Example problems for homework assignment 1

1. (Chapter 2, Exercise 2, Parts a) and d))

a) If \(m < n \) then \(n > m \)

d) If John gave some money to \(x \) and Mary gave some money to \(y \) (with \(x \neq y \)) then \(x \) may not have wanted \(y \) to know that Andrea gave \(x \) additional money.

2. (Chapter 2, Exercise 3, Parts a), b), and h)) Describe each of the following sets, using the notation that explicitly lists out the set’s members.

 (a) \(\{1, 2, 3\} \cup \{3, 4, 5\} \)

 (b) \(\{1, 2, 3\} \cap \{3, 4, 5\} \)

 (h) \((\{1, 2, 3\} \cup \{4\}) - \{3\} \)

 (a) \(\{1, 2, 3, 4, 5\} \)

 (b) \(\{3\} \)

 (h) \(\{1, 2, 4\} \)
3. Chapter 2 exercise 5 d)
Prove that $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$

This is a set identity, and as so often it is easiest to “prove both directions”.

First, we prove $X \cap (Y \cup Z) \subseteq (X \cap Y) \cup (X \cap Z)$

Suppose $W \in X \cap (Y \cup Z)$. Then $W \in X$ and $W \in (Y \cup Z)$

Since $W \in (Y \cup Z)$ we have that $W \in Y$ or $W \in Z$

a) Say $W \in Y$ Then $W \in X$ and $W \in Y$ so $W \in (X \cap Y)$. Weakening, we have that $W \in (X \cap Y)$ or $W \in (X \cap Z)$. Hence, $W \in (X \cap Y) \cup (X \cap Z)$

b) Say $W \in Z$ Then $W \in X$ and $W \in Z$ so $W \in (X \cap Z)$. Weakening, we have that $W \in (X \cap Y)$ or $W \in (X \cap Z)$. Hence, $W \in (X \cap Y) \cup (X \cap Z)$

One of a) or b) must be true, and on either one, $W \in (X \cap Y) \cup (X \cap Z)$, we conclude $W \in (X \cap Y) \cup (X \cap Z)$. This is the first direction.

Second, we prove $(X \cap Y) \cup (X \cap Z) \subseteq X \cap (Y \cup Z)$

Suppose $W \in (X \cap Y) \cup (X \cap Z)$. Then $W \in (X \cap Y)$ or $W \in (X \cap Z)$

a) Say $W \in (X \cap Y)$. Then $W \in X$ and $W \in Y$. Weakening, we have $W \in Y$ or $W \in Z$
Hence $W \in (Y \cap Z)$. Combining $W \in X$ and $W \in (Y \cap Z)$ we have $W \in X \cap (Y \cup Z)$.

b) Say $W \in (X \cap Z)$. Then $W \in X$ and $W \in Z$. Weakening, we have $W \in Y$ or $W \in Z$
Hence $W \in (Y \cap Z)$. Combining $W \in X$ and $W \in (Y \cap Z)$ we have $W \in X \cap (Y \cup Z)$.

One of a) or b) must be true, and on either one, $W \in X \cap (Y \cup Z)$ so we conclude $W \in X \cap (Y \cup Z)$. This proves the second direction.

Combining both directions, we can conclude $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$.
4. (Chapter 2, Exercise 7 a)
Show that for all sets X and Y, $X \subseteq Y$ if and only if $X \cap Y = X$.

We want to show that for all sets X and Y, $X \subseteq Y$ if and only if $X \cap Y = X$.

First, suppose that $X \subseteq Y$. Let $Z \in X$. Then $Z \in Y$, since $X \subseteq Y$, so $Z \in X \cap Y$ by the Intersection Principle. On the other hand, if $Z \in X \cap Y$ then $Z \in X$, by the Intersection Principle. So $X \cap Y = X$.

Second, suppose that $X \cap Y = X$. Let $Z \in X$. Then (since $X = X \cap Y$), $Z \in X \cap Y$. By the Intersection Principle, $Z \in Y$. Therefore, $X \subseteq Y$.

5. (Chapter 2, Exercise 26, Parts b), c), e), g), and i).) Working with strings over the alphabet \{a, b\}, write down five instances of each of the following patterns.

(b) $axbya$
(c) $axaxa$
(e) $axbybybzzza$
(g) uax
(h) $uu'xuu'$

(b) $aba\ aaba\ abaa$
 $ababa\ abaaa$
(c) $ababa\ aaa\ aaaaa$
 $aabaaba\ ababba$
(e) $abba\ abbaabaaa\ aabaabaaa$
 $abbbabaaa\ abbbbbbbbbba$
(g) $aa\ ba\ aaa$
 $baa\ bab$
(i) $aaaa\ abab$
 $baba\ abaab\ bbaaabb$

6. (Chapter 2, Exercise 27, Parts (a), (b), and (d).)

(a) $baaba\ x := a, u := a$
 $baaabb\ x := aa, u := b$
 $bbaba\ x := b, u := a$
 $baabb\ x := a, u := b$
 $baba\ x := \epsilon, u := a$
(b) $aa\ x := \epsilon, u := a$
 $bb\ x := \epsilon, u := b$
 $bbaa\ x := a, u := b$
 $bbbb\ x := b, u := b$
 $bbaaaa\ x := aa, u := a$
(d) $aaa \quad x := \epsilon, y := \epsilon, z := \epsilon$
 $aaaa \quad x := a, y := \epsilon, z := \epsilon$
 $aabba \quad x := \epsilon, y := b, z := \epsilon$
 $aaaabb \quad x := a, y := \epsilon, z := b$
 $aaaabbbbaababab \quad x := aa, y := bb, z := ab$

7. (Chapter 2, Exercise 28, Parts (a), (c), and (e).)

Note: In general, there are many correct answers for each of the questions.

(a) xx
(b) $axaxax$
(c) $xbybx$