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Abstract

The notion of consistent pairs, developed in Samuelson [8] and Bérgers and
Samuelson [5], is extended to perturbed 2 player extensive games. It is argued
that this solution concept provides a natural formalization of “forward in-
duction”. It is shown, however, that the concept can lead to problems of
non-existence and of multiplicity. Unlike similar examples in [8] and [5], the
examples given here are robust under small changes of payoffs. This paper con-
siders both uncorrelated and correlated perturbations. This makes it possible
to study interactions between “forward induction” and “backward induction”.



1 Introduction

The plan of this paper is to extend the notion of “consistent pairs”, which was
introduced for normal form games in Samuelson [8] and Bérgers and Samuelson
[5], to extensive games. There are two motivations for this extension. One is
that, in extensive games, “consistent pairs” seem to provide a natural formali-
sation of the notion of “forward induction”, which has occupied game theorists
for some time, but for which no agreed mathematical definition exists.! The
second motivation is that a result of Samuelson [8] and Bérgers and Samuel-
son [5] can be strengthened once extensive games are considered. The result
is that for some games no consistent pairs exist. In [5] and (8] this result is
interpreted as an impossibility result concerning the notion of “perfectly ra-
tional” behaviour. A weakness of the examples which [5] and [8] use to prove
this result is that they are not robust, i.e. one can change payoffs slightly, and
consistent pairs do exist. In this paper we shall show that, once one considers
extensive games, one can give robust examples of non-existence of consistent
pairs.

The two points made in this paper are related to each other. It will be seen
that the non-existence of consistent pairs in extensive games is due to intuitive
problems that are intrinsic to the logic of “forward induction”.

For finite 2 player games in normal form [5] and [8] called a pair of nonempty
sets of strategies, one set for each player, a “consistent pair” if each player’s
set is the set of all best responses to beliefs the support of which is equal to the
other player’s set. The strategy sets referred to in this definition are supposed
to be interpreted as the sets containing the two players’ “rational” strategies.
The definition then requires that for each player a strategy is called “rational”
if and only if it is a best response to a belief which attaches positive probability
to rational strategies of the other player only, and which gives each rational
strategy positive probability. The first of these two restrictions for beliefs
reflects that rationality is assumed to be common knowledge, the second has
the intuitive interpretation that a priori a player does not regard any of the
rational strategies of the other player as impossible.?

To extend consistent pairs to finite 2 player extensive games one could
simply determine the consistent pairs of the normal forms of these games. This
would be in line with the view of Kohlberg and Mertens [7] that normative
game theoretic solution concepts should depend on the normal form of an
extensive game only. If this view were adopted the non-robustness of the
examples in [5] and [8] would not necessarily be a problem because non-robust

1See van Damme [12] for a survey of the literature on forward induction.

2Detailed discussions of the definition of consistent pairs have been given by Balkenborg
[1] and Squires [10]. Both authors also discuss in detail the relation between consistent pairs
and other solution concepts.



normal forms may correspond to robust extensive forms. Here, however, we
shall not commit ourselves to Kohlberg and Mertens’ view. Instead, we shall
consider directly the extensive form. It seems that intuitions are more easily
developed if the extensive form is considered. If the resulting concepts turn out
not to be normal form invariant, we shall regard the extensive form intuition
as more important than the lack of normal form invariance.’

We shall apply consistent pairs to perturbed versions of extensive games,
i.e. to versions in which players are liable to tremble in the sense of Selten
[9]. This will provide rudimentary foundations for statements about players’
beliefs concerning information sets which cannot be reached under any rational
play.

To apply consistent pairs to perturbed versions of extensive games we shall
make a change in the definition of consistent pairs. We shall strengthen the
requirement that a player’s belief has full support on the other player’s set
of rational strategies, and assume in addition that each rational strategy is
regarded “much more likely” than any tremble. This seems to be in line
with the basic idea of consistent pairs. Without this adjustment the support
requirement in the definition of consistent pairs would, in fact, be void.

Once this adjustment is made, it is easy to see that consistent pairs can be
expected to exhibit some form of forward induction. Suppose that a player’s
belief about another player’s behaviour is formed in accordance with the new
requirement. A player’s observations about the other player’s behaviour will
induce a revision of this player’s belief about the other player’s strategy using
Bayes’ rule. Aslong as the observed behaviour is consistent with some rational
strategy, the posterior belief will give the rationality hypothesis much more
probability than the hypothesis that the other player has trembled. Thus,
players meet the requirement “that the inferences players draw about a player’s
future behavior should be consistent with rational behavior of this player in
the past” which is how van Damme ([12], p.56) recently described the notion
of forward induction.

In this paper, we shall consider two types of trembles, extensive form trem-
bles, i.e. trembles which are uncorrelated across information sets, as in Selten
[9], and normal form trembles, similar to those in Fudenberg et. al. [6]. In-
tuitively, normal form trembles correspond to the case in which trembles are
completely correlated across information sets. It will be shown that consistent
pairs may be very different depending on which of these two types of trembles
are considered.

Extensive form trembles generate solution concepts that satisfy “backward

3We shall not return to the subject of normal form invariance in this paper. However, it
will be immediate that only the second of the two concepts defined in the paper is normal
form invariant.



induction” whereas solution concepts based on normal form trembles may vio-
late “backward induction”. Thus, one can say that our investigation of con-
sistent pairs in perturbed extensive games will uncover interactions between
forward and backward induction.

The intuition of forward induction has long been known to be both ap-
pealing but also problematic. In our approach this is reflected by the fact that
consistent pairs need not exist. Formally, consistent pairs are fixed points in
the space of nonempty subsets of the strategy sets. The favourable case is that
this problem has a unique solution. However, as in [5] and [8], in some games
either none, or multiple fixed points exist. Among these problems the non-
existence problem is the most worrying one. The examples that we shall give
to illustrate these problems will differ from related normal form examples in
[5] and [8] in that they are robust under small changes in the players’ payofts.

This paper is structured as follows: In Section 2 the formal definition of
consistent pairs in extensive games is given. Section 3 uses examples to illu-
strate the relation between consistent pairs and forward induction. Section 4
deals with non-existence and multiplicity of consistent pairs. The examples of
Sections 3 and 4 suggest a general conjecture about consistent pairs in games
of perfect information. This conjecture will be proved in Section 5. The result
of that section will be used to relate the non-existence of consistent pairs in
certain games of perfect information to an impossibility result of Basu [2].

2 Definitions

Attention will be restricted to finite, perfect recall extensive games with two
players: ¢ = 1,2. In games with more than two players the issue would arise
whether one player’s beliefs about two other players’ behaviour should take
the form of a product measure. We restrict attention to two player games to
avoid this point.

It will be unnecessary to have explicit notation for the various parts of the
game tree and the payoffs. The only notation that we shall need is the symbol
“S;” for the set of player ¢’s pure strategies.

As was explained in the Introduction, we shall consider perturbed versions
of the given game in which both players have a small probability of making a
mistake, i.e. of “trembling”. We shall consider two forms of trembles: extensive
form trembles as in Selten [9], and normal form trembles, similar to those in

Fudenberg et. al. [6].

We begin with the case of extensive form trembles. An extensive form
tremble of a player ¢, ¢;, is a function which assigns to every information set
of player ¢ a measure defined on the set of actions available at that set. The
measure indicates for every action the minimum probability with which it is



chosen. At every information set, the minimum probabilities have to be strictly
positive for all available actions, and their sum has to be less than one.

Player 1’s beliefs about how the game is played will be described by a triple
(', ti, t%) whereby u' reflects player 1’s beliefs about player j’s behavior * in
the case that j does not tremble, and is hence a probability measure on Sj,
and t! and t; are extensive form trembles, one for player 7, and one for player
j, indicating how 7 expects himself and j to tremble.

It will be useful to compare the probabilities which player ¢ attaches to
deliberate choices of player j with those which he attaches to trembles of player
j. Therefore, we define the “ratio of player 7’s belief about player j’s tremble,

' , and a belief y4' of player i to be the quotient of the largest probability
Whlch ti assigns to any action of player j and the minimum of all positive
probabzlztws which p' assigns to strategies of player j. We denote this ratio by
t; /pt. If the ratio is close to zero, then any tremble is much less likely than
even the least likely of all possible strategies.

Given a triple (u!, ¢, t;) we can determine for every strategy s; of player
i the expected utility which 4 receives if he plays s; °. A strategy which

maximises expected utility will be called a “best reply to (4, ti, t4)”.

Y Y1) g

The goal is to define “consistent pairs” (31, 3'2) of sets of pure strategies of
the two players, whereby for every player ¢ the set S; is the set of player ¢’s
“rational” choices. We shall postulate that these sets should solve Problem 1
defined below. In the definition of Problem 1 two parameters € and é appear.
Both are assumed to be elements of (0,1). “Consistent pairs” will be the
solutions of Problem 1 (or Problem 2 below) in the case that € and § are close
to zero. Proposition 1 below will show that this is well-defined.

Problem 1 Find nonempty sets S CS; (t = 1,2) such that for every i = 1 2
the set S; is the set of all strategies which are best replies to triples (ut,
t‘) with the properties that y* has support SJ, that the minimum probabzlttzes
determmed by ti and t’ are not greater than ¢, and that the ratio t’/u s not
greater than 4.

Hence, a strategy of a player is “rational” if it is a best response to a belief
which reflects that the other player is rational, that both players tremble with
small probabilities, and that any rational choice of the other player is much
more likely than a tremble of that player. This last condition is related to the
condition in [5] and [8] that the support of each player’s beliefs is the other
player’s set of rational strategies. It is modified so as to take the existence

4Throughout this paper when “i” denotes one player, “5” denotes the other player, i.e.
J#d.

5 Assuming that trembles at different information sets are uncorrelated, and that trembles
are not correlated with strategy choices.



of trembles into account. Below, we shall sometimes refer to the modified
condition as the “strengthened full support condition”.

Observe that in Problem 1 it is not assumed that the trembles are “common
knowledge”. In fact, the players are permitted to hold arbitrary beliefs about
their own and the other player’s trembles, provided that they expect these
trembles to be “small”. Intuitively, Problem 1 refers thus to an environment
in which “rational behaviour” is understood to be behaviour from some limited
set of possibilities, but “irrational behaviour” is without commonly recognized
structure.

Another important feature of Problem 1 is that the sets S; are supposed to
contain all best replies to beliefs with the required properties, not just some of
them. This reflects that the notion of rationality formalised in Problem 1 is an
“eductive” © one. If there is a justification for an action in terms of admissible
beliefs, then this action will always be called “rational”.

Next, we define a problem that is analogous to Problem 1, but that involves
normal form rather than extensive form trembles. A normal form tremble of
a player ¢, 7;, is a function which assigns to every pure strategy of player : a
minimum probability with which that strategy has to be chosen. The minimum
probabilities have to be strictly positive, and their sum has to be less than one.

We can now proceed n analogy to what we did above, and define player
i’s beliefs as a triple (u', 7/, J) We can also define the notion of a best reply
to such a triple. The details of these definitions are omitted. We also need to
define the “ratio of a tremble 7} and a belief p*”, 'r'/,u' It is the quotient of
the largest probability ass1gned by 7} to any strategy, and the smallest positive
probability assigned by p' to a strategy

The analog of Problem 1 for normal form trembles is:

Problem 2 Find nonempty sets S C S; (i =1,2) such that for everyi = 1, 2
the set S; is the set of all strategies which are best replies to triples (ut,

’) with the properties that pt has support SJ, that the minimum probabzlztzes
determzned by 7} and T} are not greater than €, and that the ratio 7 /,u is not
greater than é.

As was said above we shall focus on solutions of Problems 1 and 2 in the
case that ¢ and é are “small”. The following result shows that this is well-

defined:

Proposition 1 For any game there exist £ > 0 and § > 0 such that the set of
solutions of Problem 1 is the same for all (€,6) € (0,€) x (0,8). The same is
true for Problem 2.

®In the sense of Binmore [4].



Proof: We give the argument only for Problem 1. For Problem 2 the proof is
completely analogous. For any pair (Sl, Sg) we consider the set of all (¢, ) €
(0,1)? for which (5, 55) solves Problem L. The proof will be built on the
following property of this set: Suppose €!,¢e?, 3 € (0,1) satisfy ' < e? <¢?
and 8',62,6% € (0,1) satisfy 6! < 6% < &3, If (5'1, Sz) solves Problem 1 for both
(et 51) and for (€3, 6%) then this pair solves Problem 1 also for (£2,62).

To show this we denote for any (g, 6) € (0,1)? by B 5)(3' ) the set of all
strategles of player 2 that are best responses to a triple (g, t, J) for which

it has support SJ, the minimum probabilities determined by ¢! and t; are not

greater than ¢, and the ratio ¢%/4 is not greater than 6. Note that BE9)(S))
is weakly decreasing (in terms of set-inclusion) as € or § decreases.

By this last observation we now have: B¢ (S ) € B 52)(8 ) C BE#)
(S’ ). Since the first and the last of these sets are both equal to S; the same
must be true for the set in the middle. Hence: S; = B(*4°) (Sj) for both z.
Thus (51, 52) solves Problem 1 for parameters (€2,6%). This completes the first
step of the proof.

We now distinguish three groups of pairs (S’l, 32) A pair belongs to the
first group if there are no values of (g,8) for which the pair solves Problem
1. A pair belongs to the second group if there are values of (¢,8) for which
it solves Problem 1, but if there is no sequence (¢™, ™) e such that the pair
solves Problem 1 for all pairs of parameter values contained in this sequence
and such that (¢,6™) — (0,0) as n — oo. Finally, the third group contains
all remaining pairs (S, Sg)

Now, clearly, we can choose & and § such that € < & and § < 8 implies that
no pair (5”1, S’g) in the first or the second of the above groups solves Problem 1
for parameter values ¢ and . We can moreover choose & and § also such that
for every pair (Sl, 5'2) in the third group there exists some ¢ > ¢ and some
§ > & such that the pair (Sl, 5'2) solves Problem 2 for the parameter values ¢
and 6.

With this choice of £ and é Proposition 1 is true. To see this note that by
construction for € < £ and § < & no pair of sets belonging to the first two of
the above groups can solve Problem 1. Hence it suffices to show that all pairs
of sets that belong to the third of the above groups will solve Problem 1 for all
e < € and all § < 6. But this follows from the first step of this proof, together
with the fact that by construction there exists for any pair of sets in the third
group and for all € < € and all § < § some £, 6%, 6% such that ! < ¢ < €2,
6! < 6 < &, and such that the given pair solves Problem 1 both for (¢!, ')
and for (&2, 62).

Q.E.D.



We can now extend the definition of “consistent pairs” to extensive games.
As we have considered two types of trembles, we define two types of “consistent
pairs” for extensive games.

Definition 1 A pair of strategy sets (3'1, 32) is called a “consistent pair of type
17 (resp. “consistent pair of type 2”) if it solves Problem 1 (resp. Problem 2)
for (g,8) € (0,&) x (0,8) whereby & and § are the parameter values referred to
in Proposition 1.

3 Consistent Pairs and Forward Induction

This section contains examples which illustrate that consistent pairs satisfy a
version of forward induction. The intuitive reason why consistent pairs and
forward induction are related was already indicated in the Introduction. We
shall also describe in this section some interaction between backward and for-
ward induction. For this we shall compare consistent pairs of type 1 and of
type 2.

The first two examples are well-known from the literature on forward in-
duction. We shall show that in these examples consistent pairs support the
conclusions obtained by previous analyses that were based on forward induc-
tion.

EXAMPLE 1: The Battle of the Sexes with an outside option for player 1.
H 6 6 6
1 0 0 3
{ r
: .

VAR

2

Example 1



Example 1 is well-known from van Damme’s work ([11], [12]). It is often used to
illustrate the notion of forward induction. In Example 1 every player has just
one information set, and therefore there is no distinction between consistent
pairs of types 1 and 2. In the following, we shall therefore refer to “consistent
pairs” without specification of the type.

CLAIM 1: In Example 1 there is a unique consistent pair: Sy = {L}, S = {£}.

According to the solution described in Claim 1, player 1 does not take up
the outside option, and, in the Battle of the Sexes, player 1’s most preferred
outcome is played. This is what also previous discussions of forward induction
in this example ([11]) have concluded. The intuition for this example is that
player 1, by not choosing the outside option, indicates that he expects to get
at least 2 from the Battle of the Sexes. Therefore, player 2 should think that
player 1 played L, and she should respond optimally by choosing £. Hence, it
is indeed rational for player 1 not to choose the outside option, and to choose
L.

To see that the indicated pair of sets is indeed a consistent pair note first
that S, is clearly the set of all best responses of player 1 to beliefs that are
admissible? given Sy. As regards player 2, the strengthened full support requi-
rement implies that when her information set is reached she must believe that
it is most likely that player 1 chose L. Hence her unique best response is 4.

To see that there is no other consistent pair observe first that C is strictly
dominated by R, so that we must have C' ¢ S;. If §; = {L} then the argument
of the preceding paragraph shows Sy = {£}, so that we have the consistent pair
of Claim 1.

If 5; = {R} then player 2’s information set can be reached only if player
1 trembles. Hence, if player 2 has to move, she can hold any arbitrary belief
about player 1’s preceding choice. Since S, must contain all best responses of
player 2 it must contain £ as well as r. Since player 1 may hold any arbitrary
belief about Sz, his strategy L might be a best response for him, and hence
Le 5'1, contradicting our initial hypothesis.

Finally, consider the case S = {L, R}. Then the strengthened full support
requirement implies that player 2, if her information set is reached, must con-
clude that the most likely explanation for this is that player 1 chose L. Her
best response is hence £. So we must have S = {¢}. Hence R is not a best
response for player 1, contradicting our initial hypothesis that R € 1.

EXAMPLE 2: A version of the Battle of the Sexes in which player 1, while
choosing his strategy, can also choose to “sacrifice” 1 unit of utility.

"Le. that satisfy the conditions of Problems 1/2 for the values (e, 6) referred to in
Definition 1.



Example 2

This example is due to Ben-Porath and Dekel [3] and van Damme [11].
Observe that player 2 has two information sets in Example 2. Therefore,
extensive form trembles are different from normal form trembles, and we have
to consider both definitions of consistent pairs.

CrAm 2: In Example 2 there is a unique consistent pair of type 1 S, = {A},
Sy = {(£,0),(¢,7)}®. This is also the unique consistent pair of type 2.

According to this consistent pair, player 1 does not sacrifice utility, and the only
outcome that is possible under rational behaviour gives player 1 his maximal
utility in the Battle of the Sexes. This is the conclusion that was also obtained
in previous investigations of this example that invoked forward induction ([3],

1))

Although in Example 2 the definitions of consistent pairs of type 1 and of
type 2 do not coincide all arguments that will be given below to prove Claim
2 apply to both types of consistent pairs. Therefore, we shall refer below to
“consistent pairs” without specifying the type.

It is easy to see that the pair described in Claim 2 is a consistent pair.
Therefore, we only show that no other consistent pair exists. Observe first
that A and B will always yield strictly higher expected utility than D, so that
D ¢ S;.

8Strategies for player 2 indicate first her choice at her left information set, and then her

choice at her right information set. The same convention applies in the context of similar
examples below.




Next, we wish to prove that C ¢ S1. The proof is indirect. Suppose
Ceb. AsD ¢ Sl the strengthened full support requirement implies that
every element of S, must have the second component {. Therefore, C yields
expected utility close to 2, and hence B ¢ S,. This leaves two pOSS1ble cases.
The first case, S = {C}, can be excluded as we excluded the case 5 =
{R} in the discussion of Example 1. In the second case, 51 = {A,C}, the
strengthened full support requirement implies that player 2 must choose £ at
her left information set, and therefore C is not a best response, contradicting
our hypothesis. We conclude C ¢ 3.

So far, we have shown: §; C {4, B}. Hence if her right information set
is reached, player 2 must attribute this to a tremble of player 1. She may
hence have any belief about what happened. Since S, must contain all her
best responses, she may hence play either £ or r at her second information set.
Thus, player 1 can hold any beliefs about what would happen if he were to
choose C. In particular, he may expect a utility close to 2. As C' ¢ S; player 1
must expect for all admissible beliefs that his best response gives an expected
utility of at least 2. Therefore, B can never be a best response, and we must

have 5, = {A}.

But, if §; = {A}, then the strengthened full support requirement implies
that player 2 must choose £ at her left information set. As argued before, she
can make any choice at her right information set, and hence we obtain the pair
given in Claim 2.

In the previous two examples we obtained the same results as previous
studies based on forward induction. Thus, our concept does capture some
of the flavour of forward induction. The next example shows that sometimes
consistent pairs yield results that differ from previous investigations of forward
induction.

EXAMPLE 3: The twice repcated Battle of the Sexes with no discounting.

Here, we refer to the specification of the Battle of the Sexes which is ob-
tained from Figure 1 by dropping the outside option for player 1.

CrLAIM 3: In Example 3 the pair (51,52)° is a consistent pair of type 1 and of
type 2.

Claim 3 is easy to verify, and therefore we omit the proof. Observe that Claim
3 is not a uniqueness assertion.

Thus, in Example 3, we have a consistent pair (of both types) in which
the outcome of the game is completely indeterminate. This conflicts with

9Recall that S; is player ¢’s set of pure strategies.
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van Damme’s [11] result that forward induction excludes in the twice repeated
Battle of the Sexes outcomes in which the same pure strategy Nash equilibrium
of the one shot game is played twice. Van Damme used “stable equilibria” (in
the sense of Kohlberg and Mertens [7]) as a formalisation of forward induc-
tion. The fact that stable equilibria differ so much from consistent pairs in this
example appears to be due to the fact that stable equilibria, by construction,
assume that the outcome that results from rational play is uniquely determi-
ned, whereas consistent pairs admit the possibility of multiple outcomes.

The next example illustrates the interaction between forward and backward
induction.

EXAMPLE 4: A coordination game of perfect information.

Example 4

CLAIM 4: In Example 4 there is a unique consistent pair of type 1: S =
{(L,R)} '°, S; = {¢}. This is also the unique consistent pair of type 2.

10The notation for strategies of player 1 is that I first indicate his choice at his first
information set, and then his choice at his second information set. The same notational

11



Observe that the strategies that are predicted by this consistent pair for the
two players are also the unique subgame-perfect equilibrium strategies in this
example.

The above result is not surprising if consistent pairs of type 1 are consi-
dered, and hence it is assumed that trembles are not correlated. Even if the
strengthened full support requirement is not imposed!!, the subgame-perfect
equilibrium strategies are the only candidates for rational behaviour. Adding
this requirement does not affect the conclusion.

The above result is, however, not so obvious for consistent pairs of type
2. Suppose, for the moment, that we drop from Problem 2 the strengthened
full support requirement. Then, one consistent pair of type 2 consists of the
set {(L, R), (R, L)(R, R)} for player 1, and the set {¢,r} for player 2. '* The
intuition for this is as follows: Take first the solution for player 2 as given,
and consider player 1. Since both £ and r are rational choices of player 2,
both L and R are rational choices at player 1’s initial information set. If he
begins with L he must continue with R. If, however, he begins with R, his
second choice will be meaningless, since his second information set will never

be reached. Therefore, both (R, L) and (R, R) are rational.

Consider next player 2. If she observes player 1 choosing L, she can inter-
pret this either as a rational choice, since one of player 1’s rational strategies
prescribes the initial move L, or she can think that player 1 trembled. In the
first case player 2 will expect player 1 to behave rationally also in future, i.e.
to choose R, and hence she will choose £. In the second case, since trembles
are correlated, player 2 may expect player 1 to tremble also at his second infor-
mation set. Hence she may prefer to choose r. Hence both £ and r are rational
choices for player 2.

If we now take the strengthened full support requirement into account, then
the sets just described no longer constitute a consistent pair. The strengthened
full support requirement implies that player 2 gives priority to those explana-
tions of her observations that don’t question the rationality of player 1. Hence,
when observing player 1 choosing L initially, player 2 should conclude that it
is most likely that player 1 is playing his rational strategy (L, R). Then £ is
her only rational choice.

It is easy to verify that the sets described in Claim 4 constitute a consistent
pair of type 2. To see that they form the only consistent pair of type 2 note

convention applies in the context of similar examples below.

1 Formally, we drop here from Problem 1 the requirement that a player’s belief must have
full support on the other player’s set of rational strategies, and give each of these strategies
a certain minimum probability, and instead we only require that the support of a player’s
belief must be contained in the other player’s set of rational strategies. Proposition 1 remains
true for the altered problem.

12Qther solutions exist as well.

12



that any solution which makes L one of player 1’s rational choices at his first
information set must prescribe that player 1 continues with R, and, by the
strengthened full support requirement, that player 2 chooses £. This implies
that (L, R) is player 1’s only rational choice, and hence that we have the
consistent pair of Claim 4.

It remains to check that there cannot be any solution which makes R player
1’s only rational choice at his first information set. Since player 2’s information
set would not be reached, and since we have assumed normal form trembles,
we would have S, = {¢,7}, and hence also (L, R) would be a rational choice of
player 1, which contradicts the assumption that R is the only rational initial
choice of player 1.

The interaction between forward and backward induction will be further
illustrated in Example 7 and Proposition 3 below.

4 Non-Existence and Multiplicity of Consi-
stent Pairs

In the previous section we have seen that consistent pairs in extensive games
do reflect certain intuitions about rational behaviour. In this section it is
shown that they suffer from non-existence and multiplicity problems. To some
extent, these problems are reflections of intrinsic problems associated with the
intuitive notions, specifically forward induction, captured by consistent pairs.

Proposition 2 There are robust examples of games for which there is a unique
consistent pair of type 1. There are also robust examples for which there is no
consistent pair of type 1. There are also robust examples for which there are
several consistent pairs of type 1, and none of them is “largest” in terms of
set-inclusion. The same assertions are true for consistent pairs of type 2.

In this result, an example is called “robust” if the properties of this example,
as referred to in the proposition, remain unchanged if the payoffs in the example
are changed a little bit.

Proposition 2 is analogous to “Proposition 2” of [5]. However, the examples
given in [5] to prove the non-existence and multiplicity parts of Proposition 2
are not robust in the sense just described. By contrast, the examples that we
shall use here to prove Proposition 2 are robust.

Before proving Proposition 2 we explain why Proposition 2 asserts not
only that there may be multiple consistent pairs, but in addition that it may
happen that none of them is largest. This point is explained in more detail in
the analogous context in [5]. There, it is shown that for normal form games
the multiplicity of consistent pairs may persist, even if one drops the full

13



support requirement for players’ beliefs, but that there will always be a largest
consistent pair. An analogous argument applies in the current context. Thus,
the interesting point is not really the possible multiplicity of consistent pairs,
but the fact that it may be that none of several consistent pairs is largest.'?

As regards the proof of Proposition 2, the possibility that there may be a
unique consistent pair was already demonstrated by Example 1 in the preceding
section. It is immediate that this example is robust. We therefore begin with
an example to demonstrate the possibility of non-existence.

EXAMPLE 5: The Battle of the Sexes with outside option, but with inverted
payoffs for player 2: player 2 enjoys an outing only if player 1 is not present.

3 0 0 1

%/ x ’“ 9

Example 5

In Example 5, as in Example 1, there is no difference between consistent
pairs of type 1 and consistent pairs of type 2. In the following, we shall
therefore refer, without qualification, to “consistent pairs”.

CLAIM 5: There are no consistent pairs in Example 5.

For the proof of Claim 5 suppose first there were a solution such that
L¢ 5'1 Note that C is strictly dominated by R, hence also C' ¢ 5’1 Hence 5'1 =
{R}. But then player 2, when her information set is reached, must attribute

13Balkenborg [1] explains how the existence of largest set-valued solutions is related to
the applicability of Tarski’s fixed point theorem.

14



this to a tremble. Since she can hold arbitrary beliefs about trembles, and since
every best response must be included in her set of rational strategies, both ¢
and r are rational choices for her. But then player 1 can hold arbitrary beliefs
about player 2’s behaviour, and, since all best responses must be included
in his set of rational choices, it must be that L € S,. This contradicts our
assumption L ¢ 5.

Now suppose L € $1. Recall that C is strictly dominated, and hence will
never be in S;. Therefore the strengthened full support requirement implies
that player 2, when called upon to move, must conclude that it is most likely
that player 1 played L, and hence she must play r. But this implies that
player 1’s only rational strategy is R, which contradicts our initial assumption

Lebs,.

This completes the proof of Claim 5. It remains to observe that all argu-
ments remain valid if payoffs are changed a little bit.

Intuitively, in this example, as in Example 1, forward induction suggests
that player 2, when her information set is reached, should conclude that player
1 has chosen L. Player 2 should then choose r, and therefore player 1 should
choose R. This argument is problematic, because the final conclusion is that
there is no rational move of player 1 which reaches player 2’s information set,
and therefore there does not seem to be any foundation for applying a forward
induction argument to player 2’s beliefs at that information set.

To complete the proof of Proposition 2 we need to give a robust example
in which there are several, but no largest consistent pairs.

EXAMPLE 6: As Example 5, but the outside option is replaced by a coordina-
tion game. (See next page.)

CLAIM 6: In Example 6 there are exactly two consistent pairs of type 1:
S1=A{C}, S2 ={(£,9),(r,0)}, and S; = {D}, S2 = {(¢,7),(r,7)}. These two

pairs are also the only consistent pairs of type 2.

In Example 6, because player 2 has two information sets, it is not immediate
that there is no difference between consistent pairs of type 1 and consistent
pairs of type 2. However, all arguments that are given below apply to both
types of consistent pairs, and so we don’t distinguish between them, referring
instead to “consistent pairs” without specifying the type.
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[S]

Example 6

It is easy to verify that the two pairs described in the claim are indeed
consistent pairs. To show that no other consistent pairs exist, we consider
first the possibility that C' € S, and that D ¢ S,. Then the strengthened
full support requirement implies that player 2 should choose £ at her right
information set. Therefore, by choosing C' player 1 can guarantee himself
almost 4. If he plays D he will get approximately 0, and if he plays A or B
he will get less than 4, independent of what player 2 does. Hence: Sy ={C}.
From this we can deduce that S; = {(£,£), (r,£)}. Thus we have obtained the
first of the two pairs described in Claim 6. An analogous argument shows that
D¢ S and C ¢ 5 implies §; = {D} and Sy = {(¢,7),(r,7)} which is the
other of the two pairs in Claim 6. We can thus complete the proof by showing
that there is no consistent pair with the property that neither C nor D are in
S,, or with the property that both C and D are in S1.

Suppose first neither C nor D were in S,. Then both £ and 7 must be
rational for player 2 at her right information set. But this implies that player
1 may believe that he gets almost 4 when he chooses C or D, hence both must
be rational choices. Thus there is a contradiction.

Consider next the case that both, C' and D, are in S,. Then both £ and
r must be rational choices of player 2 at her right information set. Notice
next that player 1’s choice B cannot be a rational choice since it yields at
most payoff of 1, and, for any belief about player 2’s behaviour, either C' or
D yields at least expected utility 2. We complete the proof by showmg that
both the hypothesis A € 8, and the hypothesis A ¢ S, lead to contradictions.
Consider first A € 5;. As B ¢ $,, the strengthened full support requirement
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implies that player 2 must choose r at her left information set. Thus A yields
approximately payoff 1. Choosing A can then not be rational, since, for any
belief, either C or D will yield higher expected utility. This contradicts the
hypothesis with which we started. Now suppose A ¢ Sy. Then, at player 2’s
left information set, both £ and r are rational choices. Suppose that player 1’s
belief attaches probability 1 to player 2’s choice of £ at her left information
set, but that player 1 attaches probability .5 to player 2’s choice of £ at her
right information set. Player 1’s best response to this belief is A. Hence A is a
rational choice of player 1. This contradicts again the hypothesis with which
we started.

This completes the proof of Claim 6. It remains to observe that all argu-
ments remain valid if payoffs are changed a little bit.

We conclude this section with a further example of non-existence of consi-
stent pairs. The example is interesting because only consistent pairs of type
2, but not consistent pairs of type 1 fail to exist. The example is also relevant
because it helps to prepare a more general analysis of consistent pairs in games
of perfect information which we shall give in the next section.

EXAMPLE 7: A short “centipede” game. (See next page.)

CLAIM 7: In Example 7 there is a unique consistent pair of type 1: S =
{(R,R)}, Sy = {r}. There is no consistent pair of type 2.

The unique consistent pair of type 1 consists of the singleton sets containing
the subgame-perfect equilibrium strategies. It is to be expected that this
solution is found if uncorrelated trembles are considered. We don’t prove this
part of the claim.

If we consider normal form trembles, and ignore for the moment the strengt-
hened full support requirement for beliefs, then the pair of sets that was obtai-
ned in this context for Example 4 is also a solution for Example 7. The reason
for this is roughly as above, and is therefore omitted.
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Example 7

If one starts from this solution, and then introduces the strengthened full
support requirement for beliefs, one is tempted to conclude that player 2 should
interpret an initial choice of L by player 1 as a rational choice, and hence expect
player 1 to choose R at his second information set, and that therefore player
2 should choose r. However, this would imply that player 1 should choose
R initially, and, since player 1’s second choice is then irrelevant, his rational
strategies would appear to be (R, L) and (R, R). But note that we now have
a problem analogous to that in Example 5. There is no rational strategy of
player 1 that reaches player 2’s information set. Hence the forward induction
argument cannot be applied to player 2’s choice, and both £ and r should be
rational.

As in Example 5 this leads to a circular chain of arguments, and it there
is no consistent pair of type 2. To see this formally note first that the as-
sumption of a solution which makes L one of player 1’s rational choices at his
initial information set is contradictory because the argument of the preceding
paragraph implies that player 2 chooses r, and hence that the only rational
initial choice of player 1 is R. On the other hand, a solution which makes R
the only rational choice of player 1 at his initial information set leads to the
conclusion that player 2 can choose £ or r, and hence (L, R) should also be a
rational choice of player 1.
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5 Consistent Pairs in Games of Perfect In-
formation

This section deals with particularly simple games, finite games of perfect in-
formation, and describes general properties of consistent pairs for these games.
The result that we obtain generalises observations that were made for Examp-
les 4 and 7 in the previous sections. For simplicity, the result refers only to
those finite games of perfect information in which no player is indifferent bet-
ween two different outcomes of the game. This condition is convenient because
it ensures uniqueness of the subgame-perfect equilibrium, and it is generically
satisfied.

Proposition 3 For all finite, 2 player games of perfect information in which
no player is indifferent between two different outcomes of the game: (i) There
is a unique consistent pair of type 1. It consists of singleton sets, containing the
subgame-perfect equilibrium strategies. (i1) There is either a unique consistent
pair of type 2, or there is no consistent pair of type 2. If there is a unique
consistent pair (.5’1, .5'2) of type 2 then all strategy combinations in S1 % 8, lead
to the subgame perfect equilibrium outcome.

Our earlier analysis of Examples 4 and 7 illustrates the assertions of Pro-
position 3. In particular, Example 4 is a case in which there is a unique
consistent pair of type 2. As predicted by Proposition 3, all strategy combi-
nations compatible with that pair generate the subgame-perfect equilibrium
outcome. Example 7 is a case in which no consistent pair of type 2 exists.
Proposition 3 asserts that no other cases can exist.

Proof: The proof of part (i) of the Proposition is elementary. Therefore,
we prove part (ii) only. We describe the proof only informally. The first
step is to show that if there is any consistent pair of type 2 (S’l, Sz) then
all strategy combinations in .5’1 X Sz lead to the same outcome To see this
consider the set of all paths induced by strategy combinations Sy x S, Suppose
this set contained more than one element. Consider the set of all decision
nodes through which more than one path passes. There must be some “latest”
nodes in this set. We focus on some such node, and on the player making
a decision at this node. This player has several “rational” (according to the
given consistent pair) choices. For every of his rational choices there is a
unique continuation provided that the other player plays rationally. Moreover,
the strengthened full support requirement for beliefs implies that, when this
node is reached, the player expects with very high probability that the other
player will behave rationally in the future. Hence, for each of his rational
choices, he is almost certain about the associated final outcome of the game.
Since he is not indifferent between any two outcomes of the game, one of the
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rational choices must yield a higher expected utility than the others. This
contradicts the assumption that also the other choices are rational.

We conclude that for any consistent pair of type 2 there must be a unique
path corresponding to it. Now suppose we knew the path associated with some
consistent pair of type 2. We could then construct the corresponding solution.
In fact, for every player 7 a strategy must then be rational if and only if it
satisfies the following two conditions: Along the given path, it prescribes the
moves that ensure that we stay on the path. In subgames that are reached if
player j deviates from the path player 7 plays a strategy that is a best reply
to a belief that attaches positive probabilities to all conceivable strategies of
player j in that subgame. In subgames that are reached if player ¢ deviates
from the path his strategy is arbitrary. It is immediate from the definition of
type 2 consistent pairs that the set of rational strategies of player : must be
the set of strategies that satisfy these conditions.

To find all consistent pairs of type 2, it suffices to determine for each path
the associated pair of sets in the way just described, and to check whether
it is a type 2 consistent pair. No other consistent pairs of type 2 can exist.
The proof can now be completed by showing that for all paths other than the
subgame-perfect equilibrium path the associated pair of sets will not be a type
2 consistent pair. For this we proceed inductively. First, it is obvious that the
last choice made along the path must be the one prescribed by the subgame-
perfect equilibrium strategy. Next, assume that we had shown that the last
n choices made along the path were those prescribed by the subgame-perfect
equilibrium strategy. We must show that the same is true for the (n41)-th
choice. Suppose it were not. Let 7 be the player who makes the relevant choice.
If he makes the choice suggested by the path he will obtain the same outcome
as he would in the subgame-perfect equilibrium. If he deviated and made
the subgame-perfect equilibrium choice then the subgame-perfect equilibrium
continuations would not necessarily be the only, but still one of the possible
continuations. But, by the definition of subgame-perfect equilibria this choice
yields strictly higher utility than the path that we are considering. Therefore,
the definition of type 2 consistent pairs would require that also the subgame-
perfect equilibrium choice is a rational choice. This would contradict what was
shown above, namely that every consistent pair of type 2 must have a unique
corresponding path.

Q.E.D.

For generic games of perfect information this proposition simplifies the
determination of consistent pairs. One first determines the subgame-perfect
equilibrium. This immediately yields the unique type 1 consistent pair. Then
one constructs the pair of sets associated with the subgame-perfect equilibrium
path in the way described in the second paragraph of the above proof. Finally
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one checks whether the resulting pair is a type 2 consistent pair. If the answer
is positive, then the constructed pair is in fact the unique consistent pair of
type 2. Otherwise, there is no consistent pair of type 2.

The construction of the candidate solution that was described in the above
proof suggests, in addition, that there is an intuitive condition that charac-
terizes games in which a unique type 2 consistent pair exists. It is that no
player can hope to gain by deviating from the subgame-perfect equilibrium
path and pretending to be irrational. To avoid heavy formalism we do not
give a formal statement of this result, but, roughly speaking, the relevant test
is the following: When considering to deviate from the subgame-perfect equili-
brium path, player ¢ must anticipate that player j may continue in the ensuing
subgame with any one of his best responses to a full support belief over ¢’s
strategies in this subgame. If there is no belief of player ¢ that respects this
restriction, and that gives higher expected utility than the subgame-perfect
equilibrium path, then a unique type 2 consistent pair exists. Otherwise, no
such pair exists.

This discussion makes clear that consistent pairs of type 2 fail to exist in
games of perfect information whenever Basu’s [2] impossibility result applies
to a game. The above discussion thus integrates Basu’s result into the fra-
mework of this paper, and shows that the impossibility result stems from the
combination of the assumption of correlated trembles with a forward induction
argument.
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