Informational Incentives for Congestion Games

Hamidreza Tavafoghi and Demosthenis Teneketzis

Abstract—We investigate the problems of designing public and private information disclosure mechanisms by a principal in a transportation network so as to improve the overall congestion. We show that perfect disclosure of information about the routes’ conditions is not optimal. The principal can improve the congestion (i.e. social welfare) by providing coordinated routing recommendation to drivers based on the routes’ conditions. When the uncertainty about the routes’ conditions is high relative to the ex-ante difference in the routes’ conditions (the value of information is high), we show that the socially efficient routing outcome is achievable using a private information disclosure mechanism. Furthermore, we study the problem of optimal dynamic private information disclosure mechanism design in a dynamic two-time step setting. We consider different pieces of information that drivers may observe and learn from at $t = 1$ and investigate qualitative properties of an optimal dynamic information disclosure mechanisms using numerical simulations.

I. INTRODUCTION

In a transportation network, the condition of every link varies over time due to changes in weather conditions, accidents, traffic jams, etc. Traditionally, drivers receive public information about these changes at every route through various infrastructures, e.g. regional traffic updates via radio broadcasts, and/or variable (dynamic) message signs on road sides displaying specific information about the onward routes [5], [11], [14]. In recent years, the advent of GPS-enabled routing devices and navigation applications (e.g. Waze and Google maps) has enabled drivers to receive private, real-time data about the transportation network’s condition for their own intended origin-destination [4]. The development of these technologies creates new opportunities to reduce congestion in the network, and improve its overall performance (as measured by various metrics including social welfare).

Several studies have investigated the effects of information provision to drivers in transportation networks [3], [6], [12], [21], [33], [1], [22], [20]. These studies have shown that the effect of information provision on social welfare is ambiguous, and in general, is not necessarily socially beneficial. For exogenously fixed information provision structures, these works have identified instances where the provision of information can in fact increase congestion in parts of the network, leading to a decrease in social welfare. In addition to the above-mentioned theoretical and experimental works, there are empirical evidences that identify negative impacts of information provision on the network’s congestion [16], [26], [28], [15], [10]. Therefore, it is important to investigate how to design appropriate information provision mechanisms in a manner that is socially beneficial and leads to a reduction in the overall congestion in the transportation network.

In this paper, we study the problem of designing socially optimal information disclosure mechanisms. We consider a congestion game [25], [29] in a parallel two-link network. We consider an information provider (principal) who wants to disclose information about the condition of the network to a fixed population of drivers (agents). We assume that the condition of one route/link, called safe route, is constant and known to everyone, while the condition of the other route, called risky route, is random and only known to the principal. The principal wants to design an information disclosure mechanism so as to maximize the social welfare.

We study the problem of designing an optimal information provision mechanism in two cases: (1) when the principal can only provide information that is publicly available to all drivers, and (2) when the principal can provide private information to each driver individually. We first consider a static setting where the drivers do not learn from their past experiences. We determine a condition under which the principal can achieve the maximum social welfare using an optimal information provision mechanism. That is, the principal can utilize her superior information about the network to provide informational incentives so as to align the drivers’ objectives with the overall social welfare.

Next, we consider a dynamic two-stage setting where the drivers learn from their experience at $t = 1$, and the risky routes’ condition evolves according to an uncontrolled Markov chain. We consider three scenarios for the drivers’ learning at $t = 1$: (i) the drivers only learn from the information they receive directly from the principal at $t = 1$, (ii) in addition to the information they receive directly from the principal at $t = 1$, the drivers who take the risky route learn perfectly its condition at $t = 1$, and (iii) in addition to the information he receives directly from the principal at $t = 1$, each driver perfectly observes the number of cars/drivers on the route he takes at $t = 1$. We investigate the qualitative properties of optimal information disclosure mechanism for each scenario using numerical simulations.

Related literature. The problems investigated in [24], [3], [6], [12], [21], [20], [33], [1], [22] are the most closely related to our problem. The authors of [3], [6] consider a bottleneck model [34] with stochastic capacities, where
each route is modeled as a queue with a first-come, first-served policy, with the service rate determined by the route’s condition. In [3], the authors consider a scenario where each driver decides the time and the route/queue he wants to join, considering the behavior of the other drivers. Through numerical simulations, they show that when drivers receive a low quality/highly noisy signal about the routes’ conditions, social welfare decreases. In [6], the authors consider a scenario where each driver does not take into account the other drivers’ response to the information provided by the principal. They show that social welfare may decrease when the drivers receive accurate information about the routes, due to the drivers’ overreaction and/or higher congestion concentration in parts of the network.

The authors of [12], [21] consider a parallel two-link network that is similar to our model. In [12], the authors assume that only one of the routes has a random condition with two possible values. They show that social welfare may decrease when the drivers receive public information about the routes’ conditions irrespective of whether they are risk-neutral or risk-averse. The authors of [21] assume that the condition of both routes are random. They show that social welfare can decrease when the drivers receive public perfect information about the realizations of the routes’ conditions.

The authors of [33], [22], [1] consider a model where a subset of drivers (informed drivers) has access to more accurate information about the condition of every route than the remaining drivers. In [33], the authors assume that the drivers that do not receive the more accurate information prefer to use high-capacity routes (i.e. highways) rather than low-capacity routes. By numerical simulation, they show that as the number of informed drivers increases, the congestion in low-capacity routes (i.e. urban areas) increases. The authors of [22] consider a model similar to ours, in which the condition of one of the routes is random. They show that when the number of informed drivers is low, the expected utilities of both groups of drivers are higher compared to the case where all drivers are uninformed. However, as the number of informed drivers increases, the social welfare decreases, even compared to the case where all drivers are uninformed. The authors of [1] study a model where the informed drivers become aware of the existence of additional routes in a network. They show that the provision of information can create a Braess’ Paradox phenomenon, and thus, can reduce not only the social welfare, but also the utility of the informed drivers.

In contrast to [24], [3], [6], [12], [21], [20], [33], [1], [22], which analyze the performance of fixed information provision mechanisms, in this paper we investigate the problem of designing an optimal information provision mechanism; the information provision mechanisms analyzed in [24], [3], [6], [12], [21], [20], [33], [1], [22] are within the set of feasible mechanisms the principal can choose from when maximizing the social welfare.

Our work is also related to the literature on resource allocation with externalities (i.e. congestion games). It is known that the equilibrium outcome in congestion games is not socially optimal [30]. Several approaches have been proposed in the literature to address this inefficiency. One approach is to utilize monetary mechanisms in order to align the agents’ objectives with the social welfare (see [27] and references therein). Another approach, which is applicable when the principal has control over a fraction of agents, is for the principal to choose routes for this fraction so as to influence the behavior of selfish agents. This can lead to improvement in the social welfare (see [19], [31] and references therein). We propose an alternative approach to improving the efficiency in congestion game by utilizing informational incentives when the principal has an informational advantage over the agents. Our approach provides new insights in congestion management in transportation networks where the application of tolls (pricing) is limited and drivers are typically selfish.

Within the economics literature, the problems studied in this paper belong to the class of information design problems (see [9] and references therein). Our approach to the public information mechanism design problem (Section IV) is similar to the ones in [13], [17]. Our approach to the private information mechanism design problems (Section V and VI) is similar to the ones in [7], [8]. The work in [18] is closely related to our work. The authors of [18] consider a model with two possible actions where the payoff of one of the actions is not known, even to the principal. The principal (e.g. the Waze application) faces a group of short-lived agents that arrive sequentially over time. She wants to design an information mechanism that provides information about the agents’ past experience to the incoming agents over time. Our work is different from [18] as (i) in contrast to the single-agent decision problem considered in [18], our model assumes that the principal faces a population of agents that create negative externalities on one other at each time step, and (ii) in the dynamic setting, agents are long-lived and learn from their past (private) experience, while in [18], the agents are short-lived.

The information design problems that we consider are also related to the problems of designing real-time communication systems [23], [35]. However, in contrast to these problems, where the receivers are cooperative and have the same objective as the transmitter, in our problem the drivers are strategic and have objectives that are different from that of the principal. The authors of [2] consider a problem of real-time communication with a strategic transmitter and a receiver, Gaussian source, and quadratic estimation cost. They follow an approach that is similar to that of [17] and our approach for the design of public information disclosure mechanism. Our problem is different from that of [2] since in our model there exist many agents, and each agent’s utility depends on his action and the routes’ conditions as well as other agents’ actions. Moreover, we study the problem of private information disclosure mechanism design that is not present in the work of [2].

Contribution. We determine optimal public and private information provision mechanisms that maximize the social welfare in a transportation network. Our results propose a
solution to the concern raised in [24], [3], [6], [12], [21], [20], [33], [1], [22] about the potential negative impact of information provision on congestion in transportation networks. We show that the principal can utilize his superior information about the condition of the network, and provide informational incentives to the drivers so as to improve the social welfare. When the principal can disclose information to every driver privately, we show that the principal can benefit from providing coordinated routing recommendations to the drivers. We identify a condition under which the principal can achieve the efficient routing outcome in a static setting. Moreover, we consider a dynamic setting with two-time steps under three scenarios, each capturing a possible piece of information the drivers can learn from in a dynamic setting. Using numerical simulations, we discuss the effect of each piece of information on the nature and the performance of the optimal dynamic information disclosure mechanism.

Organization. The rest of the paper is organized as follows. In Section II, we present our model in a static setting. We consider two naive information mechanisms and compare their outcomes with the socially efficient outcome in Section III. We study the problem of designing an optimal public information mechanism in Section IV. In Section V, we study the problem of designing an optimal private information mechanism. We consider the design of optimal dynamic information mechanisms in a two-step setting in Section VI, and investigate the effect of different types of drivers’ observations on the performance and qualitative properties of an optimal dynamic mechanism through numerical simulations. We conclude in Section VII. Due to space limitation all proofs are omitted and can be found in [32].

II. Model

Consider a two-link network managed by a principal who wants to maximize social welfare (Figure 1). There is a unit mass of agents traveling from the origin O to the destination D. There are two routes/links that agents can take. The top route, denoted route s (i.e., safe route) has condition $a > 0$ that is known to all agents and the principal. The bottom route, denoted route r (i.e., risky route), has a condition $\theta \in \Theta := \{\theta^1, \ldots, \theta^M\}$, $\theta^1 < \theta^2 < \ldots < \theta^M$, that is not known to the agents and is only known to the principal. It is common knowledge among the agents and the principal that θ takes values in $\{\theta^1, \ldots, \theta^M\}$ with probability $\{p_{\theta^1}, p_{\theta^2}, \ldots, p_{\theta^M}\}$, respectively. Let x^s and x^r (where $x^s + x^r = 1$), denote the mass of agents that choose route s and r, respectively. Each agent’s utility depends on the condition of the route that he chooses to travel as well as on the congestion (negative externality) that he observes along his route. Given x^s and x^r, let $C^s(x^s)$ and $C^r(x^r)$ denote the congestion cost at route s and route r, respectively. The functions $C^s(\cdot)$ and $C^r(\cdot)$ are strictly increasing, with $C^s(0) = 0$ and $C^r(0) = 0$. For ease of exposition, we assume that $C^s(x^s) = x^s$ and $C^r(x^r) = x^r$. Throughout the paper, we discuss how our results extend to general congestion functions.

We assume that the utility of an agent taking route s (resp. r) is given by $a - C^s(x^s) = a - x^s$ (resp. $\theta - C^r(x^r) = \theta - x^r$); that is, the effect of a route’s condition on an agent’s utility is separable from the effect of the congestion cost. Therefore, the expected social welfare W is given by

$$W := \mathbb{E}\{x^s(a - C^s(x^s)) + x^r(\theta - C^r(x^r))\}. \quad (1)$$

Assumption 1. The risky route’s types θ are such that $\theta^M - C^r(1) \leq a$ and $a - C^s(1) \leq \theta^1$.

Assumption 1 ensures that for every realization θ of route r’s condition, there will be a positive mass of agents taking either route.

The principal wants to design an information disclosure mechanism that provides information about the condition θ of route r to the agents, so as to maximize the expected social welfare W. We consider two classes of information disclosure mechanisms by the principal: (i) public information disclosure mechanisms, where the principal sends a public signal about θ that is observed by all agents (Section IV), and (ii) private information disclosure mechanisms, where the principal sends a private signal about θ to each agent, and this signal is only observed by that agent (Section V).

Before proceeding with the study of optimal public and private information disclosure mechanisms which maximize social welfare, we present two naive information disclosure mechanisms in Section III. By exploring the agents’ routing decisions under these two naive information disclosure mechanisms, along with the socially efficient routing decisions, we bring into focus the main insights underlying some of the results appearing in the rest of the paper.

III. Naive Mechanisms

We study two naive information disclosure mechanisms the principal can employ to disclose information about the condition θ of route r, namely, the no information disclosure and full information disclosure mechanisms. We then present the socially optimal outcome and compare it to the outcomes of the naive mechanisms. Let $\mu := \mathbb{E}\{\theta\} = \sum_{\theta \in \Theta} p_{\theta} \theta$ denote the expected condition of route r. Define $\Delta := a - \mu$ and $\Delta_\theta := a - \theta$ as the expected and realized difference between the conditions of routes s and r. Let $\sigma^2 = \mathbb{E}\{(\theta - \mu)^2\}$ denote the variance of route r’s condition. In the sequel, we characterize the traffic outcome under different information that the agents may receive as a function of μ, Δ, and Δ_θ.

A. No Information Disclosure

Consider an information disclosed mechanism where the principal discloses no information about θ to the agents. In this case, the expected utility from route r, given by $\mu - x^r$, must be equal to the utility $a - x^s$ from route s; this is because otherwise, some agents would switch from the route...
with lower utility to the one with higher utility\(^2\). Therefore, the traffic at routes \(s\) and \(r\) are given by
\[
x^{s, \text{no info}} = \frac{1}{2} + \frac{1}{2} \Delta,
\]
\[
x^{r, \text{no info}} = \frac{1}{2} - \frac{1}{2} \Delta.
\]
That is, the difference between the traffic on routes \(s\) and \(r\) depends on the realized conditions, as opposed to the expected conditions, given by \(\Delta\).

Consequently, the expected social welfare \(W^{\text{no info}}\) under the no information disclosure mechanism is given by
\[
W^{\text{no info}} = a + \mu - \frac{1}{2},
\]
where \(a + \mu - \frac{1}{2}\) denotes the expected utility of an agent taking either of the routes.

B. Full Information Disclosure

Consider an information disclosure mechanism where the principal reveals perfectly the condition \(\theta\) of route \(r\) to all agents. In this case, agents choose their route knowing \(\theta\). By an argument similar to the one given above for the no information disclosure mechanism, the utility from taking either of the routes must be equal. Therefore, the traffic at routes \(s\) and \(r\) are given by
\[
x^{s, \text{full info}}(\theta) = \frac{1}{2} + \frac{1}{2} \Delta_{\theta},
\]
\[
x^{r, \text{full info}}(\theta) = \frac{1}{2} - \frac{1}{2} \Delta_{\theta}.
\]
In this case, the traffic difference between routes \(s\) and \(r\) depends on the realized difference \(\Delta_{\theta}\) between the routes’ conditions, as opposed to the expected difference \(\Delta\) that determines the outcome under the no information disclosure mechanism.

Using (5) and (6), we can obtain the expected social welfare \(W^{\text{full info}}\) under the full information disclosure mechanism as
\[
W^{\text{full info}} = \mathbb{E}\left\{ \frac{a + \mu - 2}{2} \right\} = a + \mu - \frac{1}{2}. \tag{7}
\]

Remark 1. We note that the expected social welfare \(W^{\text{full info}}\) under the full information disclosure mechanism and \(W^{\text{no info}}\) under the no information disclosure mechanism are the same in the model of Section II with linear congestion costs. This is because under the full information disclosure mechanism the social welfare is linear in \(\theta\). As we discuss in Remark 2 below, for congestion functions \(C^*(x^s)\) and \(C^*(x^r)\) that are nonlinear in \(x^s\) and \(x^r\), respectively, the social welfare under the full information and no information disclosure mechanisms are not identical in general.

\(^2\)Note that by Assumption 1, both routes are non-empty for any realization of the condition of the risky route.

C. Socially Efficient Outcome

When each agent chooses his route, under either the no information or full information disclosure mechanisms, he does not take into account the congestion (i.e., negative externality) that his decision creates on the other agents. Therefore, the social welfare under the no information and full information disclosure mechanisms are different from the one under the socially efficient outcome. The socially efficient routing outcome is given by
\[
x^{s, \text{eff}}(\theta) = \frac{1}{2} + \frac{1}{4} \Delta_{\theta},
\]
\[
x^{r, \text{eff}}(\theta) = \frac{1}{2} - \frac{1}{4} \Delta_{\theta},
\]
and the corresponding expected social welfare is given by
\[
W^{\text{eff}} = a + \mu - \frac{1}{2} + \frac{\Delta^2}{8} + \frac{\sigma^2}{8}. \tag{10}
\]

We observe that the difference in the traffic of routes \(s\) and \(r\) is doubled under the full information mechanism (see (8) and (9)), where agents make routing decisions selfishly, compared to the socially efficient routing. This is an instance of the *tragedy of commons*, where each agent maximizes his own utility and does not take into account the congestion cost he imposes on the other agents on his route. Therefore, it may not be optimal for the principal to perfectly reveal his information about \(\theta\) to the agents, as in the full information disclosure mechanism.

We now compare the optimal social welfare \(W^{\text{eff}}\) with the social welfare \(W^{\text{no info}}\) under the no information disclosure mechanism. Under the no information disclosure mechanism, agents do not know \(\theta\) and make their routing decisions only based on their ex-ante belief about \(\theta\) (see (2) and (3)). Therefore, the social welfare under the no information disclosure mechanism, given by (4) is lower than the efficient social welfare because (i) the agents make their routing decisions selfishly, and (ii) the agents make their routing decisions without any knowledge about the realization of \(\theta\). The terms \(\frac{\Delta^2}{8}\) and \(\frac{\sigma^2}{8}\) in (10) capture the social welfare loss due to factors (i) and (ii) above, respectively.

In order to reduce the social welfare loss due to the agents’ lack of information about \(\theta\), the principal may want to disclose information about the realization of \(\theta\) to the agents. As discussed earlier, disclosing the realization of \(\theta\) perfectly does not improve social welfare (see (4) and (7)). Therefore, the principal must utilize her superior information about route \(r\)’s condition to strategically disclose information to the agents and influence their routing decision so as to improve the expected social welfare. This can be interpreted as providing *informational incentives* so as to the agents that align their objectives with that of the principal.

In the sequel, we explore various information disclosure mechanisms the principal can employ to improve the expected social welfare.

IV. Public Information Disclosure

In this section, we consider mechanisms through which the principal reveals public information about the realization
of \(\theta \) to all agents. For instance, the principal can post traffic information on public road signs, or broadcast traffic updates through radio stations. Let \(\mathcal{M} \) denote the set of all messages through which the principal can reveal information about the realization of \(\theta \). For instance, \(\mathcal{M} \) can be the set of possible commute times on route \(r \), or the number of congestion-causing accidents that have happened on route \(r \). Given a message space \(\mathcal{M} \), a public information disclosure mechanism can be fully described by \(\psi : \Theta \to \Delta(\mathcal{M}) \). For every realization of \(\theta \), \(\psi \) determines a probability distribution over the set of messages \(\mathcal{M} \) the principal sends. We note that the no information and full information disclosure mechanisms presented in Section III can be described as special instances of public information disclosure mechanisms by setting \(\mathcal{M} = \emptyset \), and \(\mathcal{M} = \Theta \) along with \(\psi(\theta) = \theta \), respectively.

Given a public information disclosure mechanism \((\mathcal{M}, \psi)\), the agents update their belief about route \(r \)’s condition \(\theta \) after receiving a public message \(m \in \mathcal{M} \). Using an argument similar to the one given in Section III-A, for every message realization \(m \in \mathcal{M} \), the traffic at routes \(s \) and \(r \) are given by

\[
x^{s, \text{public}}(m) = \frac{1}{2} + \frac{1}{2} \Delta_m,
\]

(11)

\[
x^{r, \text{public}}(m) = \frac{1}{2} - \frac{1}{2} \Delta_m,
\]

(12)

where \(\Delta_m := a - \mathbb{E}\{\theta|m\} \).

The principal’s objective is to design a message space \(\mathcal{M} \) along with a public information disclosure mechanism \(\psi \) so as to maximize the expected social welfare \(W \). Formally,

\[
\max_{\mathcal{M}, \psi} W
\]

subject to (11) and (12).

Even though the principal can influence the agents’ routing decisions for different realizations of \(\theta \) by employing various public information disclosure mechanisms \((\mathcal{M}, \psi)\), we prove below that the expected social welfare \(W \) is independent of \((\mathcal{M}, \psi)\) for the model of Section II.

Theorem 1. For every public information disclosure mechanisms \((\mathcal{M}, \psi)\), the expected social welfare \(W \) is given by

\[
W = \frac{\mu}{\mu + \nu - 1}.
\]

The result of Theorem 1 states that the principal cannot benefit from employing a public information disclosure mechanism. For the model of Section II we would like to note that (i) the congestion functions \(C^s(x^s) \) and \(C^r(x^r) \) are linear in \(x^s \) and \(x^r \), and (ii) the effect of route \(r \)’s condition \(\theta \) on the utility of an agent taking route \(r \) is linearly separable from the congestion cost \(C^r(x^r) \). Because of features (i) and (ii), conditioned on the realization of message \(m \), the expected social welfare is a linear function of \(\Delta_m \); this leads to the result of Theorem 1. In a model where either feature (i) or (ii) is absent, the result of Theorem 1 does not hold.

Remark 2. Consider a model where the congestion costs \(C^s(x^s) \) and \(C^r(x^r) \) are nonlinear functions of \(x^s \) and \(x^r \), respectively. Define function \(G : [a - \theta^M, a - \theta^1] \to [0, 1] \) as \(G(\delta) := \{x : C^r(1 - x) - C^s(x) = \delta\} \). Since \(C^s(x^s) \) and \(C^r(x^r) \) are strictly increasing in \(x^s \) and \(x^r \), respectively, function \(G(\delta) \) is well-defined. When \(C^s(x^s) = x^s \) and \(C^r(x^r) = x^r \), we have \(G(\delta) = \frac{1}{2} + \frac{\delta}{2} \).

Under a public information disclosure mechanism \((\mathcal{M}, \psi)\), conditioned on the realization of message \(m \), the traffic at routes \(s \) and \(r \) are given by

\[
x^{s, \text{public}}(m) = G(\Delta_m),
\]

(13)

\[
x^{r, \text{public}}(m) = 1 - G(\Delta_m).
\]

(14)

We can verify that if the function \(C^s(G(\delta)) \) is convex (resp. concave) in \(\delta \), the optimal public information disclosure mechanism is the no information (resp. full information) mechanism.\(^3\) In particular, if \(C^s(x^s) \) and \(C^r(x^r) \) are convex and concave (resp. concave and convex) in \(x^s \) and \(x^r \), respectively, the function \(C^s(G(\delta)) \) is convex (resp. concave) in \(\delta \); thus, the optimal public information disclosure mechanism is the no information (resp. full information) mechanism. However, if the function \(C^s(G(\delta)) \) is neither convex nor concave in \(\delta \), there may exist instances of a set \(\Theta \) of possible values for \(\theta \), along with a probability distribution over \(\Theta \), such that the optimal public information disclosure mechanism is a public partial information disclosure mechanism.

V. PRIVATE INFORMATION DISCLOSURE

In this section, we study various private information disclosure mechanisms that the principal can use to reveal information about the realization of \(\theta \) to the agents so as to improve the expected social welfare. For instance, the principal can provide individualized and private information to every agent through GPS-enabled devices such as routing suggestions in smart phone applications. Under a private information disclosure mechanism, the principal sends a private signal that is based on the realization of \(\theta \) to every agent. Similar to a public information disclosure mechanism, the principal needs to determine (i) a set of messages (i.e. language) that he wants to use, and (ii) a mapping that determines for every realization of \(\theta \) the probability according to which every signal is sent.

One class of private information disclosure mechanisms is the set of mechanisms where the principal sends to every agent a private and individualized routing recommendation (i.e. which route to take) based on the realization of \(\theta \). We refer to this subset of private information disclosure mechanisms as recommendation policies. We note that since the agents are strategic, they do not necessarily follow the principal’s recommendation unless it is a best response for them. Using the revelation principle argument for information design problems (see [7]), we can restrict attention, without loss of generality, to the set of recommendation policies where it is a best response for every agent to follow the recommendation he receives.

\(^3\)The result directly follows from an application of Jensen’s inequality since \(W = \mathbb{E}\{a - G(\cdot)\} \).
To avoid measure theoretic difficulties, we first assume that the principal sends $N > 0$ different recommendations to N groups of agents that have equal masses of $\frac{1}{N}$. We then consider the asymptotic case where $N \to \infty$.

Let $\sigma^N : \Theta \to \Delta\{(s, r)^N\}$ denote the recommendation policy the principal employs for a given N. With some abuse of notation, let $\sigma^N(m^N|\theta)$ denote the probability that the principal sends routing recommendation $m^N := \{m^N_1, \ldots, m^N_N\} \in \{s, r\}^N$ to the N groups of agents, given that the state realization is $\theta \in \Theta$. Given a recommendation policy σ^N, each agent must be willing to take the recommended route given his information about route r’s condition θ. This is captured by the following obedience condition for each agent belonging to group n, for $1 \leq n \leq N$,

(i) if $m^N_n = s$
\[
\sum_{\theta \in \Theta} p_0 \sigma^N((s, m^N_n)|\theta) \sum_{x \in \Theta} p_0 \sigma^N((s, m^N_n)|\theta)(a - \frac{1}{N} \sum_{1 \leq i \leq N} 1_{(m^N_i = s)}) \geq \sum_{\theta \in \Theta} p_0 \sigma^N((s, m^N_n)|\theta) \sum_{x \in \Theta} p_0 \sigma^N((s, m^N_n)|\theta)(\theta - \frac{1}{N} \sum_{1 \leq i \leq N} 1_{(m^N_i = s)}).
\]

(ii) if $m^N_n = r$
\[
\sum_{\theta \in \Theta} p_0 \sigma^N((r, m^N_n)|\theta) \sum_{x \in \Theta} p_0 \sigma^N((r, m^N_n)|\theta)(a - \frac{1}{N} \sum_{1 \leq i \leq N} 1_{(m^N_i = r)}) \geq \sum_{\theta \in \Theta} p_0 \sigma^N((r, m^N_n)|\theta) \sum_{x \in \Theta} p_0 \sigma^N((r, m^N_n)|\theta)(\theta - \frac{1}{N} \sum_{1 \leq i \leq N} 1_{(m^N_i = r)}).
\]

(15)

(16)

The above obedience constraints are the analogue of the incentive compatibility constraints in mechanism design problems, and can be similarly interpreted as follows. The left hand side of condition (15) (resp. (16)) expresses the expected utility of an agent in group n, $1 \leq n \leq N$, if he follows the recommendation to take route s (resp. r) given his ex-post belief about θ after he receives the recommendation, assuming that the other agents are following their recommendations. The right hand side of condition (15) (resp. (16)) expresses the expected utility of an agent in group n, if he deviates from the recommendation he receives and takes route r (resp. s) instead of s (resp. r) given his ex-post belief about θ. The obedience constraint (15) therefore requires that it is a best response for every agent to follow the recommendation, given his ex-post belief about θ, assuming that other agents follow their routing recommendations. We note that unlike standard mechanism design problems, there is no individual rationality constraint, since an agent can simply ignore the recommendation and choose any route he wishes.

Let $x^N(\theta) \in \{\frac{1}{N}, \frac{2}{N}, \ldots, \frac{N}{N}\}$ denote the mass of agents that take route s when the state is θ under σ^N. Note that the set of obedience constraints (15) and (16) are linear in $\sigma^N(\cdot|\cdot)$ and identical for all N groups of agents.

Therefore, by symmetry, we can restrict attention to the set of recommendation policies for the principal where she selects $N \cdot x^N(\theta)$ groups randomly, recommends to them to take route s, and recommends to the agents in the remaining groups to take route r.

Therefore, for $N \to \infty$ the set of recommendation policies for the principal can be characterized by $y(\theta) \in [0, 1]$, where $y(\theta)$ denotes the mass of agents receiving the recommendation to take route s, i.e. $x^s(\theta) = y(\theta)$ and $x^r(\theta) = 1 - y(\theta)$. When the state is θ, the principal recommends route s (resp. r) to every agent with probability $y(\theta)$ (resp. $1 - y(\theta)$) independently of her recommendation to other agents.

Under the information policy σ, let $U^\sigma(s, \theta) := a - y(\theta)$ and $U^\sigma(r, \theta) := (1 - y(\theta))$ denote an agent’s utility from taking routes s and r, respectively, when route r’s condition is θ. The set of obedience constraints (15) and (16) for each agent can be then written as

\[
\sum_{\theta \in \Theta} p_0 y(\theta) U^\sigma(s, \theta) \geq \sum_{\theta \in \Theta} p_0 y(\theta) U^\sigma(r, \theta),
\]

(17)

\[
\sum_{\theta \in \Theta} p_0 (1 - y(\theta)) U^\sigma(r, \theta) \geq \sum_{\theta \in \Theta} p_0 (1 - y(\theta)) U^\sigma(s, \theta).
\]

(18)

Therefore, the problem that the principal faces is to determine a recommendation policy that maximizes the expected social welfare subject to the obedience constraints above; this optimization problem is given by

\[
\max_{\{y(\theta), \sigma \in \Theta\}} W
\]

subject to (17) and (18).

A. Implementable Outcomes

To determine an optimal recommendation policy, we first specify the set of feasible routing outcomes/recommendation policies that satisfy the obedience constraints (17) and (18).

Lemma 1. A routing outcome $\{x^s(\theta), x^r(\theta), x^s(\theta) + x^r(\theta) = 1, \theta \in \Theta\}$ is implementable if and only if

\[
\mathbb{E} x^s(\theta) \left[\frac{1}{2} + \frac{\Delta y}{2} - x^s(\theta) \right] \geq 0,
\]

(19)

\[
\mathbb{E} x^r(\theta) \left[\frac{1}{2} + \frac{\Delta y}{2} - x^r(\theta) \right] \geq 0.
\]

(20)

We note that the outcomes under the no information and full information disclosure policies, given by (2)-(3) and (5)-(6), respectively, satisfy conditions (19) and (20) with equality. That is, they are the corner points of the set of implementable outcomes. The set of implementable outcomes is depicted in Figure 2 for an example with $|\Theta| = 2$.

\footnote{We note that we can restrict attention, without loss of optimality, to policies where $y(\theta)$ is deterministic. This is because the set of obedience constraints only depends on the expected value of $y(\theta)$. Moreover, the principal’s objective is a concave function of $y(\theta)$ (see (1)). Thus, by the Jensen’s inequality, an optimal recommendation policy is a recommendation policy where $y(\theta)$ is deterministic for every $\theta \in \Theta$.}
B. Incentivizing the Socially Efficient Routing

Using the result of Lemma 1, we determine below the condition that is necessary and sufficient to implement the efficient allocation \(\{x^s, eff(\theta), x^r, eff(\theta), \theta \in \Theta\} \) through a recommendation policy.

Theorem 2. The efficient routing policy \(x^eff \) is implementable through an information disclosure policy if and only if

\[\sigma^2 \geq 2|\Delta| - \Delta^2. \]

(21)

We note that \(|\Delta| = \frac{|a-m|}{m} \leq 1 \) by Assumption 1; thus, \(2|\Delta| - \Delta^2 \geq 0 \). For ex-ante symmetric routes (i.e. \(m = a \)), we have \(\Delta = 0 \), and the efficient outcome is always implementable for any distribution of \(\theta \). However, if the two routes are ex-ante asymmetric (i.e. \(m \neq a \)), to incentivize the efficient policy, the variance of \(\theta \) must be greater than the threshold (21), which depends on the expected difference between the routes. We further elaborate on this issue below.

As we discussed above, we can view the routing recommendation by the principal to the agents as an informational incentive that she provides so as to influence the routing decision of each agent. When the routes are symmetric, i.e. \(\Delta = 0 \), under the no information disclosure policy, each agent (at equilibrium) is indifferent between taking either of the routes; see (2) and (3). Therefore, the principal can persuade (i.e. recommend to) an agent to take a specific route even when she does not have significant information superiority over him (i.e. \(\sigma^2 \) is small). However, when the routes are asymmetric, i.e. \(\Delta \neq 0 \), under the no information disclosure policy, each agent has a strict preference over route \(s \) (resp. \(r \)) if \(\Delta > 0 \) (resp. \(\Delta < 0 \)). Thus, the principal needs a strictly positive incentive to persuade an agent to take the route that is not aligned with his original preference. This implies that the information the principal holds must be valuable enough to enable her to offer adequate informational incentives to persuade an agent to follow her recommendation. Condition (21) captures the value of the principal’s information about \(\theta \) in terms of \(\sigma^2 \).

Remark 3. A result similar to that of Theorem 2 can be obtained for general congestion functions \(\mathcal{C}(x^s) \) and \(\mathcal{C}(x^r) \), where the condition that is the analogue of (21) depends on higher order moments of \(\theta \).

VI. DYNAMIC SETTING

In this section, we study a dynamic setting with time horizon \(T = 2 \), i.e. \(t \in \{1, 2\} \), where route \(r \)’s condition \(\theta_t \), \(t = 1, 2 \), has uncontrolled Markovian dynamics with transition probability \(P \in \mathbb{R}^{|\Theta| \times |\Theta|} \). We assume that \(P[p_{\theta_1}, \ldots, p_{\theta_M}]^T = [p_{\theta_1}, \ldots, p_{\theta_M}]^T \), that is, the marginal probability distribution of \(\theta_2 \) is the same that of \(\theta_1 \).

We consider a situation where the same group of agents commute from the origin to the destination every day. Therefore, agents at \(t = 2 \) may have learnt new information from their observations at \(t = 1 \). We study the problem of designing an optimal dynamic private information disclosure policy by the principal.\(^5\) We consider three scenarios depending on the agents’ observations at \(t = 1 \) as follows: (i) agents do not make any environmental observations (i.e., they do not observe the condition of the risky route or the traffic (i.e. mass of agents/cars)) on routes \(s \) and \(r \), (ii) agents who take route \(r \) observe only its condition \(\theta_1 \), and (iii) each agent observes only the traffic on the route he takes at \(t = 1 \). In a real world situation, the agents can have noisy observations of \(\theta_1 \) as well as a noisy observation of the number of cars traveling the route. Therefore, the study of the three scenarios described above will allow us to understand the effect of each type of learning (piece of information) on the solution of the dynamic problem and uncover its qualitative properties.

In all of these scenarios, we assume that the principal’s routing recommendation policy at \(t = 2 \) does not depend on the agent’s decisions at \(t = 1 \). We make this assumption for the following reasons. (1) If the principal wants to incorporate the agents’ past decisions into her routing recommendation policy, she needs to monitor every agent’s location over time; this may not be feasible due to technological limitations and/or privacy concerns. (2) If the principal can incorporate the agents’ past decisions into her routing recommendation policy, then her optimal strategy would be to not disclose any further information to every agent that does not follow her routing recommendation (i.e.

\(^5\)We note that by the result of Theorem 1, the study of dynamic public information disclosure mechanisms in a dynamic setting does not introduce new conceptual challenges in addition to those present in the study of static mechanisms within the context of the model of Section II.
punish him). On one hand, such a punishment scheme may not be desirable in practical settings. On the other hand, if such a punishment scheme is permitted, then the principal can incentivize any desired routing behavior in a dynamic setting with long enough horizon if the agents are sufficiently patient and t_t does not have deterministic dynamics (i.e. the principal has information superiority over the agents for all times).

Due to space limitation, we do not present the results of our numerical simulations and detailed discussions for the dynamic setting in this paper; they can be found in [32]. Nevertheless, we discuss below some of the key findings for each scenario. We show that in scenario (i) the principal can achieve the same outcome as in the static setting where there is no learning. However, in scenarios (ii) and (iii) the performance of an optimal dynamic information provision mechanism decreases due to the drivers’ learning. In particular, in scenario (ii) we identify instances where it is optimal for the principal to reveal perfectly the risky route’s condition at $t = 2$ so that the drivers do not have an incentive to experiment and learn the risky route’s condition at $t = 1$. Moreover, in scenario (iii) we identify instances where it is optimal for the designer not to implement a distinct routing outcome for every realizations of the risky route’s condition at $t = 1$, and thus, not reveal her information perfectly to the drivers so as to maintain/increase her information superiority at $t = 2$.

VII. CONCLUSION

We investigated the design of information disclosure mechanisms in transportation networks. We showed that the principal can improve the social welfare by strategically disclosing information to the drivers, and coordinating the routing recommendations she provides to them. We characterized a condition under which the principal can implement the efficient routing outcome by utilizing her superior information to provide informational incentives to the drivers. We also investigated a two-time step dynamic setting where the drivers learn from their experience at $t = 1$. We characterized different pieces of information from which the drivers can learn, and examined the effect of each of them using numerical simulations. For future research, we will investigate the dynamic setting more extensively and consider the extension of our results to settings with nonlinear congestion cost functions.

REFERENCES