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1. Set-Up

There is a finite set of states: Ω = {ω1, . . . , ωn} where n ∈ N is the number of

states. An experiment P is an n×N matrix {Pij}i=1,...,n;j=1,...,N such that Pij ≥ 0 for

all i, j and
∑N

j=1 Pij = 1 for all i = 1, . . . , n. We shall call such a matrix a “Markov

matrix.” The interpretation is here that N ∈ N is the number of possible outcomes

of the experiment, and that Pij is the probability of observing experiment outcome j

in state ωi.

We shall think of the elements of Ω as the “payoff-relevant states.” Specifically,

there is a decision maker who has to choose an action from a set non-empty set A

which is a subset of Rn. Suppose a ∈ A. Let the components of a be denoted by ai,

for i = 1, 2, . . . , n. Then ai is the loss that the decision maker suffers if she chooses

action a and the state turns out to be ωi.
1 The decision maker has to choose a without

knowing Ω, but after observing the outcome of one or more experiments. The decision

maker seeks to minimize expected losses.

If the decision maker first observes the outcome of experiment P and then chooses

an action from A, then a decision rule maps outcomes of P into elements of A. We

can describe such decision rules using a N × n matrix D where every row of D is an

element of A. The interpretation is that the decision maker plans to take the action

that is the j-th row of D if she observes outcome j of the experiment.

Suppose the experiment is P , and the decision maker chooses decision rule D. Then

the diagonal elements of the n×n matrix PD describe the expected loss in each state

i of the world. This is called the “risk” in state i. The vector of diagonal elements

These notes are based on Chapter12 of David Blackwell and M. A. Girshick, Theory of Games

and Statistical Decisions, Wiley, New York, 1954. (Republished by Dover Publications, Mineola,

New York, 1979.)
1We describe the decision maker’s objective as loss minimization rather than utility maximization

because, historically, some of the literature on which these notes build have adopted this perspective.

Of course, the two descriptions of the decision maker’s objectives are equivalent.

1



2 NOTES ON BLACKWELL DOMINANCE

of PD is b(P,D). We call b(P,D) the “risk vector.” As D varies over all possible

decision rules, we obtain the set of all possible risk vectors, denoted by B(P,A). This

set describes the feasible risk vectors, i.e. the risk vectors that the decision maker can

achieve by choosing from A if she has experiment P available. Some of the criteria for

comparing experiments below will focus on comparing the set B(P,A) for different

experiments. This is a somewhat agnostic approach: we evaluate an experiment by

studying the implied feasible set rather than the optimal choice from that feasible set.

Other criteria will compare, say, the minimized expected cost for some given prior

over Ω. We shall introduce the notation needed for such comparisons later.

Suppose there were two experiments: P and Q. We shall be interested in formal

definitions and characterizations of the following three concepts:

• P is more informative than Q;

• P and Q are complements;

• P and Q are substitutes.

To investigate these relations in detail, we might need to know not just the marginal

distributions of the outcomes of P and the outcomes of Q conditional on the state,

but also the joint distribution of outcomes of P and Q conditional on the state. Let

us denote the probability that we observe outcome j of experiment P and outcome

k of experiment Q in state ωi by Rijk. If the number of outcomes of P is N1, and

the number of outcomes of Q is N2, then we can think of R as an experiment with

N1 ·N1 outcomes.

2. P Is More Informative Than Q

Perhaps the simplest way of defining that P is more informative than Q is to say

that this is the case when knowledge of the outcome of P implies knowledge of the

outcome of Q. This is captured by the following definition:

Definition 0. P implies Q, written as “P → Q,” if for all j, k we have: if there exists

a state i such that: Ri,j,k > 0 then Ri′,j,k′ = 0 for all states i′ and for all experiment

outcomes k′ ̸= k.

Note that this definition refers directly to the joint distribution of the outcomes

of P and Q, and that no reference is made to the usefulness of the experiments in

decision problems. Our focus in these notes will be the connection between defini-

tions of relations among experiments that refer directly to the distributions of these
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experiments, and definitions that refer to the distribution of the experiments’ out-

comes. We shall therefore now propose another definition that is in spirit similar to

Definition 0, but that refers to decision problems.

Definition 1. P makes Q redundant, written as “P ↠ Q,” if B(P,A) = B(R,A)

for all non-empty, compact and convex subsets A of Rn.

Thus, in words, we say that P makes Q redundant when the opportunities that are

available to a decision maker who knows P are the same as the opportunities that

are available to a decision maker who knows P and Q, independent of the decision

problem that the decision maker faces. The decision problem is captured by the set A.

Note we don’t quite consider all non-empty subsets A of Rn, but only those subsets

that are compact and convex. Compactness is assumed to make sure that, when later

we introduce the objective of expected loss minimization, a solution to the decision

maker’s optimization problem exists. Convexity reflects the idea that, if two actions

are available to the decision maker, also all probability distributions over these actions

are available. Intuitively, the decision maker has access to a randomization device

that is independent of Ω, and independent of the experiment outcomes. Without this

assumption, pure noise could allow the decision maker to expand her opportunities,

and would therefore appear useful if we focus on the size of the set B(P,A) only.

Are Definitions 0 and 1 equivalent? Obviously, if P implies Q, then P also makes Q

redundant. The converse is, however, not true. For example, when Q is random noise,

that is, outcomes of P are not correlated with ω, then P makes Q redundant, but

clearly P does not imply Q. It thus becomes interesting to search for a condition that

is equivalent to redundancy, but that refers only to the distribution of the outcomes

of P and Q, and does not require the explicit consideration of decision problems. In

particular, we might ask whether such a condition, like Definition 0, has to refer to the

joint distribution of the outcomes of the two experiments, or whether the redundancy

condition can be characterized in terms of the marginal distributions only. We shall

postpone answering these questions until later.

Instead, we now turn to third formalization of the idea that P is more informative

than Q. The following definition is due to David Blackwell.

Definition 2. P is more informative than Q, written as “P ⊃ Q,” if B(Q,A) ⊆
B(P,A) for all closed, bounded and convex subsets A of Rn.

Thus, P is more informative than Q if, whatever the decision problem is, provided

that A is closed, bounded, and convex, the set of risk vectors that the decision maker
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can implement basing her decision on the outcome of P , is a superset of the set of

risk vectors that the decision maker can implement if she bases her decision on the

outcome of Q. Of course, this implies that, if the decision maker minimizes expected

loss with some subjective prior over the state space, she will achieve at least as low

an expected loss if the experiment on which she bases her decision is P as she does if

it is Q. One might ask whether the converse is also true, that is: Is it the case that P

is more informative than Q whenever the decision maker will achieve at least as low

an expected loss if the experiment on which she bases her decision is P as she does

if it is Q, for all decision problems and all subjective priors? This is indeed the case.

We shall prove it in the proof of Proposition 2.

Blackwell informativeness is a much studied concept. Early research on the subject

is summarized in Chapter 12 of Blackwell and Girshick (1954). In particular, their

Theorem 12.2.2 offers five equivalent characterizations of the concept of “more infor-

mative.” Here, we break down this result into two Propositions which we state and

prove separately.

Proposition 1. Let P and Q be two n×N1 and n×N2 Markov matrices. Each of

the following conditions is equivalent to P ⊃ Q:

(1) There is an N1 ×N2 Markov matrix M with PM = Q.

(2) For every N2 × n matrix D there is an N1 ×N2 Markov matrix M such that

every diagonal element of PMD equals the corresponding diagonal element of

QD.

(3) For every N2 × n matrix D there is an N1 ×N2 Markov matrix M with

Trace of PMD ≤ Trace of QD.

Among the three conditions in Proposition 1, the first one is the most familiar one.

The matrix M describes how the outcome of experiment P gets “garbled” in a way

that is independent of the state to yield the outcome of experiment Q.

The second and third conditions in Proposition 1 both have to do with risk vectors.

In condition 2 the matrix D describes a decision rule of the decision maker in case the

decision maker observes experiment Q. Thus, the diagonal elements of QD constitute

the risks in each state. The condition says that the same risks could be obtained by

garbling the experiment Q using the matrix M , and then choosing actions D.

The second condition is at first sight weaker than condition 1 for two reasons.

Firstly, condition 2 allows the garbling matrix M to depend on D. Secondly, whereas

condition 1 requires the precise conditional probability distributions of the garbled
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experiment PM to be the same as the conditional probability distributions of the

experiment Q, condition 2 only requires the risk vectors to be the same (given that

decision rule D is chosen).

There is a different way of reading condition 2. Instead of interpreting the diagonal

of PMD as the risk vector that the decision maker faces when observing the outcome

of experiment PM and then choosing decisions according to D, we can interpret it as

the risk vector that the decision maker faces when observing the outcome of experi-

ment P and then choosing decisions according to MD. The decision rule prescribes

for each observed outcome of P an action that is a convex combination of actions pre-

scribed by D. Thus, the second condition says that the decision maker can achieve

the same risk vector when observing P as she achieves when observing Q, and that

to do so the decision maker only chooses actions that are convex combinations of the

actions chosen when observing Q.

Condition 3 refers to the trace of matrices PMD and QD. The trace is the sum of

the diagonal elements of these matrices, that is, the sum of the risks in all states. We

can think of this sum as the ex ante expected loss where all states are equally likely.

More precisely, the expected loss is 1/n times the trace. The condition leaves out the

normalizing factor 1/n but that doesn’t matter. Condition 3 is in two ways weaker

than condition 2: Firstly, condition 3 only refers to the sum of the diagonal elements

of PMD and QD, whereas condition 2 refers to each of these elements. Secondly,

condition 3 is a weak inequality, whereas condition 2 is an equality.

Having interpreted the conditions, we can immediately notice that they get succes-

sively weaker: 1.⇒ 2.⇒ 3. To prove the proposition we first show the equivalence of

all three conditions. Then we prove that the three conditions are also equivalent to

experiment P being more informative than experiment Q. Given the first step, it is

sufficient to prove this for any one of the conditions, and we prove it for condition 2.

Proof of the equivalence of 1., 2. and 3. We prove that condition 3 implies condition

1. Consider the following two player zero sum game. Player 1 chooses an N2 × n

matrix D where 0 ≤ dji ≤ 1 for all j, i. Thus, player 1 chooses a decision rule based

on observing experiment Q. Player 2 chooses an N1 × N2 Markov matrix M . That

is, player 2 chooses how experiment P is garbled. Player 1 seeks to maximize, and

player 2 seeks to minimize, the trace of the matrix (PM−Q)D. This is the difference

between the expected loss that a player would get when choosing D based on the

garbled experiment PM and when choosing D based on Q. Expected values are
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calculated using the uniform distribution, and omitting the normalization 1/n. We

denote this trace by Π(D,M).

Nash’s theorem on the existence of pure strategy Nash equilibria applies to this

game. Denote by D0 and M0 equilibrium strategies, and define vo ≡ Π(D0,M0). By

the definition of a pure strategy Nash equilibrium we have:

Π(D,M0) ≤ v0 ≤ Π(D0,M)

for all D and all M .

Now apply condition 3 of Proposition 1 to decision rule D0. There must then

be some garbling of P that gives a loss not larger than QD0. Therefore, given any

decision rule, player 2 can achieve an expected payoff of no more than zero. This

means that we have to have: v0 ≤ 0.

This means that for every decision rule D of player 1 we must have: Π(D,M0) ≤ 0.

Now consider the matrix PM0 − Q, that is, the difference between the probability

distribution generated by the scrambled experiment PM0 and the probability distri-

bution generated by Q. Suppose any entry in this matrix were positive, that is, in

some state, some experiment outcome were more likely under the scrambling than

under Q. Then player 1 would be able to choose the decision rule D such that posi-

tive losses only occur only for that signal state combination, and other losses are zero.

This would make Π(D,M0) > 0, and would thus contradict that Π(D,M0) ≤ 0 for

all D.

We conclude that all entries of PM −Q must be non-negative. But then, because

we are subtracting probabilities from each other, PM = Q. □

Proof that condition 2. is necessary and sufficient for P ⊃ Q.

P ⊃ Q⇒ Condition 2. Consider any decision rule D, that is, any N2×n matrix

D. Let A be the set of all convex combinations of rows of D. Now apply the definition

of P ⊃ Q to conclude: B(Q,A) ⊆ B(P,A). Note that D prescribes actions in A, and

hence b(Q,D) ∈ B(Q,A). Therefore, b(Q,D) ∈ B(P,A). That means that there is

a decision rule D′ that is based on P such that b(P,D′) = b(Q,D). Every row of D′

is a linear combination of rows of D, because D′ only prescribes actions in A, and A

is the convex hull of the rows of D. Therefore, there is an N1 × N2 matrix M such

that D′ = MD. Hence, PD′ = PMD and therefore b(P,MD) = b(Q,D), as had to

be shown.
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Condition 2 ⇒ P ⊃ Q. Let A be any closed, bounded, and convex set of

actions, and let D be a decision rule for experiment Q. We want to show that there

is a decision rule D′ for experiment P such that b(Q,D) = b(P,D′). By condition

2 there is an N1 × N2 Markov matrix M such that b(Q,D) = b(P,MD). Define

D′ ≡ MD. Because A is convex, MD is a decision rule for P , and hence has the

required properties. □

Blackwell and Girshick’s (1954) Theorem 12.2.2 offers two further conditions that

are equivalent to P ⊃ Q. These conditions refer to the decision maker’s posterior

beliefs about Ω, if the decision maker’s prior is uniform. Define ∆ to be the set of

all probability distributions over the state space. For every outcome j = 1, . . . , N1 of

experiment P we define:

αj ≡
n∑

i=1

Pij

to be the ex ante probability of observing j. We omit here the normalizing factor

1/n. We assume that for every j the probability αj is strictly positive. The vector of

the agent’s posterior beliefs after seeing outcome j is then given by:

ej ≡
(
P1j

αj

, . . . ,
Pnj

αj

)
.

Notice, that we have left out the normalizing factor 1/n in the numerator as well

as the denominator, so that it doesn’t matter. Had we included it, it would have

cancelled out. We define similarly for every outcome k = 1, . . . , N2 of experiment Q:

βk ≡
n∑

i=1

Qik

and

fk ≡
(
Q1k

βk
, . . . ,

Qnk

βk

)
.

Proposition 2. Let P and Q be two n×N1 and n×N2 Markov matrices. Each of

the following conditions is equivalent to P ⊃ Q:

4. There is an N2 ×N1 Markov matrix T such that:

(a)
N1∑
j=1

tkjej = fk for all k = 1, . . . , N2;

(b)
N2∑
k=1

βktkj = αj for all j = 1, . . . , N1.
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5. For every continuous convex function ϕ : ∆ → R we have:

N1∑
j=1

αjϕ(ej) ≥
N2∑
k=1

βkϕ(fk).

Condition 4 says that the posteriors that the decision maker may hold after observ-

ing the outcome of experiment P are a mean-preserving spread of the posteriors that

the decision maker may hold after observing the outcome of experiment Q. Thus, a

vector with expected value zero is added to the posterior after observing Q to obtain

the posterior after observing P . Specifically, after observing outcome k of experiment

Q and thus forming posterior fk, with probability tkj the vector ej−fk is added to the

posterior to obtain the posterior ej. Condition (a) says that the expected value of this

modification of ej is zero. Condition (b) says that the distribution of the posterior

that is obtained from ej by adding noise with expected value zero is the same as the

distribution of the posterior after observing P .

To understand why condition 5 is of interest we consider a special case of the

convex functions ϕ referred to in condition 5. We obtain these functions as the result

of optimally choosing actions. Imagine that the decision maker had a closed and

bounded set of actions A available. Suppose the decision maker seeks to maximize

expected utility, and the entries of each vector in A represented utilities rather than

losses. Now imagine the decision maker observed the outcome of experiment P before

having to choose. If the decision maker observed outcome j, then the decision maker

would maximize ej · a. Define the value of this maximum to be:

ψ(ej) ≡ max
a∈A

ej · a.

This is well defined because A is compact. Now we observe that ψ is a continuous

and convex function of ej. Continuity follows from the maximum theorem. To see

convexity, suppose e, e′ ∈ ∆ and λ ∈ [0, 1]. We want to show:

ψ(λe+ (1− λ)e′) ≤ λψ(e) + (1− λ)ψ(e′).

To see that this is true denote by â the argmaxa∈A(λe+(1λ)e′) · a, and observe that:

ψ(λe+ (1− λ)e′) = λe · â+ (1− λ)e′ · â.

The assertion now follows from:

ψ(e) ≥ e · â and ψ(e′) ≥ e′ · â,

which are true by definition of ψ. Thus, ψ is an example of the functions to which

condition 5 applies.
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Condition 5 now says that the maximum expected payoff that the decision maker

achieves when choosing actions after observing the outcome of P is at least as large

as the maximum expected payoff that the decision maker achieves when choosing

actions after observing the outcome of Q. This is the familiar condition which is

often regarded as the decision theoretic definition of Blackwell comparisons. Note

that condition 5 (implicitly) requires the assertion to be true for all decision problems

where A is compact, and indeed it requires it to be true also for all convex functions

ϕ that are not constructed as maximized expected utilities. However, as the proof

below shows, the condition would also be necessary and sufficient if attention were

restricted to convex functions ϕ that are constructed as maximized expected utilities.

Thus, the proof of Proposition 2 and Proposition 1 together show the equivalence of

the standard decision theoretic definition of Blackwell comparisons and condition 1.

This is the most frequently cited version of Blackwell’s result.

Proof. Proof that condition 1 implies condition 4: By definition:

fk ≡
(
Q1k

βk
, . . . ,

Qnk

βk

)
.

Now by condition 1 for every i we have:

Qik =

N1∑
j=1

PijMjk.

Therefore:

Qik

βk
=

∑N1

j=1 PijMjk

βk

=

N1∑
j=1

αjMjk

βk

Pij

αj

.

This can be written as:

fk =

N1∑
j=1

tkjej

where

tkj =
αjMjk

βk
.

The interpretation of tkj is as follows: Imagine that experiment Q is generated by

scrambling P usingM . Then tkj is the conditional probability that experiment P had

outcome j if experiment Q had outcome k. Note that clearly
∑N1

j=1 tkj = 1 as required
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by the definition of a Markov matrix. We have thus shown part (a) of condition 4.

Part (b) follows from this calculation:

N2∑
k=1

βktkj =

N2∑
k=1

αjMjk = αj.

Proof that condition 4 implies condition 5: For every continuous convex

function ϕ we have:

N1∑
j=1

αjϕ(ej) =

N1∑
j=1

(
N2∑
k=1

βktkj

)
ϕ(ej)

=

N2∑
k=1

βk

N1∑
j=1

tkjϕ(ej)

≥
N2∑
k=1

βkϕ

(
N1∑
j=1

tkjej

)

=

N2∑
k=1

βkϕ(fk).

where the first equality follows from part (2) of condition 4, the second equality re-

arranges the summation signs, the third inequality follows from the convexity of ϕ,

and the last equality follows by definition of fk.

Proof that condition 5 implies condition 3: Consider any decision rule D

that is based on the outcome of experiment Q. We will construct the matrix M to

which condition 3 refers. Define C to be the set of rows of D, and define ϕ : ∆ → R

to be the function that assigns to every conditional belief about the state spaces the

negative of the lowest expected loss (that is, the highest expected “payoff”) that the

decision maker can achieve if she is restricted to pick one of the actions in C. By the

argument in the text following Proposition 2 this function ϕ is convex. Because C is

not necessarily based on optimized choices given the observed Q we have:

Trace of QD ≥ −
N2∑
k=1

βkϕ(fk).

Now construct the matrix M such that every outcome j of P is transformed with

probability 1 into that outcome of Q that triggers the conditionally optimal choice

from C given beliefs ej. Then

Trace of PMD = −
N1∑
j=1

αjϕ(ej).
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Because ϕ is convex, condition 5 implies:

N1∑
j=1

αjϕ(ej) ≥
N2∑
k=1

βkϕ(fk),

and hence:

Trace of PMD ≤ Trace of QD,

as required. □

Blackwell and Girshick offer two characterizations of the notion of “more informa-

tive” when the number of state is n = 2. The first is meant to provide a “systematic

method” for deciding whether P ⊂ Q. Recall that ej denotes the agent’s posterior if

outcome j of experiment P was observed. If there are only two states, this posterior

can be identified with e1j which we define to be the posterior probability of state 1.

For any t ∈ [0, 1] define FP (t) to be the probability that e1j is at most t:

FP (t) =
∑

{j|e1j≤t}

αj.

For experiment Q we define FQ(t) analogously.

Proposition 3. Suppose n = 2, and Let P and Q be two n×N1 and n×N2 Markov

matrices. The following condition is equivalent to P ⊃ Q:

6.
t∫
0

FP (u)du ≥
t∫
0

FQ(u)du for all t ∈ [0, 1].

Proof. Proof that condition 5 implies condition 6: We calculate the inte-

grals in condition 6 and show that for fixed t each of these integrals is equal to the

expected value of a convex function of the posterior. To calculate the integrals we

use integration by parts:

t∫
0

FP (u)du = [uFP (u)]
t
0 −

t∫
0

udFP (u)

= tFP (t)−
∑

{j|e1j≤t}

αje1j

=
∑

{j|e1j≤t}

αj (t− e1j) .
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Now define the function ϕ : ∆ → R as follows:

ϕ(ej) ≡

{
t− e1j if e1j ≤ t

0 if e1j > t

Our calculation of the integral then shows that the integral equals the expected value

of ϕ(ej):

t∫
0

FP (u)du =

N1∑
j=1

αjϕ(ej).

Thus, we can complete the proof by showing that ϕ is convex. This can be verified

by drawing the graph of ϕ as a function of e1j only.

Proof that condition 6 implies condition 5: The argument in the first part

of the proof shows that condition 5 is equivalent to the requirement that for every

function ϕ : ∆ → R where for some t ∈ [0, 1]:

ϕ(ej) ≡

{
t− e1j if e1j ≤ t

0 if e1j > t

we have:
N1∑
j=1

αjϕ(ej) ≥
N2∑
k=1

αjϕ(fk).

Thus, condition 6 is the same as condition 5, but only for a subclass of convex

functions. Our task is to verify that this subclass is sufficiently large to infer that the

inequality holds for all convex functions ϕ.

First, we note that the inequality remains true if we multiply ϕ by a non-negative

constant c, and add a function ℓ that is linear in ej:

N1∑
j=1

αj [cϕ(ej) + ℓ(ej)] ≥
N2∑
k=1

αj [cϕ(fk) + ℓ(fk)] .

The reason is that obviously the non-negative constant leaves the inequality un-

changed. Moreover, the expected value of a linear function equals the linear function

evaluated at the expected value of the argument, and the expected values of ej and

fk both equal the prior probability of state 1.

Next, we note that the inequality remains true if we consider a finite linear com-

bination of functions of the form cϕ(·) + ℓ(·). We conclude the proof by noting that
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all convex functions can be uniformly approximated as a finite linear combination of

functions of this form.2 □

2This is asserted in Blackwell and Girshick without proof. It sounds right.


