements: a process known as model deduction. 
Most techniques, however, begin with excessively complex 
models and then reduce them until they become proper. 

The ultimate goal of both model deduction and reduction 
techniques is the same, regardless of how it is achieved: given a 
dynamic system model, balance its accuracy and complexity by 
massaging it to include only the most salient dynamics of the 
given system. This implies that every proper modeling 
algorithm must have at its core a metric for quantifying the 
relative importance of modeling the different dynamics of a 
given system. Based on the metrics they use for proper 
modeling, this paper classifies the proper modeling techniques 
presented in the literature into frequency-, projection-, 
optimization-, and energy-based. 

This classification is neither a universally adopted 
convention nor is it strict. In fact, the section will show that a 
given proper modeling technique can often conceptually belong 
to more than one of these categories. However, the authors 
have found this classification intuitively appealing and 
convenient for presentation and pedagogy, and hence adopt it 
herein.  

This review focuses mostly on model reduction and 
deduction techniques applicable to finite-dimensional, lumped-
parameter, continuous-time models of deterministic dynamic 
systems, with some brief references to infinite-dimensional and 
stochastic systems. The review also emphasizes that there does 
not exist a “universal” proper modeling algorithm applicable to 
all proper modeling problems in all domains. Rather, different 

proper modeling algorithms are ideally suited to different 
problem domains, and one must therefore choose between 
proper modeling algorithms judiciously based on the given 
problem space. The paper concludes with a brief examination 
of ongoing challenges in proper modeling, and how further 
research can address them. Similar reviews exist in the 
literature [5-15], but this work is unique in its use of proper 
modeling as a broad contextual framework within which 
different algorithms are compared and contrasted.  

II. FREQUENCY-BASED TECHNIQUES 
The fundamental metric used by frequency-based proper 

modeling techniques for assessing the importance of a given 
system’s various dynamics is characteristic speed. In 
particular, given a dynamic system model, these techniques 
partition it into submodels with comparatively “fast” and 
“slow” dynamics whose relative importance depends on the 
given application. 

Consider, for instance, the dynamics of a hydraulic car 
braking system. A full model of such a system may 
simultaneously capture the dynamics of the car’s motion and 
the dynamics of hydraulic pressure wave propagation. The 
latter dynamics are typically orders of magnitude faster than the 
former. A model capturing both sets of dynamics is therefore 
likely to exhibit significant numerical stiffness, defined as a 
disparity between its different characteristic speeds. Such 
numerical stiffness may cause the model to be computationally 
intractable, thereby necessitating a more “proper” technique for 
modeling this braking system. Such a proper modeling 
technique may neglect fluid compressibility when the goal is to 
examine vehicle braking, and conversely neglect vehicle 
motion when the goal is to examine pressure wave propagation. 

This paper refers to all techniques that use characteristic 
speed as a metric for proper modeling as frequency-based 
techniques. The term “frequency-based”, in this context, 
underscores the congruence between characteristic speeds and 
eigenvalues in the case of linear systems. Indeed, as the review 
below shows, frequency-based proper modeling techniques are 
most often used for linear systems, even though many of them 
can be generalized to nonlinear systems. This review focuses 
on eight established classes of frequency-based proper 
modeling techniques from the literature, namely, aggregation, 
singular perturbation, the model order deduction algorithm 
(MODA), modal analysis, component mode synthesis (CMS), 
polynomial methods, oblique projection, and optimal Hankel 
norm approximation. It briefly details the fundamental 
principles behind each technique or class of techniques, in 
addition to their conceptual similarities and differences.  

Aggregation 
One of the basic ideas in the model reduction literature is to 

ignore the small time constants in a system, and keep the large 
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ones, which are assumed to dominate the response. Thus, the 
earlier model reduction methods were based on retaining the 
dominant eigenvalues of the system in the reduced model [16-
22]. While developing his optimal projection method Mitra 
showed that Davison’s method [16] is a special case of optimal 
projection [23, 24]. Aoki later developed the more general 
method of aggregation [25], and it has been shown that Mitra’s 
optimal projection method is a special case of aggregation [26-
28].  

The basic idea behind the aggregation method can be 
summarized as follows. Consider the approximation of the n-
dimensional original system 

 
x Ax Bu
y Cx Du
= +
= +

 (1) 

with the r-dimensional reduced model 

 r r r r

r r

x A x B u
y C x Du
= +
= +

 (2) 

Suppose the reduced state vector rx  is related to the original 
state vector x through 
 rx Kx=  (3) 

where K is the r n×  aggregation matrix. It follows that 

 
r
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A least-squares solution can be obtained by using the 
pseudoinverse as 

 

†

†

r

r

r

A KAK
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=
=

=

 (5) 

It has been shown that a nontrivial aggregation law exists if and 
only if the rA  retains r of the eigenvalues of A [28]. 
Furthermore, K can be obtained by 

 [ ] 10rK T I V −=  (6) 

where T is any nonsingular matrix, and V is the modal matrix 
of A. 

This basic idea of aggregation has been extended by many 
researchers. For example, Aoki proposed two ways of relaxing 
the perfect-aggregation condition [29]. Hickin proposed a 
method called nonminimal partial realization that combines the 
ideas of aggregation and moment matching [30]. Siret et al. 
developed a method to chose the arbitrary matrix T in Eq. (6) in 
an optimal way to maximize a performance criterion [27]. It 
must be noted, however, that even though some of the 
eigenvalues of A are retained, the aggregation method is not 
realization-preserving, because the reduced model uses a 
different set of state variables than the original one; 

specifically, a combination of the original state variables. 
Hence, the intuitive appeal of the original model may not be 
preserved in the reduced model. 

Singular Perturbation Method 
As the difference between the large and small time 

constants in a system increases, or, in other words, as the 
underlying characteristic speeds become significantly disparate, 
the system is said to possess multiple time scales and becomes 
numerically stiff. Singular perturbation is a reduction 
technique particularly suited to this type of models. 

Unlike aggregation, singular perturbation is realization-
preserving in the sense that it does not necessarily require a 
coordinate transformation as part of model reduction. This is 
quite attractive, because it implies that the physical meaning 
associated with each state in the original model can be 
preserved in the reduced model. 

In its simplest rendition, singular perturbation implicitly 
assumes a priori knowledge of which state variables of a given 
model correspond to the fast dynamics and which correspond 
to the slow. Neglecting the influence of the “fast” dynamics on 
the “slow” states partitions the original stiff model into two 
submodels. The first driving submodel captures the slow 
dynamics and residualizes the fast states, while the second 
driven submodel captures the fast dynamics and treats the slow 
states as input variables. This furnishes a decoupled system 
model that not only mitigates the original model’s numerical 
stiffness but also approaches the original model in accuracy as 
this stiffness grows. 

The origins of the singular perturbation method go back to 
Prandtl’s work on boundary layers in fluid dynamics [31]. 
Later contributions by Tikhonov [32], Levinson [33], Vasileva 
[34], Wasow [35] and Kokotovic [36-39] established singular 
perturbation as a model reduction tool. In its simplest rendition, 
the singular perturbation method assumes that the dynamics of 
a system are expressed in state space form, where some 
derivatives have a small positive number ε  as a coefficient, 
i.e.,  

 1 1 1 2 1( , , ),    nx f x x u x= ∈  (7) 

 2 2 1 2 2( , , ),    mx f x x u xε = ∈  (8) 

The coefficient ε  represents the disparity between the 
characteristic speeds of the fast and slow dynamics. As this 
coefficient approaches zero, Eq. (8) becomes 
 2 1 20 ( , , )f x x u=  (9) 

where bars are used to distinguish between this limiting case 
and the case where ε  truly equals zero. Now assume that Eq. 
(9) can be solved to obtain a distinct real expression for 2x  in 
terms of 1x , i.e.,  
 2 1( , )x x uφ=  (10) 

Substituting this solution into Eq. (7) effectively furnishes a 
slow submodel that residualizes the fast states, i.e.,  
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 1 1 1 1 1( , ( , ), ) ( , )x f x x u u f x uφ= =  (11) 

The reduced model for the fast dynamics can be obtained by 
introducing a fast time scale τ  and fast variables 1( )x τ  and 

2 ( )x τ  defined as follows: 

 ,    ( ) ( ) ( ),    1, 2j j j
t x t x t x jτ τ
ε

= = + =  (12) 

Combining Eq. (7), (8), and (12), and letting 0ε → , the fast-
dynamics model is obtained as 

 2
2 1 2 2( ( ), ( ) ( ), )

dx
f x t x t x u

d
τ

τ
= +  (13) 

This model uses the slow states as inputs, and is hence driven 
by them. 

Equations (7-13) highlight the simplicity with which the 
singular perturbation method can be applied to a given system. 
In addition to this simplicity and the method’s intuitive appeal, 
the singular perturbation method furnishes reduced models 
with attractive mathematical properties in some special cases. 
In particular, let the original and reduced models be G and rG , 
respectively. Furthermore, assume that the full model G is 
expressed in the time domain using a balanced realization (see 
Section III), then reduced to rG  using the singular perturbation 
method. Then, the singular perturbation method is equivalent to 
balanced residualization, a projection-based proper modeling 
technique. Furthermore, the maximum error introduced by 
singular perturbation, quantified in terms of the ∞H  norm of 
the difference rG G− , satisfies:  

 12( ... )r n n mG G σ σ+ +∞
− ≤ + +  (14) 

where , 1,...,i i n n mσ = + +  are the Hankel singular values of 
G corresponding to the fast dynamics [40]. In other words, the 

∞H  norm of the modeling error introduced by singular 
perturbation cannot exceed twice the sum of the Hankel 
singular values corresponding to the fast states. Furthermore, 
this modeling error decreases with the parameter ε, and 
becomes zero in the limit as ε approaches zero.  

Model Order Deduction Algorithm 
Like singular perturbation, the model order deduction 

algorithm (MODA) is a realization-preserving technique that 
deems a model “proper” if it captures only the most relevant 
characteristic speeds of a given system for a given application. 
Unlike singular perturbation, however, MODA is a deduction 
algorithm that starts with simple models and increments their 
complexity until they become proper. Furthermore, MODA 
does not assume a priori knowledge of which states in a system 
are “fast” and which are “slow”. Instead, it explicitly searches 
for this knowledge as part of its pursuit of proper models.  

In its simplest rendition [1], MODA deems a linear system 
model proper for a given application if the model’s rank is 
minimal and its spectral radius exceeds a frequency range of 

interest (FROI) desired for the application. The rank of a 
model, in this context, is the number of components in the 
model not included in the initial baseline model from which the 
deduction process proceeds. For instance, a finite-element 
model of a shaft that uses 30 finite elements has a rank of 23 
compared to a baseline finite element model of the same shaft 
that uses only 7 finite elements. Furthermore, the spectral 
radius of a linear system is defined as the radius of a closed ball 
containing all its poles, or equivalently, as the Euclidian norm 
of its largest poles.  

MODA begins with a baseline model and proceeds to 
increment its rank in a manner that produces the smallest 
increase in its spectral radius, repeating this process until the 
spectral radius exceeds the desired FROI [1]. Using this 
approach, MODA furnishes not only a proper model, but also 
an understanding of which subsystem dynamics need to be 
captured accurately to furnish a proper system model. For 
instance, given a system containing more than one flexible 
shaft, MODA can determine the number of finite elements 
needed to model each shaft so that the overall system model is 
proper. This makes MODA particularly attractive for the 
automated lumped-parameter modeling of continuous dynamic 
systems [1].  

The literature describes several extensions that enhance the 
capabilities of MODA. In particular, Ferris et al. extend 
MODA to not only satisfy a given spectral-radius requirement, 
but also capture system eigenvalues within that spectral radius 
with a desired level of accuracy [41]. Furthermore, Walker et 
al. modify this algorithm to furnish models that accurately 
capture the eigenvalues of only the observable and controllable 
modes of a given system within the desired FROI [42]. Wilson 
and Taylor modify MODA to seek an accurate representation 
of a system’s frequency response within the desired FROI as 
opposed to just its eigenvalues [43]. Finally, Taylor and Wilson 
extend MODA to enable the proper modeling of nonlinear 
systems over a desired range of input excitation frequencies 
[44].  

MODA is not the only algorithm that adopts the deduction 
approach to proper modeling. Pirvu et al., for example, propose 
a bond-graph-model adaptation algorithm that searches for all 
possible extensions of a given baseline bond-graph model that 
would result in a desired higher-order transfer function [45]. 
The baseline model can be extended by adding new 
interconnections, i.e., 1- and 0-junctions in bond graph terms, 
or energetic components, i.e., generalized inductors, 
capacitances or resistors. The transfer-function-matching 
objective, however, limits this method to linear systems. 

Another example of the deduction approach is the bond-
graph synthesis using genetic algorithms [46, 47]. Similar to 
Pirvu’s method, this method lets a bond graph evolve from a 
baseline model. However, the freedom in choosing the fitness 
function gives this method more flexibility, allowing it to be 
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used not only as a proper modeling tool, but also a conceptual 
system synthesis tool. 

Modal Analysis 
In its simplest rendition, modal analysis focuses on linear, 

time-invariant, vector-second-order dynamic systems satisfying 
the principle of separation of variables (e.g., through 
proportional damping). Such systems may be finite- or infinite-
dimensional. In the latter case, one often approximates the 
given system’s continuous dynamics using a finite-
dimensional, lumped-parameter model obtained through a 
discretization technique (such as finite differences or finite 
elements). The resulting finite-dimensional model of this 
vector-second-order system, subject to the assumption of 
negligible damping, can be expressed as [48, 49] 
 0Mx Kx+ =  (15) 

where M and K are the effective structural inertia and stiffness 
matrices, respectively. The modes of such a system can be 
found by solving the generalized eigenvalue problem  

 2Kv Mvω=  (16) 

where the natural frequencies are given by the various solutions 
for ω  and the modes shapes are given by the corresponding 
solutions for v. These mode shapes collectively form a basis 
spanning the complete state space corresponding to Eq. (15). 
Therefore, the dynamics represented by Eq. (15) can be 
projected onto the eigenspace given by these mode shapes 
without loss of information. Such a projection can also be 
performed on the standard state-space representation of the full 
model (as opposed to the vector-second-order representation), 
leading to a new state-space model with a diagonal A matrix 
(with complex entries), as shown below: 

 
11

2 2
1 2

,

0 ... 0
0 ... 0

, , ...
... ... ... ... ...
0 0 ...

T

T

n

Tn n

A Bu y C

b

bA B C c c c

b

ξ ξ ξ

λ
λ

λ

= + =

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = = ⎡ ⎤⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

(17) 

Given this new modal representation, modal analysis builds 
on the congruence between the eigenvalues corresponding to a 
given mode and the characteristic speed of the mode to achieve 
model reduction. In particular, by eliminating the modes 
corresponding to the faster eigenvalues from Eq. (17), one can 
balance the fidelity and complexity of a given model, thereby 
rendering it proper [48, 49]. Modal analysis is therefore a 
frequency-based model reduction technique that does not 
assume a priori knowledge of which dynamics of a given 
system are “fast” and which are “slow”. Like singular 
perturbation, it has the very attractive property of a guaranteed 
error bound. In particular, the ∞H  norm of the difference 
between the original model, G, and reduced model, rG , is 

bounded by  

 ( )
1

Re
n

T
r i i i

i k

G G c bσ λ
∞

= +

− ≤ ⎡ ⎤⎣ ⎦∑  (18) 

where iλ  is the ith eigenvalue, and σ  is the largest singular 
value of the residues T

i ic b  [4]. Unlike singular perturbation and 
MODA, however, modal analysis is not realization-preserving. 
It expresses the reduced model in terms of modal – rather than 
physical – coordinates. Consequently, physical insights 
associated with the original coordinate choice may be lost. 
Modal analysis shares this property with all projection-based 
proper modeling techniques, and is hence both a frequency-
based and projection-based model reduction technique.  

The simple rendition of modal analysis presented above only 
applies to linear finite-dimensional systems. There are several 
important extensions of this technique, however, that make it 
applicable to a broader range of problems. First, modal analysis 
can be applied directly to the partial differential equations 
governing the dynamics of an infinite-dimensional system: a 
process that can furnish proper lumped-parameter models of 
such systems directly. Furthermore, the literature presents 
many extensions of modal analysis to both linear and nonlinear 
deterministic and stochastic systems that do not satisfy the 
assumptions of the above discussion [50-52]. Finally, the 
literature describes a special extension of modal analysis to 
modular systems known as component mode synthesis. This 
extension is discussed in further detail below.  

Component Mode Synthesis 
Component mode synthesis is an extension of modal analysis 

that is particularly applicable to large, modular systems. It 
proceeds in two simple steps. First, it uses modal analysis to 
obtain a proper model of each module in the system separately. 
Then it assembles these proper module models into a system-
level proper model. This two-step approach can be significantly 
less expensive from a computational standpoint than the direct 
application of modal analysis to the entire system model, 
because solving many small eigenvalue problems can be 
significantly more tractable than solving one large eigenvalue 
problem. Because of its computational attractiveness, 
component mode synthesis is widely used in the literature [53-
58], particularly in the context of applications involving large 
modular systems, such as automotive vibration applications 
[59-61]. 

Polynomial Approximation Methods 
All five proper modeling techniques presented hitherto deem 

a model proper if it captures the dynamics of a system at either 
the “fast” or “slow” end of the frequency spectrum accurately 
and with minimal complexity. It is not uncommon, however, 
for one to pursue an accurate model of a system over one or 
more intermediate frequency bands. When modeling 
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automobile noise, vibrations, and harshness (NVH), for 
instance, one is usually interested in vibration frequencies small 
enough to be perceptible but large enough to cause potential 
passenger discomfort or drivability issues.  

Padé approximation is a frequency-based model reduction 
technique particularly suited to this class of problems. Given a 
complex model, it finds a lower-order approximation of the 
model by first constructing Laurent series expansions of the 
frequency responses of both models at one or more 
interpolation points. It then matches a small number of 
coefficients of these expansions to parameterize the reduced 
model. 

In particular, let ( )G s  represent the transfer function of the 
original – or “full” – model. Then its Laurent series expansion 
around some 0s ∈  is given by 

 0
0

( ) ( )k
k

k

G s a s s
∞

=

= −∑  (19) 

The goal is to find a lower order model with the transfer 
function 

 0
0

ˆ( ) ( )k
r k

k

G s a s s
∞

=

= −∑  (20) 

such that for a desired number 0n∈ , the equalities 
ˆ ,  0,1, 2, ,k ka a k n= = …  are satisfied. The coefficients 

ˆ, , 0,1,2, ,k ka a k = …  are referred to as moments, and therefore 
this technique is also known as moment matching. When 

0s = ∞ , the moments become the Markov parameters of the 
system, in which case the approximation problem can be solved 
using the Arnoldi procedure [62, 63] or the Lanczos procedure 
[64, 65]. When 0s  is arbitrary, the rational Krylov method [66, 
67] can be used. It is also possible to use multiple interpolation 
points [65, 67]. 

Padé approximation is attractive when one seeks a good 
local approximation of a model around certain interpolation 
points in the frequency domain at a low computational cost. 
However, the stability of Padé approximants is, in general, not 
guaranteed, even if the models being approximated are stable. 
The literature describes some techniques that address this 
problem by extending Padé approximation to seek only stable 
reduced models [68]. Two other important limitations of Padé 
approximation remain even with these methods. First, there are 
no global error bounds for Padé approximants. Secondly, Padé 
approximation, by virtue of its dependence on the Laurent 
series expansion, is not a realization-preserving technique.  

The starting point for Padé approximation is a Laurent series 
expansion of the frequency response of a given “full” model. If 
the full model is expressed as a rational polynomial transfer 
function, one may choose to obtain a proper model by 
truncating the polynomials in this transfer function directly, 
rather than expanding it into a Laurent series then performing 

moment matching. Continued fraction expansion is a 
polynomial approximation technique particularly suited to this 
scenario [69-73]. In particular, it builds on the fact that a 
transfer function given by 

 
1

21 22 2,

11 12 1, 1

( )
n

n
n

n

a a s a s
G s

a a s a s

−

−

+ + +
=

+ + +

…
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 (21) 

can be written in the following continuous fraction expansion 
form 
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4
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1
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1
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 (22) 

with 

 ,1

1,1
, 1, , 2i

i
i

a
h i n

a +
= = …  (23) 

where the coefficients 1ia  are the first elements of the rows of 
the table 

 

11 12 13

2,1 1, 121 22 23
2, 1

1,131 32

41

,

3, 1; 1, 2,

j j k
jk j k

j

a a a
a aa a a

a a
aa a

a j n k

− − +
− +

−
= −

= + =

…
…

…
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 (24) 

This particular expansion, known as the second Cauer form 
[73], is just one of the possible forms of continued fraction 
expansion. Given this expansion, a reduced transfer function of 
order r can be obtained by retaining the first 2r coefficients h 
and truncating the rest. This preserves the steady state 
component of the original transfer function [10]. Other forms 
that can be used for continued fraction expansion include the 
first and third Cauer forms and the Stieltjes form [10, 73]. 

The main drawback of the continued fraction expansion 
method in general is that, like Padé approximation, unstable 
reduced models can result from stable original models. The 
literature addresses this problem by proposing other polynomial 
approximation methods guaranteed to preserve model stability. 
One such method is Routh approximation [74], which is based 
on the fact that a transfer function given by 

 
1

11 12 1

11 12 1, 1
( )

n
n

n
n

b b s b s
G s

a a s a s

−

+

+ +
=

+ + +

…
…

 (25) 

can be put into a canonical form, known as the alpha-beta 
expansion, given by 

1 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )n nG s f s f s f s f s f s f sβ β β= + + +… …  (26) 

where 
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and the coefficients iα  and iβ  are given by 
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i n

b b a j even

β

β
− +

− + − − +

= =

=
=

= −

…

…
 (29) 

A reduced model of order r can then be obtained by 

 1 1ˆ( )r rG s G
s s

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (30) 

with 

 1 1 1 2 1 2
ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )r r r rG s p s p s p s p s p s p sβ β β= + + +… …  

 

1 1

2

1

( ) ( )
1( ) , 2,

1

1

i

r
r

p s f s

p s i r
s

s
s

α

α
α−

=

= =
+

+

…
 (31) 

In addition to preserving stability, the Routh approximant 
also guarantees that the first r coefficients of the Taylor series 
expansions about 0s =  of the original and reduced models 
match. Furthermore, the impulse-response energies of Routh 
approximants converge monotonically to those of the original 
models, and the poles and zeros of the approximants approach 
the ones of the original model as r increases [74]. 

The literature describes other polynomial approximation 
methods that preserve stability, such as reduction based on 
stability equations [75]. Furthermore, the literature describes 
mixed methods that use different methods for approximating 
the numerator and denominator. These methods aim to resolve 
the instability problem of the Padé and continued fraction 
expansion methods, while matching some quantities of the 
original model. Typically, dominant pole retention or some 
other stability-preserving polynomial approximation method is 

used to calculate the denominator of the reduced model, while 
Padé or continued fraction expansion is used to determine the 
numerator. Some combinations include dominant pole retention 
and Padé approximation [16, 18, 19, 21], Routh stability 
criterion and Padé approximation [76], Routh array and Padé 
approximation [77, 78], stability equations and Padé 
approximation [79], and stability equations and continued 
fraction expansion [80]. Nevertheless, two drawbacks of the 
polynomial approximation methods in general still remain, 
namely, that all such methods are limited to linear systems, and 
they are not realization-preserving.  

Oblique Projection 
Even though this method is, as its name suggests, a 

projection-based method, due to its close relationship with the 
polynomial approximation methods it will be reviewed here. 
The relationship is in the sense that this method, using the 
oblique projection approach, gives a unified tool to 
simultaneously match high and low frequency moments of the 
transfer function, and high and low power moments of the 
power spectral density [81]. 

This method frames the model reduction problem as a 
projection of the original model 

 
x Ax Bu
y Cx Du
= +
= +

 (32) 

into the reduced model 

 r r r r

r r

x A x B u
y C x Du
= +
= +

 (33) 

by rA LAT= , rB LB= , rC CT= , and LT I= . Note that 
unlike aggregation, it is not required here that rx Lx=  and 

rA L LA= . Then, if L  and T  are chosen such that 

 1
, 1( ); ( )T T

p qL C T XL LXL −
−= =O  (34) 

where 

 
1

, ( )

p

p

p q

q

CA

CAC

CA

−

− +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

O  (35) 

and X  is the controllability Grammian satisfying 

 0T TAX XA BB+ + =  (36) 
then the reduced order model will be asymptotically stable if 
and only if it is controllable, and it will match p low frequency 
moments 

 (0) ,  1, ,i
iM CA B i p−= = …  (37) 

 q high frequency moments 

 ( ) ,  0, , 1i
iM CA B i q∞ = = −…  (38) 
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p low frequency power moments 

 (0) ( ) , 1, ,i T i T
iiR CA X A C i p− −= = …  (39) 

and, q high frequency power moments 

 ( ) ( ) , 0, , 1i T i T
iiR CA X A C i q∞ = = −…  (40) 

This basic idea has been extended to controller reduction at 
selected frequency regions, and also to matching the impulse 
response at selected time regions [81]. Due to its projection-
based approach, this method is not realization-preserving. 

Optimal Hankel Norm Approximation 
The methods discussed so far deal with local approximations 

of a given system’s frequency response. On the one hand, 
aggregation, singular perturbation, MODA, modal analysis, and 
component mode synthesis typically aim to approximate the 
low-frequency behavior of a given system. On the other hand, 
polynomial approximation methods typically aim to 
approximate the frequency response of a given system around 
some frequencies of interest. 

Further extending these ideas, one may also seek a good 
approximation to a system’s entire frequency response. Such an 
approximation may minimize, say, the ∞H  norm of the error 

rG G−  between the full and proper models, but the resulting 
∞H  model reduction problem does not have a known analytic 

solution. If, instead, one uses the Hankel norm of the error 
rG G−  to quantify the “properness” of the reduced model, then 

an analytical solution for the optimal proper model does exist, 
and the resulting proper modeling technique is known as the 
optimal Hankel norm approximation [82-85].  

For a given, stable, linear, and time-invariant system, G, 
Hankel norm approximation seeks an optimal reduced model, 

rG , whose order, k, is specified a priori by the modeler. The 
resulting optimal proper model minimizes the Hankel norm of 
the error rG G−  over the set of all linear and time-invariant 
models of the desired order. This highlights the implicit 
tradeoff between fidelity (measured by the Hankel norm of 

rG G− ) and complexity (measured by the order of rG ) that 
makes Hankel norm approximation a proper modeling method. 
Assuming that the state-space description of G is given by 
{ }, , ,A B C D , one possible way of finding rG  of order k is as 
follows [86]:  

1. Calculate P and Q, the controllability and observability 
Grammians of the system G, respectively. 

2. Calculate 2
1kE QP Iσ += − , where 1 1( )k k PQσ λ+ +=  is 

the k+1st Hankel singular value of G. 
3. Find the singular value decomposition of E, 

 [ ] 1
1 2

2

0
0 0

T

T

V
E U U

V

⎡ ⎤Σ⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
 

4. Apply the transformation 

 ( )[ ]

[ ] [ ]

11 12 1 2
1 1 2

21 22 2

1 1

2 2

1 2 1 2
1

T
T

kT

T
T

T

T
k

A A U
A QAP V V

A A U

B U
QB C

B U

CP
C C V V

B

σ

σ

+

+

⎡ ⎤⎡ ⎤
= +⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤= −⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤

= ⎢ ⎥
−⎢ ⎥⎣ ⎦

 

5. Form the equivalent model 

( ) ( )1 † 1 †
11 12 21 1 12 222 22

†
1 2 2122

A B
G

C D

A A A A B A A B

C C A A D

− −

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤Σ − Σ −
⎢ ⎥=
⎢ ⎥−⎣ ⎦

 

6. The equivalent model can be decomposed additively 
into a stable part G− with k stable poles and an anti-
stable part G+  with all poles unstable, i.e., 
G G G− += + . Then, G−  is the k-th order optimal 
Hankel norm approximation of the system G, i.e., 

rG G−= . 
The Hankel norm of the approximation error of any k-th 

order system ˆ
rG  is lower-bounded by 1

ˆ ( )r kH
G G Gσ +− ≥ , 

and the equality in the error bound is satisfied only by the 
optimal Hankel norm approximation rG . 

This minimization of error in terms of the Hankel norm 
comes at the expense of a change in realization due the 
transformations applied during the calculation of the reduced 
model. Therefore, the optimal Hankel norm approximation is 
not a realization-preserving method. 

It is worth noting that even though the Hankel norm 
approximation does not optimize ∞H  norm of the error, there 
still exists an ∞H  error bound, as established first by Glover 
[85] 

 
1

( ) ( ) 2
n

r i
i k

G j G jω ω σ
∞

= +

− ≤ ∑  (41) 

It is important to note that the D matrix does not affect the 
Hankel optimality of the approximation, but it does affect the 

∞H  norm of the error. It is possible to choose D  in such a 
way that upper-bound on the ∞H  norm of the error is cut in 
half, i.e., 

 
1

( ) ( )
n

r i
i k

G j G j Dω ω σ
∞

= +

− − ≤ ∑  (42) 

Please see [85] for the calculation of such a D . 
The above results for continuous systems have also been 

extended to discrete-time systems [87-90].  
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III. PROJECTION-BASED TECHNIQUES 
The frequency-based proper modeling techniques discussed 

hitherto assume, in general, that the salient dynamics of a given 
system occur over a fairly limited range in the frequency 
domain. Projection-based techniques make a conceptually 
analogous assumption in the state domain. Specifically, they all 
assume that the salient dynamics of a given system are limited 
to a portion of the system’s entire state space. They search for 
this portion – or subspace – by searching for the basis vectors 
spanning it, and they differ in the ways they choose the basis 
vectors. This section presents three projection-based model 
reduction techniques, namely, proper orthogonal 
decomposition, balanced truncation, and component cost 
analysis. The first two are based on the Karhunen-Loève 
expansion, which we discuss first.  

Karhunen-Loève Expansion 
The Karhunen-Loève expansion [91, 92], also known as 

principal component analysis [93], the method of empirical 
orthogonal functions [94], proper orthogonal decomposition 
[95], singular value decomposition [96], empirical 
eigenfunction decomposition [97-99], or the method of quasi-
harmonic modes [100], is a correlation analysis tool that is a 
key foundation for most projection-based proper modeling 
techniques. It can be implemented in a numerically efficient 
manner using the method of snapshots [97-99], and has become 
widely popular in many fields including fluid dynamics, 
structural vibrations, image processing, and signal analysis.  

Given observation data from either a physical system or its 
model, the Karhunen-Loéve expansion finds a subspace that 
captures the dominant dynamics of this system. Specifically, it 
finds the orthogonal basis that optimally captures the energy of 
the observation signals, in the least-squares sense. Selecting 
those basis vectors that capture the most observation signal 
energy furnishes a subspace that captures the dominant system 
dynamics. Projecting the system’s model onto this subspace 
using the Galerkin projection method then furnishes a reduced 
model that captures the original system’s dominant dynamics. 
This process leads to a powerful model reduction technique.  

For time-invariant finite-dimensional systems, the Karhunen-
Loéve expansion method can be applied as follows. Consider a 
system represented by a state space equation of the form 

 ( , ),    nx f x u x= ∈  (43) 

Assume that m n≥ observations are made for each state and 
arranged in matrix form such that 

 1 2 n m nA x x x
×

= ⎡ ⎤⎣ ⎦…  (44) 

Obtain the singular value decomposition of the matrix A, i.e.,  

 TA U V= Σ  (45) 

where 1 2( , , , )n m ndiag σ σ σ ×Σ = …  with 1 2 0nσ σ σ≥ ≥ ≥ ≥… . 

The columns of the orthogonal n n×  matrix V form a basis of 
the state space, and the squares of the singular values provide a 
measure of how much signal energy is captured by each of 
these basis vectors. Assume that the last n k−  singular values 
are small, where k n< . Then, a reduced order model can be 
obtained by taking the first k columns of the V matrix, and 
projecting the state space onto the subspace spanned by those k 
vectors, i.e., 

 ( ) ( , ),    T
r k k r k rx V f V x u x V x= =  (46) 

where x  is the approximation to the original state vector x. 
The motivation for using the first k columns as a basis for the 
reduced model is the fact that the rank k approximation 

( )T
k k k kA U V= Σ to the original observation matrix A is optimal 

in a least squares sense. Here kU  and kV  denote the first k 
columns of the matrices U and V, respectively, and kΣ  denotes 
the leading k k×  principal minor of the matrix Σ . This 
optimality is guaranteed for any value of k. Furthermore, an 
error bound exists for the approximation error rA A− , which is 
given by 

 2

1

n

r iF
i k

A A σ
= +

− = ∑  (47) 

where Fi  denotes the Frobenius norm [101, 102]. Note, 
however, that the optimality and the error bound are valid only 
for the approximation to the observation matrix, and not for the 
reduced order model, i.e., no bound exists for x x− . In fact, 
unstable reduced models may result from stable original 
models. Nevertheless, this technique often yields good results 
and is widely used for model reduction due to its applicability 
to nonlinear systems as well. 

In case the state variable is a function of position and time, 
( , )z x t , which is common in fluid mechanics or in structural 

vibrations, the same technique can be used to obtain empirical 
modes, such that the state variable can be approximated as 

 
1

( , ) ( ) ( )
M

i i
i

z x t a x b t
=

≈∑  (48) 

 In this case the observation matrix can be arranged as: 

 
1 1 2 1 1

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

n

m m n m m n

z x t z x t z x t
A

z x t z x t z x t
×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (49) 

Then, the columns of the U matrix in the singular value 
decomposition in Eq. (45) give the empirical modes known as 
the proper orthogonal modes and the squares of the diagonal 
elements of Σ  describe how much signal energy is captured by 
each mode. When used this way, the Karhunen-Loève 
expansion is similar to the modal analysis technique described 
in Section II in the approach to obtaining reduced models; 
namely, by assuming that the total response is a combination of 
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some modal responses and retaining the dominant modes in the 
reduced model. Note, however, that the modes in the 
Karhunen-Loève expansion are empirical. 

Balanced Truncation 
The Karhunen-Loéve expansion can be applied to a wide 

variety of dynamic system models for the purpose of modeling 
them properly. This includes linear and nonlinear, time-
invariant and time-varying systems. The Karhunen-Loéve 
expansion can also be applied to the same system for different 
state and input trajectories. This could ostensibly furnish 
significantly different proper models, each being “proper” only 
in the context of the trajectory used for obtaining it. 

Balanced truncation is a special model reduction technique 
that involves applying the Karhunen-Loéve expansion in 
particular ways to particular classes of systems. Its simplest 
rendition was originally proposed by Moore [103]. 
Specifically, Moore suggested the application of the Karhunen-
Loéve expansion to the state trajectory of the balanced 
realization of a linear and time-invariant system subjected to a 
series of impulses. A system’s realization is balanced if its 
observability and controllability Grammians are equal, meaning 
that each state is as observable as it is controllable. When this is 
done, one finds that the less observable and less controllable 
states can be eliminated from the given system’s model to 
furnish a reduced model. This balanced truncation process is a 
very interesting and powerful generalization of the Kalman 
canonical decomposition, which only eliminates the completely 
unobservable and completely uncontrollable states from a given 
system model to furnish a minimal realization of the model 
[104]. Note, however, that due to balancing the realization of 
the system changes, and balanced truncation is therefore not 
realization-preserving. 

The balanced truncation technique proceeds mathematically 
as follows. First, it applies a state transformation to put the 
original model in a form where each state is equally 
controllable and observable. In this case, the controllability and 
observability matrices P and Q become diagonal, with the 
diagonal elements being the Hankel singular values, i.e., 

1 2( , , , )nP Q diag σ σ σ= = … , where ( )i i PQσ λ=  are the 
Hankel singular values, which give a measure for the 
controllability and observability of corresponding states. Based 
on this measure, less controllable and observable states are 
truncated. There exists a global ∞H  error bound, which is the 
same as the ∞H  error bound in the Hankel norm approximation 
technique for the case when the D  matrix is not optimized, 
i.e., 

  
1

2
n

r i
i k

G G σ
∞

= +

− ≤ ∑  (50) 

where iσ  are the Hankel singular values of G corresponding to 
the truncated states. Note, however, that in Hankel norm 

approximation D  can be chosen such that only half of the ∞H  

error bound of balanced truncation is achieved. 
It is important to note the norm that is used in Eq. (50), 

because the singular values may not be as informative for other 
norms. As first shown by Kabamba, the singular values by 
themselves are not descriptive enough for the 2L  norm of error 
[105]. Therefore, Kabamba introduced other invariants of the 
system, the balanced gains, that together with the singular 
values describe the contribution of each state to the 2L  norm of 
the impulse response [105]. 

There is an interesting relationship between balanced 
truncation and singular perturbation. The generalized singular 
perturbation approximation allows for matching the magnitude 
of the original model at a desired frequency 0s s= , and 
choosing 0 0s =  corresponds to the singular perturbation as 
given earlier in the paper, whereas choosing 0s = ∞  
corresponds to direct truncation [40]. Thus, assuming the 
original model is balanced, choosing 0s = ∞  corresponds to 
balanced truncation, and furthermore, singular perturbation, i.e. 
choosing 0 0s = , achieves the same error bound as the 
balanced truncation [40]. 

The literature describes many extensions of the above 
balanced truncation technique. These extensions include 
approximate balancing techniques that can be quite valuable 
when exact balancing is computationally costly [106-108]. 
Further extensions extend balanced truncation specifically to 
stochastic [109-111], passive [109], and bounded real systems 
[112]. The literature also describes LQG balancing techniques 
for reduced order controller design [113] and frequency-
weighted balanced truncation for reducing the approximation 
error over a specified frequency range rather than the whole 
spectrum [114-118]. Significant research has also pursued the 
balanced truncation of nonlinear systems [119-123]. This 
literature highlights the importance of balanced truncation, both 
as a powerful model reduction technique and as the basis for 
very extensive ongoing research, both theoretical and applied.  

Component Cost Analysis 
Another method that can be reviewed under the projection-

based techniques category is component cost analysis [124-
128]. In this approach, a cost function for the linear stable 
system  

 
, ,

,

n m

p

x Ax Bu x u

y Cx y

= + ∈ ∈

= ∈
 (51) 

is defined as 

 2 2lim [ ]; T

t
V E y y y y

→∞
=  (52) 

This cost function satisfies the cost decomposition property 
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1

n

i
i

V V
=

=∑  (53) 

where iV  is the contribution of the ith state, ix , to the system 
cost, and is given by 

 T
i ii

V XC C⎡ ⎤= ⎣ ⎦  (54) 

where X  is the controllability Grammian, satisfying 

 0T TXA AX BB+ + =  (55) 

The reduced model is then obtained by truncating the low-cost 
states based on the rationale that the system cost should be 
perturbed minimally. However, it is important to know that 
deleting ix , in general, does not necessarily cause a change of 

iVΔ  in V . 
Note that the component cost analysis in this most basic 

form does not require a state transformation. Nevertheless, if 
the system is transformed into cost-decoupled coordinates, 
where TXC C  is diagonal, the component costs also quantify 
the amount by which the system cost will change if the 
corresponding states were truncated from the model. 
Furthermore, in these coordinates Cn r−  components will have 
zero component costs, where Cr  is the rank of the matrix C . 
Therefore, in these coordinates a reduced model can be 
obtained that preserves the system cost. Cost decoupled 
coordinates are not unique, and one possible transformation 
into the cost-decoupled coordinates is given by 

 
1 1 1 1 1

0
; ;

0 0
T T T T

x Tz

T T U X T T T C CT U U

=

Σ⎡ ⎤
= = = ⎢ ⎥

⎣ ⎦

 (56) 

There is a close connection between component cost analysis 
and the idea of balanced gains introduced by Kabamba [105]. 
Specifically, if component cost analysis is applied to the 
balanced coordinates, the component costs exactly match 
Kabamba’s results [126]. 

Furthermore, a very interesting relationship exists between 
balanced realization and cost-decoupled coordinates [128]. A 
generalization of the basic component cost analysis defines 

 
2

( 1) 21

0 0 0
0

0q qq

Cy u
CAy CB u

y CAB CBy xCA u

y CA B CBCA

Cx Du

− −−

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = +
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

′= +

 (57) 

and considers the system 

 
x Ax Bu

y Cx Du

= +

′ ′= +
 (58) 

with the cost function 

 
1 0

( , ) ( , )
m

T

k

V y k t Qy k t dt
∞

=
∑∫  (59) 

where ( , )y k t  is the response of the system for an impulse at 
the kth input channel while all other inputs being zero, and Q  is 
a weight matrix. Then, the cost-decoupling transformation 

 
1/ 4

1
0

0
T T U

I

−⎡ ⎤Σ
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 (60) 

yields the balanced coordinates, if 

 
0

0 1
0 1

( )
, ( ) ( )

( )
p q

q

t
q n Q I t I t I dt

t

α
α α

α

∞

−

−

⎡ ⎤
⎢ ⎥ ⎡ ⎤= = ⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦
∫  (61) 

where 1
0 ( )At in

i ie t Aα−
== ∑ . These results imply that balanced 

coordinates are a special case of the generalized cost-decoupled 
coordinates, and thus the component cost analysis is a 
generalization of the balanced truncation. 

IV. OPTIMIZATION-BASED TECHNIQUES 
The frameworks of both frequency- and projection-based 

proper modeling techniques are based on the same goal: to 
identify and isolate the dominant characteristics of a given 
model. For frequency-based methods these characteristics lie in 
the frequency domain, and for projection-based methods they 
are in the state space. 

In addition to this rather intuitive and practical motivation of 
retaining the model’s dominant characteristics, one may also 
seek to formally achieve a minimal difference between the 
predictions of the full and reduced models subject to a 
complexity constraint. Such techniques are referred to as 
optimization-based proper modeling techniques in this paper. 

Optimal Hankel norm approximation, for instance, is an 
optimization-based proper modeling technique, because it seeks 
to minimize the Hankel norm of the difference between a full 
model and a reduced model, subject to a bound on the reduced 
model’s order. The fact that optimal Hankel norm 
approximation is also a frequency-based proper modeling 
technique underscores the fact that our classification of proper 
modeling techniques, while intuitively appealing, is certainly 
not strict. Interestingly, optimal Hankel norm approximation is 
also a projection-based proper modeling technique. This raises 
an important question, namely, whether one can formulate a 
“unified” model reduction problem: one that simultaneously 
seeks optimality in the frequency and state space domains.  

The above question was partly answered by Hyland and 
Bernstein’s seminal work on the optimal projection equations 
[129]. In this work, Hyland and Bernstein formulated the 
proper modeling problem as a problem of minimizing a 
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quadratic measure of the error between a full model and its 
proper counterpart, subject to implicit rank constraints on the 
proper counterpart. This furnished a set of first-order necessary 
conditions for optimality of the reduced proper model, which 
Hyland and Bernstein expressed as a coupled system of two 
Lyapunov equations. Hyland and Bernstein then studied 
balanced truncation in the context of these necessary conditions 
for proper model optimality. They found that balanced 
truncation furnished reduced models that deviate significantly 
from quadratic optimality: a conclusion also supported by 
earlier research by Kabamba [105]. The significance of this 
finding cannot be overemphasized. It highlights the fact that a 
“proper” model developed using one metric (e.g., the relative 
observability and controllability of different states) can be far 
from being “proper” in the context of a different metric (e.g., 
quadratic optimality). In other words, there is no universal 
proper modeling algorithm applicable to all systems under all 
circumstances. Rather, different proper modeling algorithms 
are better suited to different problems, and one should carefully 
select the proper modeling metric ideally suited for the problem 
at hand.  

Optimization-based proper modeling techniques typically 
seek to minimize the 2L , 2H , or ∞H  norm of the difference 
between a given “full” model and its proper counterpart, 
subject to a constraint on the order (i.e., “complexity”) of the 
proper counterpart. Wilson, for instance, was the first to 
address the minimization of the 2L  norm of error in model 
reduction [130]. Howitt and Luus, give another example in 
which they optimize the pole and zero locations of a reduced 
model to minimize the integral square error of the difference 
between the impulse responses of the full and reduced models 
[131]. Similarly, Luus optimizes a reduced model to minimize 
the deviation of its frequency response from that of the 
corresponding full model [132]. The proper modeling problems 
resulting from such formulations often do not have analytic 
solutions, and must hence be solved numerically.  

As a result, much of the optimization-based proper modeling 
literature focuses on the development of numerically efficient 
optimization algorithms, with special attention to the 
convergence properties of these algorithms. Gouda et al., for 
instance, obtain a proper model of a building’s thermal 
response using sequential quadratic programming [133]. 
Similarly, Hachtel et al. propose an interactive optimization 
technique incorporating linear programming as a tool for 
nonlinear model reduction [134]. Both linear and sequential 
quadratic programming are local search techniques that may 
not be able to find globally optimal proper models. With this in 
mind, Assunção and Peres propose a branch-and-bound 
algorithm for the solution of the optimal 2H -norm-based 
proper modeling problem [135]. Finally, Chen and Fang [136], 
Spanos et al. [137], and Ferrante et al. [138] propose reduced 
model optimization algorithms that have attractive 

mathematical guarantees of convergence.  
Optimization-based approaches may or may not be 

realization-preserving, depending on whether they fix the given 
system’s realization during the search for an optimal reduced 
model or allow it to vary. While most optimization-based 
approaches in the literature are not realization-preserving, it is 
certainly possible to construct ones that are. 

V. ENERGY-BASED TECHNIQUES 
Energy-based proper modeling techniques are built on the 

intuitive fundamental premise that in an energetic system, the 
most important components to model accurately are those 
characterized by the largest magnitudes of energy (or power) 
flow. Therefore, these algorithms simplify a given model by 
eliminating less energetic components, while trying to 
minimize the effect of the elimination on the overall energy 
flow. The well-known Rayleigh-Ritz method exemplifies this 
perspective on model reduction [49]. Other energy-based 
model reduction algorithms include statistical energy analysis 
[139] and the power-based model reduction algorithm by 
Rosenberg and Zhou [140, 141].  

Rosenberg and Zhou’s model reduction algorithm [140, 141] 
is based on the intuitive notion that in an energetic dynamic 
system those components characterized by higher mean-square 
energies should be more important to model than those 
characterized by lower mean-square energies. This leads to a 
simple, intuitive, realization-preserving, and powerful model 
reduction technique with no theoretical proof for convergence, 
reduced model stability, or “optimality”.  

Louca et al. extend Rosenberg and Zhou’s algorithm by 
proposing a new energy-based model reduction metric called 
activity [142]. The activity of an energetic element is defined as 
the time integral of the absolute value of the power flowing 
through it over a particular time-window for a particular input. 
In a bond-graph setting, where the flow through an element i 
and the effort across it are denoted as if  and ie , respectively, 
the element’s activity is defined as  

 
0

( ) ( )
T

i i iA f t e t dt∫  (62) 

where T is the width of the desired time-window. The activity 
of an element can, hence, be physically interpreted as the total 
energy flow through the element within a specified time-
window for a specific input. It can also be interpreted as the 1L  
norm of the power flow through the element, multiplied by the 
width of the time window used to compute that norm. 

Louca et al. conjectured that in an energetic system, the 
more active elements are more important to model than the less 
active elements. An element, in this context, is any component 
in the system’s bond-graph representation, including 
generalized resistors, capacitors, and inductors. Based on this 
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conjecture, Louca et al. proposed an activity-based realization-
preserving model order reduction algorithm (MORA) [142], 
and developed techniques for physically interpreting the 
reduced models generated by this algorithm [143]. 

The fundamental premise behind MORA, namely, that 
activity can be used as a proper modeling metric, is mostly 
intuitive. However, it is supported by some important 
application studies [144-146]. Furthermore, recent work by 
Fathy and Stein has unveiled fundamental concordances 
between MORA and balanced truncation [147]. These 
concordances are special cases where the two algorithms are 
mathematically guaranteed to furnish identical reduced models. 
While these concordances do not provide a general 
mathematical foundation for MORA, they do lend credence to 
MORA as a mathematical model reduction algorithm, at least 
in the special cases covered by the concordances [147]. 

Beyond its viability as a model reduction metric, activity has 
also proven viable as a model partitioning metric. Specifically, 
Rideout et al. use activity to quantitatively and systematically 
look for decoupling among the elements of a model and to 
partition the model based on the discovered decoupling [148]. 
Once the partitions are obtained, the simulation can be carried 
out either by simulating the driving partition first and using its 
output as an input to the driven system, or, in case only the 
driving partition is of interest, by completely eliminating the 
driven partition and keeping only the driving partition. 

VI. DISCUSSION AND CONCLUSIONS 
The process of modeling a dynamic system invariably entails 

a tradeoff between model accuracy and simplicity. Simpler 
models can be easier to simulate, analyze, comprehend, and 
control than more complex ones, but this often comes at the 
expense of accuracy and, hence, potential viability. 
Recognizing this fundamental tradeoff, the literature deems a 
model “proper” if it balances the needs for accuracy and 
simplicity. 

The formal definition of “proper” models may be relatively 
new [1], but its underlying emphasis on the need for balancing 
model fidelity and complexity has been recognized for many 
decades. In fact, the literature presents many techniques for 
reducing complex models until they become proper, or 
deducing proper system models from simpler subsystem 
models. This paper briefly surveys these techniques and 
classifies them into frequency-, projection-, optimization-, and 
energy-based depending on their underlying metrics for 
assessing the relative importance of a model’s different 
dynamics and subsystems. This classification is neither well-
established nor strict, as evident from the fact that a given 
proper modeling algorithm often belongs to more than one of 
these categories. However, the authors have found it 
convenient for both presentation and pedagogy, and hence 
adopt it herein.  

A careful examination of the different proper modeling 
techniques in the literature leads to the fundamentally important 
conclusion that there is no universal proper modeling 
technique suitable for all modeling problems and all 
applications. Rather, different proper modeling techniques are 
often better suited to different problem spaces, and the authors 
hope that this review may be used as a guide in selecting the 
appropriate method. 

Despite the richness of the proper modeling literature, many 
important problems remain to be addressed. In particular, in 
many circumstances, it may be possible to simplify a given 
model and thus make it proper not only by reducing or 
eliminating its various submodels but also by simplifying the 
interconnections between these submodels. Such model 
structure simplification includes simplifying a model by 
lumping its coupled inertias, partitioning its weakly coupled 
subsystems, or simplifying its mathematical representation 
without loss of accuracy. This paper touches briefly on one of 
these aspects of model structure simplification, namely, model 
partitioning. For brevity, however, it does not explore the 
complete model structure simplification area and the significant 
ongoing research pertaining to it. 

For simplicity, the paper also focuses mostly on the 
deterministic proper modeling problem. The notion of a 
“proper model” becomes particularly powerful in the context of 
systems with significant uncertainties. In particular, when 
modeling a stochastic system, one may legitimately ask: which 
of the system’s various uncertainties are more important to 
model, and which are negligible? This leads to the notion of a 
stochastic proper model: one capturing only the most salient 
dynamics and uncertainties of a given system. Significant 
research exists, and continues, in the area of stochastic proper 
modeling, but this paper focuses on deterministic proper 
modeling for brevity. 

Finally, it is important to note that proper models of dynamic 
systems are often a means to an important practical end. In 
particular, the ultimate goal of any proper system modeling 
exercise is often to not only better understand the system’s 
behavior, but also to use this understanding as a means towards 
better system designs and controls. This implies that a proper 
model must, therefore, be both scalable and control-oriented. 
A system model is scalable if it captures not only the dynamics 
of a given system, but also how these dynamics change with 
system design parameters. Furthermore, a system model is 
control-oriented if it accurately captures those dynamics that 
are most important for the effective control of the given system. 
Both scalable and control-oriented modeling are rapidly 
becoming active research topics, and a thorough discussion of 
these topics is omitted from this paper for brevity.  
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