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In these notes I discuss some properties of Blackwell dominance in the special case

that there are only two possible states of the world. Let the set of possible states of

the world be Ω = {ω1, ω2}. Assume that each state is equally likely, but note that

the concept of Blackwell dominance is independent of the prior.

A signal σ is a mapping that maps each state of the world into a probability

distribution over some non-empty and finite set S: σi : Ω → ∆(S), where ∆(S)

denotes the set of all probability distributions over S. We denote by σ(s|ω) the

conditional probability of observing signal realization s ∈ S conditional on the state

being ω ∈ Ω. The probability that signal σ has realization s ∈ S is:

p(s) =
σ(s|ω1) + σ(s|ω2)

2
.

If the decision maker observes realization s ∈ S then her posterior probability that

the state of the world is ω equals:

µ(ω|s) = σ(s|ω)
σ(s|ω1) + σ(s|ω2)

.

It suffices to keep track of the decision maker’s probability of state 1. We introduce

for this probability simplified notation:

µ(ω1|s) ≡ µ(s).

A decision problem D is a pair (AD, uD) consisting of a finite set of actions AD

and a utility function uD : AD × Ω → R. Let the set of all decision problems be

D. Suppose the decision maker’s posterior probability of state ω1 is µ ∈ [0, 1]. If she

chooses an action a ∈ A, her expected utility is:

uD(a, µ) = µuD(a, ω1) + (1− µ)uD(a, ω2),

I am grateful to Xienan Cheng and Xiao Lin for their comments.
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where we use the same notation for the utility function that takes a belief about the

state as its second argument as we use for the utility function that takes states of the

world as its second argument. If the decision maker with belief µ chooses her action

optimally from AD, she achieves utility:

vD(µ) = max
a∈AD

uD(a, µ).

If the decision maker first observes signal σ and then chooses an action from AD

that maximizes her expected utility given her posterior, then her ex ante expected

utility is:

V σ
D =

∑
s∈S

p(s)vD(µ(s)).

A standard definition of Blackwell dominance is:

Definition 1. Signal σ1 Blackwell dominates signal σ2 if for all decision problems

D ∈ D:

V σ1

D ≥ V σ2

D .

We will now show in several steps that, when verifying Blackwell dominance, it is

sufficient to consider decision problems in a small subset of D. We use the following

terminology:1

Definition 2. A subset D̂ of the set D is sufficient for Blackwell dominance if a signal

σ1 Blackwell dominates signal σ2 if and only if or all decision problems D ∈ D̂:

V σ1

D ≥ V σ2

D .

Let us call a decision problem “monotone” if for every action a ∈ A we have:

uD(a, ω1) ≤ uD(a, ω2).

Proposition 1. The set of all monotone decision problems is sufficient for Blackwell

dominance.

Proof. Consider given signals σ1 and σ2, and suppose V σ1

D ≥ V σ2
D for every monotone

decision problem. We have to prove that then V σ1

D ≥ V σ2
D for all decision problems.

Consider any decision problem D that is not monotone. Suppose we modify D by

1The notion of a “sufficient” subset of decision problems is closely related to the notion of a

“generator” of a stochastic order as defined in Chapter 2 of Alfred Müller and Dietrich Stoyan,

Comparison Methods for Stochastic Models and Risk, Wiley, 2002.
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subtracting the same constant k > 0 from uD(a, ω1) for all a ∈ A, leaving uD(a, ω2)

unchanged. Call the new decision problem D′. We choose the constant k sufficiently

large so that D′ is monotone. Then we have by assumption:

V σ1

D′ ≥ V σ2

D′ .

But note that for each signal i ∈ {1, 2} we have:

V σi

D′ = V σi

D − 0.5k,

where 0.5 is the prior probability of state 1. Therefore, we can conclude:

V σ1

D − 0.5k ≥ V σ2

D − 0.5k ⇔

V σ1

D ≥ V σ2

D ,

which is what we wanted to prove. □

We call a decision problem “simple” if either AD has only one element, or AD has

two elements, a and â, and the utility function is of the form given by the table in

Figure 1 where k, ℓ ∈ R.

ω1 ω2

a k ℓ

â 0 0

Table 1. Simple Decision Problems

Proposition 2. The set of all monotone and simple decision problems is sufficient

for Blackwell dominance.

Proof. Consider given signals σ1 and σ2, and suppose V σ1

D ≥ V σ2

D for every monotone

and simple decision problem D. We have to prove that then V σ1

D ≥ V σ2

D for all

monotone decision problems. The following observation is crucial:

Claim 1. For every monotone decision problem D there is a finite list of mono-

tone and simple decision problems D1, D2, . . . , Dn such that the corresponding value

functions satisfy:

vD(µ) =
n∑

i=1

vDi
(µ) for all µ ∈ [0, 1].
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Before we prove Claim 1 we show that Claim 1 implies Proposition 2. Claim 1 and

the linearity of expected utility imply together:

V σ1

D =
n∑

i=1

V σ1

Di
and V σ2

D =
n∑

i=1

V σ2

Di
.

By assumption: V σ1

Di
≥ V σ2

Di
for all i = 1, 2, . . . , n. Thus, V σ1

D ≥ V σ2

D , follows.

It remains to prove Claim 1. Consider any decision problem D. It is easy to see

that we can find n intervals of the form [αi, αi+1] ⊆ [0, 1] and for each interval an

action ai ∈ A such that:

(i) α1 = 0, αi < αi+1 for all i ∈ {1, 2, . . . , n}, and αn+1 = 1, and

(ii) for all i ∈ {1, 2, . . . , n} if µ ∈ [αi, αi+1] then vD(µ) = uD(ai, µ), i.e. action ai
maximizes expected utility for beliefs µ in the interval [αi, αi+1].

If n = 1, then Claim 1 is trivial true because the value function vD is the same as the

value function for the monotone and simple decision problem in which only action a1
is available, and the utility from action a1 is the same as it is in D. Therefore, we

assume from now onwards that n ≥ 2.

The following observation will be key to the proof of Claim 1:

Claim 2. If µ ∈ [αi, αi+1], then the decision maker’s preferences over the actions

a1, a2, . . . , an are “single-peaked,” that is, if j < i then:

uD(aj, µ) ≤ uD(aj+1, µ),

and if j ≥ i then:

uD(aj, µ) ≥ uD(aj+1, µ).

Proof of Claim 2. To prove Claim 2 it is sufficient to show that:

uD(aj, µ)− uD(aj+1, µ) is weakly monotonically decreasing in µ.

To see that this is sufficient note that if j < i then aj+1 is optimal for some µ ≤ αi,

i.e. uD(aj, µ) − uD(aj+1, µ) ≤ 0 for some µ ≤ αi. But then it follows from of

the monotonicity in µ of utility differences that uD(aj, µ) − uD(aj+1, µ) ≤ 0 for all

µ ∈ [αi, αi+1], which is what we needed to show. Conversely, if j ≥ i, then aj is

optimal for some µ ≥ αi+1, i.e. uD(aj, µ) − uD(aj+1, µ) ≥ 0 for some µ ≥ αi. Then

the monotonicity in µ of utility differences implies that uD(aj, µ) − uD(aj+1, µ) ≥ 0

for all µ ∈ [αi, αi+1].
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It thus suffices to prove that for all i ∈ {1, 2, . . . , n− 1} the difference uD(ai, µ)−
uD(ai+1, µ) is weakly monotonically decreasing in µ. Writing out this difference we

obtain:

uD(ai, µ)− uD(ai+1, µ)

= (µuD(ai, ω1) + (1− µ)uD(ai, ω2))− (µuD(ai+1, ω1) + (1− µ)uD(ai+1, ω2))

= uD(ai, ω2)− uD(ai+1, ω2)− ((uD(ai, ω2)− uD(ai, ω1))− (uD(ai+1, ω2)− uD(ai+1, ω1)))µ

which is weakly monotonically decreasing in µ if:

uD(ai, ω2)− uD(ai, ω1) ≥ uD(ai+1, ω2)− uD(ai+1, ω1).

To prove this we note that there are µ, µ′ such that µ′ > µ, and:

µuD(ai, ω1) + (1− µ)uD(ai, ω2) ≥ µuD(ai+1, ω1) + (1− µ)uD(ai+1, ω2)

and

µ′uD(ai, ω1) + (1− µ′)uD(ai, ω2) ≤ µ′uD(ai+1, ω1) + (1− µ′)uD(ai+1, ω2)

Subtracting the second inequality from the first we obtain:

(uD(ai, ω2)− uD(ai, ω1)) (µ
′ − µ) ≥ (uD(ai+1, ω2)− uD(ai+1, ω1)) (µ

′ − µ).

Dividing by (µ′ − µ), we get:

uD(ai, ω2)− uD(ai, ω1) ≥ uD(ai+1, ω2)− uD(ai+1, ω1),

which is what we wanted to prove. □

We now use Claim 2 to find an expression for the value functions vD. By construc-

tion, if µ ∈ [αi, αi+1]:

vD(µ) = uD(ai, µ).

We can re-write this as:

vD(µ) =
n−1∑
j=i

(uD(aj, µ)− uD(aj+1, µ)) + uD(an, µ).
2

Using Claim 2, we can write this as:

vD(µ) =
n−1∑
j=i

max{uD(aj, µ)− uD(aj+1, µ), 0}+ uD(an, µ),

2We define summations where the index of the first term is smaller than the index of the last

term to be equal to zero.
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According to Claim 2, moreover, the first term on the right hand side of the following

equation is zero, and therefore this equation follows, too:

vD(µ) =
i−1∑
j=1

max{uD(aj, µ)−uD(aj+1, µ), 0}+
n−1∑
j=i

max{uD(aj, µ)−uD(aj+1, µ), 0}+uD(an, µ).

We have now obtained:

vD(µ) =
n−1∑
j=1

max{(uD(aj, µ)− uD(aj+1, µ)) , 0}+ uD(an, µ),

which holds for all µ ∈ [0, 1]. Observe that each terms in the sum is the value function

corresponding to a simple decision problem as shown in Table 1, where

k = uD(aj, ω1)− uD(aj+1, ω1) and ℓ = uD(aj, ω2)− uD(aj+1, ω2),

and the last term is the simple decision problem where only action an is available. We

have thus written v as the sum of a value functions for a finite list of simple decision

problems.

We still have to show that these simple decision problems are monotone. We have

to show:

kj ≤ ℓj ⇔

uD(aj, ω1)− uD(aj+1, ω1) ≤ uD(aj, ω2)− uD(aj+1, ω2) ⇔

uD(aj, ω1)− uD(aj, ω2) ≤ uD(aj+1, ω1)− uD(aj+1, ω2),

which was established at the end of the proof of Claim 2. Finally, the decision

problem in which only action an is available is monotone because by assumption D

is monotone. □

By normalizing utilities appropriately we can obtain an even smaller class of deci-

sion problems that are sufficient for Blackwell dominance. We define monotone and

simple decision problems to be “canonical” if there is a κ ∈ (0, 1) such that utility is

of the form shown in Table 2.

ω1 ω2

a −(1− κ) κ

â 0 0

Table 2. Canonical Decision Problems
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Proposition 3. The set of all canonical decision problems is sufficient for Blackwell

dominance.

Proof. Consider given signals σ1 and σ2, and suppose V σ1

D ≥ V σ2

D for every canonical

decision problem. We have to prove that then V σ1

D ≥ V σ2

D for all monotone and simple

decision problems. Consider any monotone and simple decision problem D that is

not canonical. The inequality V σ1

D ≥ V σ2

D is trivially true if D has only one action, or

if D has two actions but one of the actions is dominant: k ≤ ℓ ≤ 0 or 0 ≤ k ≤ ℓ. The

remaining case is that D has two actions and k < 0 < ℓ. If we divide all payoffs by

ℓ− k, we obtain a canonical decision problem. Therefore, D can be obtained from a

canonical problem by multiplying all utilities by a positive constant, say ξ > 0. But

then for both signals V σi

D = ξV σi

D′ where D′ is canonical. By assumption V σ1

D′ ≥ V σ2

D′ ,

and therefore V σi

D ≥ V σ2

D follows. □

We have now obtained a one parameter family of decision problems that is sufficient

for Blackwell dominance. Consider a signal σi. Let us calculate V σi

D where D is as in

Figure 2. If the decision maker’s probability of state ω1 is µ, then the expected utility

from a is: −µ(1 − κ) + (1 − µ)κ = κ − µ. Thus, the decision maker will choose a

whenever µ ≤ κ, and will then obtain expected utility κ− µ. Otherwise the decision

maker will chose â and will obtain expected utility zero. We therefore find:

V σi

D =
∑

{si∈Si|µi(ω1|si)≤κ}

pi(si)(κ− µi(ω1|si)).

Let us define the right hand side of this equality as: F σi
(κ). We obtain the corollary:

Corollary 1. Signal σ1 Blackwell dominates signal σ2 if and only if for all κ ∈ (0, 1):

F σ1

(κ) ≥ F σ2

(κ).

Observe that F σ1
(κ) is equal to the integral from 0 to κ of the cumulative dis-

tribution function of posteriors when the decision maker observes the realization of

signal σi. Thus, we have derived a familiar characterization of Blackwell dominance.

In fact, the condition in Corollary 1 is well-known to be equivalent to the condition

that the beliefs after observing signal σ1 are a mean-preserving spread of the beliefs

after observing signal σ2.

Note that the functions F σ1
and F σ2

are both piecewise linear, that they have in

common that F σ1
(0) = 0 and F σ1

(1) = 0.5, and that they are both convex. These

observations together simply that the inequality in Corollary 1 needs to be checked

only at the points in which F σ1
has kinks, which are the points at which µ equals one

of the posteriors that have positive probability under σ1. Formally, we have:
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Proposition 4. Signal σ1 Blackwell dominates signal σ2 if and only if for all s1 ∈ S1:

F σ1

(µ1(ω1|s1)) ≥ F σ2

(µ1(ω1|s1)).

Proof. Assume that the inequality in Proposition 4 is satisfied. We need to prove

that it follows that for all µ ∈ (0, 1) we have:

F σ1

(µ) ≥ F σ2

(µ).

But note that for every µ ∈ (0, 1) there are µ′ ≤ µ and µ′′ ≥ µ such that:

F σ1

(µ′) ≥ F σ2

(µ′) and F σ1

(µ′′) ≥ F σ2

(µ′′) and F σ1

is linear on [µ′, µ′′.].

There is λ ∈ [0, 1] such that µ = λµ′ + (1− λ)µ′′. By the linearity of F σ1
on [µ′, µ′′]

we have:

F σ1

(µ) = λF σ1

(µ′) + (1− λ)F σ1

(µ′′).

Therefore:

F σ1

(µ) ≥ λF σ2

(µ′) + (1− λ)F σ2

(µ′′).

By the convexity of F σ2
:

λF σ2

(µ′) + (1− λ)F σ2

(µ′′) ≥ F σ2

(λµ′ + (1− λ)µ′′) = F σ2

(µ).

We conclude:

F σ1

(µ) ≥ F σ2

(µ),

which concludes the proof. □


