On page 42, Proposition 3.5, although correct as stated, is not phrased in the best possible way. If I could re-write it, I would formulate condition (ii) as:

$$T_i((i)) = \int_{\theta_i}^{\theta_i} Q_i(x)dx - k_i$$

where $$k_i$$ is a constant. This would make condition (ii) in Proposition 3.5 exactly parallel to condition (ii) in Proposition 3.4, and thus would make it easier to compare the two results. (I would like to thank Tangren Feng for a discussion about the phrasing of Proposition 3.5.)

On pages 88-90, the proof of Proposition 4.8 contains several gaps and typos. The Proposition is true as stated. The first two paragraphs of the existing proof are also correct. After these two paragraphs, I would like to insert the following new paragraph:

"Let us now assume that $$q(\theta) = 1$$ for at least one $$\theta \in \Theta$$. We begin by arguing that $$q(\theta_1, \theta_2) = q(\theta'_1, \theta'_2) = 1$$ implies $$t_i(\theta_1, \theta_2) = t_i(\theta'_1, \theta'_2)$$ for $$i = 1, 2$$. The proof is as follows. Without loss of generality assume $$\theta'_1 \geq \theta_1$$. Using Proposition 4.5 we can then infer $$q(\theta'_1, \theta_2) = 1$$, and $$t_1(\theta_1, \theta_2) = t_1(\theta'_1, \theta_2)$$. Moreover, because $$t_1(\theta_1, \theta_2) + t_2(\theta_1, \theta_2) = c$$, and $$t_1(\theta'_1, \theta_2) + t_2(\theta'_1, \theta_2) = c$$, we can conclude: $$t_2(\theta_1, \theta_2) = t_2(\theta'_1, \theta_2)$$.

Iterating this argument, now replacing $$\theta_2$$ by $$\theta'_2$$, we obtain what we want to prove. (In this second iteration, unlike the first iteration, it does not matter whether $$\theta'_2$$ is larger or smaller than $$\theta_2$$ because, by assumption, $$q(\theta'_1, \theta'_2) = 1$$.) We denote by $$\tau_1$$ and $$\tau_2$$ the type-vector independent payments that agents 1 and 2 make whenever the good is produced. By budget balance: $$\tau_1 + \tau_2 = c$$. For type vectors $$(\theta_1, \theta_2)$$ for which the public good is not produced, $$q(\theta_1, \theta_2) = 0$$, individual rationality and budget balance immediately imply that payments are do not depend on the values of $$\theta_1$$ and $$\theta_2$$ either: $$t_1(\theta_1, \theta_2) = t_2(\theta_1, \theta_2) = 0$$.”

Next, define $$\hat{\theta}_i$$ and $$\tilde{\theta}_i$$ for $$i = 1, 2$$ as in the existing proof. To show that $$\tilde{\theta}_i = \hat{\theta}_i$$ for $$i = 1, 2$$ we can now use the following simple argument, that replaces the one currently used in the proof. Note
that $\tilde{h}_i \geq \tilde{h}_i$ is true by definition. It remains to show that $\tilde{h}_i > \tilde{h}_i$ leads to a contradiction. If $\tilde{h}_i > \tilde{h}_i$, then Proposition 4.5 implies $\tau_i = \tilde{h}_i$. But then $q(\tilde{h}_i, \theta_j) = 1$ for some θ_j contradicts individual rationality for agent i.

The final four paragraphs of the proof can now remain unchanged, although some of the arguments in the second to last paragraph are now redundant because what these arguments show is already implied by the new paragraph that I inserted above. (I am grateful to Jan-Henrik Steg for pointing out gaps in this proof, and for suggesting the above argument.)

- On page 135, Proposition 7.8 is not quite correct. Proposition 7.8 becomes correct if the condition is added that q satisfies the characterization in Proposition 7.7 with strictly positive constants k_i, i.e. $k_i > 0$ for all $i \in I$. The proof in the book implicitly assumes $k_i > 0$ for all i: in equation (7.2) we divide by k_i. If $k_i = 0$ for some i, then q need not be dominant-strategy incentive compatible. A counterexample is Example 3.2 in: Juan Carlos Carbajal, Andrew McLennan, and Rabee Tourky: Truthful implementation and preference aggregation in restricted domains. *Journal of Economic Theory* 148: 1074-1101, 2013. Proposition 7.6 is, as a consequence, also not quite correct: flexible decisions rules q that satisfy positive association of differences, but for which some of the constants k_i in Proposition 7.7 are zero, may not be dominant strategy implementable. (I am grateful to John Weymark for pointing this out, and to Arunava Sen for further comments on this point.)

- In the bibliography the first name of Allan Gibbard should be spelled "Allan," not "Alan." (I am grateful to John Weymark for pointing out this error.)