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Physics 235: Physics for the Life Sciences 
 
This is a course for aspiring scientists; including biologists, chemists, medical doctors, 
bioengineers, biochemists, and physicists. The goal is to help you to learn some aspects 
of physics which are particularly important for understanding life. More important, we’ll 
teach you how to use the laws of physics to analyze interesting examples drawn from life. 
We’ll also provide you with the physics framework you’ll need to build a more detailed 
understanding of life later. 
 
This course is the second in a new sequence within the Physics Department. It was 
preceded by Physics 135, which focused on mechanical and thermal aspects of life, 
including fluids. In Physics 235 we’re going to learn about several new aspects of the 
physics important for life: 
 

• How is matter constructed, and how does life send signals within an organism? 
Electric fields and potentials, electric currents and circuits, electricity and 
magnetism. 

• How do living things sense the world around them? Sound and light, imaging and 
detection. 

• How can we extend our senses? Instrumental imaging. 
• What is life built of? The elements, nuclei, radiation, the origins of these and of 

the conditions required for life. 
 

Introduction to the course 
Physics 235 is the second in a two semester sequence in which you’ll learn how physics 
enables life and how the laws of physics help to define the boundaries of biodiversity. It 
is our hope that these courses will enrich your understanding of and appreciation for the 
wonder of life, and provide a solid foundation for your later work in the life sciences. The 
physical underpinnings of life are not obvious. It is only during the last half century that 
the most important mechanisms of life began to be exposed. Important mysteries remain. 
During the class we will explore many examples drawn from current research, including 
perhaps some not yet announced as the class begins. 
 
One of our main goals in this class is to get you thinking like a physicist, to learn to use 
our approach to explanation. When physicists encounter a phenomenon, we look first for 
fundamental principles governing its essential nature. These essentials help us to 
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understand the main, inescapable point. With them in hand, we gradually add back the 
complex details which make each case so different, refining an explanation built up from 
the basics. This focus on the essentials, while present in all of science, is unusually strong 
in physics. It differs in style from the natural approach to explanation employed in 
chemistry or biology. To succeed in physics, you’ll need to hone your ability to find the 
main point, and practice applying essential principles to many new and somewhat 
different situations.  
Physics is also focused more than other sciences on quantitative modeling; finding 
equations which provide quantitative connections between cause and effect. This process 
of quantitative modeling also begins with essentials, starting simply, and capturing the 
main features of a phenomenon in a brief equation. These simple relations, while 
imprecise, provide the starting point for more detailed modeling. We will employ this 
process over and over in this course, writing down a simple relation to start, identifying 
its weaknesses, and adding complexity (and reality) to refine the model. This is especially 
essential in quantitative modeling of life, characterized as it is by a forest of fantastic 
detail. 
 
The only way to learn physics is to do it. Because of this, we will ask each of you to 
spend a lot of time personally wrestling with the topic. You will have a variety of 
assignments in class and out which ask you to approach every topic from a variety of 
perspectives, each time using what you’ve learned in new ways. If you do all of what we 
ask, you are quite likely to do well in the class. We are committed to the success of every 
student. If doing everything we ask is not all you need, we are prepared to work with you 
until you learn what you need to know.  
 
Elements of the class: 
 
This course will include a number of components to help you learn how to apply essential 
ideas of physics to understanding life. These elements of the course include: 
 

• A textbook: This course is an entirely new one, developed at the University of 
Michigan beginning in the fall of 2006. The coursepack you will use for the 
course is a draft version of a textbook currently being developed for publication in 
summer 2012. It takes an approach to teaching physics for the life sciences which 
is new, but beginning to be more widely adopted. For example, students at 
Haverford College in Pennsylvania and Wartburg College in Iowa are using this 
same text this year. You will receive the text as a coursepack available both in 
printed form (for about $30 from Dollar Bill Copy on Church St.) and as a free 
PDF file on the Ctools site. 

 
• Readings: The time we spend in class will be focused on trying to understand the 

most difficult aspects of the material, rather than on providing a first-look 
introduction to every new topic. To make this work, you have to come to class 
prepared. This means you will have material to read and think about before every 
class. This will typically be 20-25 pages from the coursepack, occasionally 
accompanied by an additional reading.  
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• Daily homework assignments: To help you to prepare for class, you will have to 

answer a few simple questions and solve a few straightforward problems for each 
lecture meeting of the class. Working through these will help make sure you’re 
ready for what we’ll do during the lecture period. These assignments will be 
available on the course Ctools site in the Test Center part of the site. Each 
assignment will include one or more questions asking you to give us information. 
After you read the text, we want to know which topics are still the most 
confusing. We will use this information to decide what to cover them more 
extensively in class. As a result, you will need to complete these assignments by 
10:00 AM on the date of each lecture: Monday and Thursday. 

 
• Lecture/Demonstration: On Mondays and Thursdays we will spend our time 

exploring the latest course material in a lecture/demonstration format. During 
these sessions we will go over some details, view and analyze demonstrations of 
the phenomena in question, and work through questions designed to challenge 
your understanding of the material. Several times during lecture we will use 
i>clicker electronic response units to test your understanding of the material in 
real time. You will need to purchase an i>clicker unit from the Computer 
Showcase for this purpose. The details are available at: 

 
  http://showcase.itcs.umich.edu/pages/remotes/ 
 

• Discussion: On Tuesdays and Fridays we will spend our time in more fully active 
mode. Each discussion focus on problem solving, including both examples done 
by us and numerous problems solved by you. We will use i>clicker questions to 
break the problems into pieces and ask you to think about different aspects of 
them. During the discussions, a number of undergraduate learning assistants will 
join Dr. Tarle and McKay. They’re there to help you understand what’s going on, 
so please ask whenever you have questions.  

 
• Weekly online homework: You will have online homework due once a week. 

These assignments will be done using the online homework system called 
“Mastering Physics”. If you were in Physics 135, you will already have access to 
the system. If not, you can purchase access to this system online following 
instructions which will be posted on the Ctools site. Mastering Physics 
assignments are typically due after we complete a week of work; on Monday 
mornings.  

 
• Exams: We will have three exams and a final during the term. Like the questions 

we will do in discussion and on daily homeworks, these will include a mix of 
quantitative problems and written explanations. Two practice exams, along with 
their solutions, will be provided for each of the midterms and the final. Each exam 
will be partially multiple choice (and machine graded), and partially written out 
(and hand graded). Any questions about exam grading will be handled by filling 
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out the exam regrade request available on the course web site and returning the 
exam, along with the form, at the Physics Student Services Office in Randall Lab. 

 
• Optional Supplementary Problems: Many students ask for additional problems to 

practice with. We will provide some before each exam by creating Mastering 
Physics ‘practice problem sets’. If you’re looking for additional examples and 
problems to work, you may also find it useful to purchase the Schaum’s Outline 
of College Physics. This is a very cheap, basic book which will give you another 
look at many of the topics we’re covering, and includes a lot of example problems 
which may provide useful practice for you. It should cost less than $15 purchased 
online, and you can also get it at the local bookstores. Here are some details: 

 
o Publisher: McGraw-Hill; 10 edition (November 15, 2005)  
o ISBN-10: 0071448144  
o ISBN-13: 978-0071448147 

In addition, every introductory physics text you come across will provide a useful 
overview of many of the topics we will study. If you or a friend has one, feel free to use 
it. You may find it helpful.  
 
Course grades 
 
Grades will include contributions from all of the above components: 

• Daily homework 5% 
• Lecture i>clicker responses: 5% 
• Discussion i>clicker responses: 5% 
• Weekly online homework: 15% 
• Midterm exams 15% each and Final exam 25%  

 
All of your i>clicker questions during the term will be graded on a 3 or 4 scale. If you 
answer each question correctly, you will receive four points: if you answer incorrectly, 
you will receive three. Each class meeting will have the same total weight in your final 
grade, and we will drop the lowest three scores in the lecture as well as the lowest three 
in discussion before determining your grade.   
 
Letter grading: Final letter grades will be assigned on a fixed scale, so it’s perfectly 
possible for everyone to get A’s. As a rule, students who put in all the effort we expect 
rarely fail to get A’s or B’s. This is the scale we’ll use: 
 

• 87-100%: A 
• 77-87%:   B 
• 62-77%:   C 
• 45-62%:   D 
• < 45%: E 
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If the median score in the course ends up significantly below 77%, we will lower the 
grade scale to ensure that half of the students receive A and B grades. We will not raise it 
for any reason.   
 
You should note that fully 30% of the final grade is given for elements which require 
extensive effort rather than extraordinary brilliance.  Do all your daily homework, come 
to class and participate, and complete all your Mastering Physics work, and you will 
receive almost all of this credit. If you do that, you will also likely learn all you need to 
do well on the exams. In any case, all this work will make it nearly impossible for you to 
fail. 
 
Course expectations 
 
The only way to learn physics is to do it. We know we’re repeating ourselves, but that’s 
the point. As a result, we expect each of you to personally participate fully in the course. 
This means: 
  

• Coming to every lecture and discussion (well, almost every class, things happen) 
• Participating fully while you’re there: really trying to answer each question we 

pose yourself 
• Reading the assigned material in advance of lecture, summarizing it with your 

own notes – passive reading is not enough 
• Doing the short daily homework assignments, thinking about what you do and 

don’t understand, and asking for help with what you find difficult 
• Working all of your Mastering Physics online homework until you get it right 
• Working through practice exams in advance of the real ones 
• Visiting the Physics Help Room to get questions answered throughout the course, 

not just before exams 
• Being thoughtful about what you know and don’t – when you get a question 

wrong it is your job to think about why you got it wrong 
 
Other sources of help 
 
You may want to sign up for a study group organized by the Science Learning Center. 
Many students find these to be an effective, efficient way to learn. SLC study groups put 
you together with a group of students from this course, and provide a more advanced 
undergrad as a coordinator. If you don’t know other students in the class, this can help to 
connect you with a group you might study with. You can learn more about the SLC here: 
 http://www.lsa.umich.edu/slc 
Signup for Physics 235 SLC study groups will begin on January 12th or 13th. 
 
The Physics Help Room, located in 1416 Randall Lab, was created to help students who 
are taking Introductory Physics classes. The Help Room is staffed by a combination of 
advanced undergraduate students, GSI's who teach the introductory labs, and faculty who 
teach introductory courses. All Help Room staff members are able to answer questions 
from any physics class.   
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The Help Room is open Monday through Friday.  The hours are 10 am to 6 pm Monday, 
Tuesday, and Thursday and 10 am to 5 pm Friday, and 10 am to 4 pm on Wednesday, 
when it closes for the department colloquium.   
 
Honors Supplemental Study Groups 
 
Understanding life’s mechanisms, the physics of life, is at the core of an enormous body 
of current research. Physics 135 and 235 will provide you with a solid introduction to the 
physics of life, but there is limited time in these classes to explore the myriad applications 
of physics to how life works. For this reason, we offer especially interested students an 
opportunity to augment the class through participation in a Structured Study Group, or 
SSG. 
This SSG will involve extending our study of the Physics of Life beyond the standard 
course material and into the current scientific literature; journals like Science, Nature, 
PLOS One, PNAS, and the Journal of Experimental Biology. By digging into the 
literature, you will gain a much richer understanding of the connections between physics 
and life, learn something about how the scientific literature works, develop new research 
skills, and yes, hopefully improve your performance in Physics 135 and 235. 
 
Students doing the SSG will learn to access, search, and decode the scientific literature in 
a number of areas, including biomechanics, experimental biology, bioengineering, 
aquatic biology, physiology, biostatistics, ecology, marine biology, etc. SSG activities 
will center around  multi-week structured exercises meant to introduce you to the 
scientific literature, how to read it, and what a wild variety of things it contains.  
Your work in the literature will be closely connected to material discussed in the ‘regular’ 
course, and should improve your understanding of that material. Each activity will 
involve some reading, thinking, calculation and analysis, writing, and revision. You will 
also be presenting your findings to the other members of your SSG. The meetings held 
during exam weeks will be dedicated to exam review rather than literature research.  
 
What is required of you? And what will you get out of it? 
 
Your contribution to the SSG includes attending a meeting once every week beginning in 
the third week of the term for two hours, then completing individual assignments between 
these meetings. The extra work you will be asked to do for the SSG should take a few 
hours a week. SSG sessions will be offered in several sessions on Tuesday and 
Wednesday nights. When you join an SSG group, we will ask you to sign an agreement 
agreeing to continue your participation through the term. This is a very student driven 
thing, and won’t work unless the participants are committed.  
 
You can change your mind and ‘drop’ the SSG without penalty up to the regular term 
drop/add deadline. If you stay in the SSG after this and fail to complete the work in a 
minimally acceptable way, there is a penalty: your grade in the regular course will be 
reduced by 10%. We do not expect this to happen, but include it as part of the system to 
make it clear that earnest participation is needed to make this a success.  
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Meetings will be run by advanced undergraduates who have taken Physics 135 and 235 in 
the past. They all have experience leading student groups, and ought to do an excellent 
job. The SSG process will be overseen by Professor McKay, who is also Director of the 
LSA Honors Program. Information about how to sign up for the SSG will be circulated 
during the first week of class. Space in SSGs is limited, and will be offered on a first-
come-first-served basis. 
 
This Structured Study Group is open to all students in the class. Your letter grade in the 
course will be determined exactly as it would if you did not do the SSG. So what do you 
get for doing it? The most important benefit is the chance to learn more about the 
connections between physics and life, and to explore these in directions dictated in part 
by your own interests. But there is official recognition as well.  
 
Satisfactory completion of the tasks outlined above will add an honors designation to the 
course: an “H” will show up next to the course on your transcript. If you are a student in 
the LSA Honors Program, this allows the course to count as one of your honors courses. 
But everyone who completes the SSG will receive the honors designation, whether you 
are currently a student in the Honors Program or not. 
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A quick summary of Physics 135 
 
The first course in this sequence focused on four topics. 
 

• How animals support their own weight and manage to move around. This is 
the subject of mechanics, dominated by Newton’s three laws. In this part of the 
course we learned about how unbalanced forces applied to objects for some 
period of time will alter their momenta. We also learned how to predict a variety 
of forces, like the force of gravity, sliding and fluid friction, and the “normal” 
forces applied by objects when you try to push through them. 
 

• Energy is the agent that allows change. As it flows from one form to another, 
change happens. We learned that momentum is a vector measure of motion, 
accompanied by a scalar measure of motion: kinetic energy. Since some forces 
(like gravity) can take kinetic energy away and then return it, we can think of the 
action of these forces as storing potential energy. Energy cannot be created or 
destroyed, but only transformed from one form to another. Its conservation, along 
with the conservation of momentum, is required by symmetries in the laws of 
physics. If these laws do not change with time and are the same in all places, then 
energy and momentum must be conserved. 

 
• Why, among the many things which the laws of physics allow, only certain 

things actually do occur. The ideas of statistical physics allowed us to see that 
some outcomes, like the uniform spreading of gas atoms within a box, or the 
diffusion of a substance from a region of high density to low, are so much more 
likely than other allowed outcomes as to be inevitable. In this part of the course 
we also learned something about thermodynamics, the science of temperature and 
heat. 

 
•  Life lives in fluids, air and water, and this creates another set of interesting 

mechanical constraints on living things. In our study of fluids we learned about 
the increase of pressure with depth (which creates a buoyant force), energy 
tradeoffs in fluids (the Bernoulli equation), the layered nature of flow in real 
fluids and its relation to viscosity, and the difference between turbulent and 
laminar flow. The buoyant forces which water provides allow life in water to live 
essentially without gravity. 

 
For those of you who did not take this first term course, lecture notes for the complete 
135 class are available on the Physics 235 Ctools site. You will find much of the material 
familiar from Physics 125 or 140, but see that there is quite a different approach. 
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Physics 235 Winter 2011 
 

Class 
Number 

Date Topics Readings Assignments 

1 Thurs, Jan. 6 Coulomb's law, 
conductors and insulators 

Chapter 20  

D1 Fri, Jan. 7 Discussion 1   
2 Mon, Jan. 10 Electric field, field from 

dipoles and other 
arrangements of charge  

21.0-21.2 Daily HW #2 
due 

D2 Tue, Jan. 11 Discussion 2   
3 Thurs, Jan. 13 Fields of classic charge 

distributions. Electric 
potential energy and 

electric potential  

21.3-21.6 Daily HW #3 
due 

D3 Fri, Jan. 14 Discussion 3   
 Mon, Jan. 17 

MLK Day 
No Lecture Today   

D4 Tue, Jan. 18 Discussion 4   
4 Thurs, Jan. 20 Relationship between 

potential and electric field 
22.0-22.6 Daily HW #4 

due 
D4.5 Fri, Jan. 21 Discussion 4.5   

5 Mon, Jan. 24 Capacitors, dielectrics, 
biological applications of 

electric potential  

23.0-23.4 Daily HW #5 
due 

D5 Tue, Jan. 25 Discussion 5   
6 Thurs, Jan. 27 Dielectrics and life. 

Current and current 
density, resistance and 

resistivity 

24.0-24.2 Daily HW #6 
due 

D6 Fri, Jan. 28 Discussion 6   
7 Mon, Jan. 31 Energy and power in 

circuits. Resistors in series 
and parallel, Kirchhoff's 

rules, RC circuits  

24.3-24.6 Daily HW #7 
due  

D7 Tue, Feb. 1 Discussion 7   
8 Thurs, Feb. 3 Transients in circuits, RC 

time. Senses and 
signaling, nerve cells  

25.0-25.3 Daily HW #8 
due 

 Thu, Feb. 3 
8-10 PM 

Exam #1 Covers chapters 
20-24 

 

D8 Fri, Feb. 4 Discussion 8   
9 Mon, Feb. 7 Magnetic fields and 

moving charges, mass 
26.0-26.4 Daily HW #9 

due 
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spectrometers  
D9 Tue, Feb. 8 Discussion 9   
10 Thurs, Feb. 10 Moving charges 

producing magnetic fields 
26.5-26.6 Daily HW #10 

due 
D10 Fri, Feb. 11 Discussion 10   
11 Mon, Feb. 14 Dipole-dipole interactions, 

magnetic sense and 
navigation 

26.7 Daily HW #11 
due  

D11 Tue, Feb. 15 Discussion 11   
12 Thurs, Feb. 17 Electromagnetic 

induction, Faraday’s and 
Lenz’s law, motors and 

generators 

27.0-27.2 Daily HW #12 
due 

D12 Fri, Feb. 18 Discussion 12   
13 Mon, Feb. 21 Generators and electrical 

power use. Displacement 
current and 

electromagnetic waves 

27.3-27.4 Daily HW #13 
due  

D13 Tue, Feb. 22 Discussion 13   
14 Thurs, Feb. 24 Making and describing 

sound waves 
28.0-28.3 Daily HW #14 

due  
 

D14 Fri, Feb. 25 Discussion 14   
 Sat, Feb. 26 to 

Sun, Mar. 6 
Winter Break   

15 Mon, Mar. 7 Wave speeds and 
properties, Doppler shifts 

28.4-28.7 Daily HW #15 
due  

D15 Tue, Mar. 8 Discussion 15   
16 Thurs, Mar. 

10 
Superposition and 

interference  
29.0-29.3 Daily HW #16 

due 
 Thu, Mar. 10 

8-10 PM 
Exam #2 Covers chapters 

20-28,  
esp. 25-28 

 

D16 Fri, Mar. 11 Discussion 16   
17 Mon, Mar. 14 Resonant cavities and 

standing waves Musical 
instruments and sound 

29.4-29.5 Daily HW #17 
due  

D17 Tue, Mar. 15 Discussion 17   
18 Thurs, Mar. 

17 
Analysis of sound and 
hearing. Light waves, 
diffraction from single 
and multiple sources  

30.0-30.3 Daily HW #18 
due 

D18 Fri, Mar. 18 Discussion 18   
19 Mon, Mar. 21 Interference, diffraction, 

X-ray diffraction and 
structure  

30.4 Daily HW #19 
due  
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D19 Tue, Mar 22 Discussion 19   
20 Thurs, Mar. 

24 
Propagation of light: 
reflection, refraction, 

absorption 

31.1-31.5 Daily HW #20 
due 

D20 Fri, Mar. 25 Discussion 20   
21 Mon, Mar. 28  Forming images, a 

multitude of eyes, images 
from lenses 

32.1-32.4 Daily HW #21 
due  

D21 Tue, Mar. 29 Discussion 21   
22 Thurs, Mar. 

31 
The human eye and 
improvements on it: 

glasses, telescopes and 
microscopes  

 

32.5-32.8 Daily HW #22 
due  

 

D22 Fri, Apr. 1 Discussion 22   
23 Mon, Apr. 4 Medical imaging, 

sonograms and radar, 
CAT, x-ray and γ-ray 

imaging 

33.1-33.8 Daily HW #23 
due 

D23 Tue, Apr. 5 Discussion 23   
24 Thurs, Apr. 7 

 
Unstable/stable nuclei, 

nuclear decay, 
beta/alpha/gamma rays, 

properties of various rays 

34.1-34.4 Daily HW #24 
due 

 Thu, Apr. 7 
8-10 PM 

Exam #3 Covers chapters 
20-33,  

esp. 29-33 

 

D24 Fri, Apr. 8    
25 Mon, Apr. 11 Biological relevance of 

radiation, radioactive 
dating 

35.1-35.2 Daily HW #25 
due  

D25 Tue, Apr. 12    
26 Thurs, Apr. 

14 
Origin of the elements and 

the universe 
36.1-36.3 Daily HW #26 

due 
D26 Fri, Apr. 15    
27 Mon, Apr. 18  Life in the cosmos, 

finding exoplanets and 
searching for life  

37 
38 

Daily HW #26 
due 

D27 Tue, Apr. 19    
 Fri., Apr. 22 

7 :30-9 :30 
PM 

Final Exam Covers chapters 
20-38,  

esp. 34-38 
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Physics of the Life Sciences II: Chapter 20 

20.0: Electricity and Life 

Many important aspects of science involve recognizing something so common that it remains 
hidden. Electricity and magnetism provide a great example. Electromagnetic forces hold together 
atoms, are responsible for all of chemistry, underlie all the forces you’ll experience (except 
gravity…), and, through electromagnetic waves, enable most of the energy and information 
exchange in the universe.  

Yet for most of human history, electricity and magnetism were thought little more than 
curiosities. Strange, nearly magical effects could be coaxed into appearance by rubbing amber 
with fur, after which the amber would become “charged” with influence. Such charged amber 
could reach out across empty space and pick up small feathers or bits of paper. This same static 
cling acting today makes your socks stick to shirts, and brightens winter nights with sparks 
beneath wool blankets. These phenomena seemed inconstant; rubbing the amber would produce 
strong effects one day, and none the next. This inconstancy, combined with the clear ability of 
this influence to act at a distance, made these effects seem especially magical. They came to be 
known as “electricity”, from the Greek word for amber: elektron. 

A second set of similarly striking phenomena were associated with bits of rock which could 
attract one another, or bits of metal. These rocks, found extensively in the Greek region of 
Magnesia, came to be called magnets, and the phenomena associated with them “magnetism”. 
Their ability to always point North was first recorded in China before about 1100. While some 
Greeks speculated about connections between electricity and magnetism, early scientists saw that 
they were clearly separate, and their subtle unity was not clearly understood until the second half 
of the 19th century. Today we speak of the two as one, and call all these phenomena 
“electromagnetic”. 

The great steps in understanding electromagnetic interactions began in the 18th century with the 
work of people like Benjamin Franklin. It was essentially completed by Scottish physicist James 
Clerk Maxwell 100 years later. All the important physics of electromagnetism has been known 
since the 1870s, though the incredible connections of electromagnetism to life were not clear 
until much more recently. 

An appreciation for the importance of electromagnetic interactions for life was hinted at by 
Galvani in the 1780s (when he showed that electricity could make dead frog legs move as if 
alive), but the real revelations didn’t emerge until the 1950s, when the structure of proteins and 
mechanism of nerve function began to be understood. Today we know that protein structure, 
determined by electromagnetic interactions, governs their function. Every biochemical process, 
all the workings of life, relies on electromagnetic interactions. The very brain (yours) which 
contemplates what you’re reading is an elaborate networks of neurons in which information is 
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stored in patterns of electrical connectivity. Just as electromagnetic forces play a central role in 
inanimate matter, they enable all of life. 

Our approach to the study of electromagnetism will focus largely on the basic physics, but we 
will on occasion emerge to hint at the central importance of this topic for life. Most especially, 
we will point out some of the ways in which the applications of electricity and magnetism 
important for life differ from those often encountered in engineering and human technology. 

20.1 Electrostatics: charge 

We begin with an extensive study of electrostatics. In this we will learn about the interactions 
among electrically charged objects which aren’t moving. We will see that much of what’s 
important about electrical phenomena can be usefully discussed even in these static cases. After 
treating this in some detail, we will turn to cases where charges move, but in steady ways. 
Finally we will bring in magnetism, and show that it is closely connected to electricity, and in 
fact is another aspect of the same thing. 

The first fact to introduce in electrostatics is that there are two ways an object can be electrically 
“charged”. When Ben Franklin discovered there were two types of charge, he called them 
“positive” and “negative”, because he thought they represented an excess or a deficit of some 
mysterious substance in a material. We now know that these charges exist in all matter in the 
form of positive protons in the nuclei of atoms and negative electrons which orbit them. Most of 
the time, matter is found with quite precisely balanced numbers of electrons and protons. Matter 
like this we call “neutral”. When this balance is disturbed, and an object contains either too many 
or too few electrons, we say it is “charged”. Since electrons carry negative charge, an excess of 
electrons makes an object negatively charged, while a deficit of electrons (relative to protons) 
makes an object positively charged. 

Before quantifying things, let’s note a few basic facts about the behavior of charged objects: 

• Objects with like charges (either both positive or both negative) repel one another, even 
when they’re not in contact. This repulsion weakens as the distance between them 
increases. 

• Objects with different charges (one positive and one negative) attract one another, even 
when not in contact. This attraction weakens as the distance between the objects 
increases. 

• Charged objects of either type will attract neutral objects, some weakly, and others rather 
strongly. They do this by inducing charge separation in the neutral objects, as we’ll 
discuss in detail in the next section. 

Electrostatics: conductors and insulators 

All objects are made of many, many, electric charges. A penny, for example, contains about 
7x1023 positive charges in protons, and an equal number of negative charges in electrons. This is 
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a lot of charge. In some materials, charges (usually the electrons) can move around rather freely, 
jumping freely from atom to atom and moving from one part of the material to another (like one 
edge of the penny to the other). Such materials are called “conductors”, because the conduct 
electricity through freely. In other materials, the charges are all tightly locked to the atoms or 
molecules that they started with. These materials are called “insulators” because they insulate 
against the flow of charge. 

The freedom with which charge moves in a material can be quantified by its “conductivity”; a 
parameter we will define in detail a little later. This conductivity is one of the physical properties 
of materials which varies most dramatically. Consider two apparently comparable materials, like 
copper and sulfer. They differ rather modestly in density, Cu is 9 g/cm3 and S is about 5 g/cm3 
(in crystalline form). Despite this, they have wildly different conductivities; copper has a 
conductivity of 6x107 in appropriate units, while that for sulfur is 5x10-18. This conductivity 
varies by a factor of 1025. In case you’re not used to scientific notation, that’s a lot: 
10,000,000,000,000,000,000,000,000. 

This very wide range in conductivities means that most materials are either far on the conducting 
side (all the metals for example) or far on the insulating side. So even though this property varies 
continuously among different materials, it is often useful to speak of materials as being in one 
class or another: conductors or insulators. 

The ability of a charged object to attract a neutral object comes about because of “induced charge 
separation”. This can happen in either insulators or conductors, but is much more effective in 
conductors. Here’s the idea. When you move a positively charged object near a neutral object, all 
the positive charges in the neutral thing are pushed away, while all the negative charges are 
attracted. These forces cause charges to move in the neutral object. This is illustrated in the 
picture below. 

 

Since the electrostatic force weakens with distance, the negative charges which are close to the 
positive rod are attracted strongly to it, while the positive charges which are far away are weakly 
repelled. The net force on the neutral object is then an attraction. If the rod you bring close is 
negatively charged instead of positively the same thing happens, though the induced charge 
separation is reverse. The important point is that an attraction still occurs. Since the charge 
separation is much greater on the conductor, the attraction of a neutral conductor to a charged 
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object is stronger than it would be for an insulator. But the same sort of attraction happens in 
either case. 

20.2 Coulomb forces 

Experiments to quantify the nature of electrostatic interactions are very difficult to conduct. This 
is due to their very ubiquity; everything is made of incredible numbers of charges. So anytime 
you have some unbalanced charge around, it interacts with everything else which is nearby. 
Touch a charged object to a conductor and the charge may race away, flowing through it. To 
remove these complications, we’ll talk first about how “point charges” behave. These are 
charged objects so small that things like the induced charge separation described above can’t 
happen. In practice, point charges don’t need to be literal points. They need only be much 
smaller than the separation between them to make the point charge characterization below a good 
approximation to reality. 

Quantifying electric charge 

During the 1780s, French physicist August Coulomb finally developed experiments which 
allowed him to reliably quantify the force between two point charges. He discovered that this 
force takes a simple form which depends on the magnitude of each charge (q1 and q2), the 
distance between the charges (r12), and a ‘strength constant’ (k): 

 

 

This equation tells us several things: 

• The magnitude of the force is proportional to the product of the two charges q1 and q2. 
Charges are quantified in units now called “Coulombs”, usually denoted with the symbol 
C. 

• The magnitude of the force is inversely proportional to the square of the distance 
between the two charges r12. 

• The direction of the force is along the line between the two charges. This is noted in the 
equation above by the little unit vector ‘r-hat’, which points in the direction of the vector 
going from q1 to q2. If the charges have the same sign this force is repulsive (they are 
pushed apart). If they have opposite signs it is attractive (they are pulled together).  

• The strength constant k in this equation relates the definition of charge to the prior 
definitions of force (in Newtons) and distance (in meters), and in the usual units has the 
numerical value 9x109 Nm2/C2.  

• Like all forces, this “Coulomb force” is an interaction, and works both ways. If q1 pushes 
q2 away, then q2 pushes q1 back the other way with an equal and opposite force.  
 

Also, this interaction occurs between every pair of charges. To find the total force on any one 
charge you must calculate the vector sum of the force on this charge due to each of the other 
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charges which are around. In principle, this sum should always include all the other charges in 
the universe. Fortunately, the force weakens with distance, falling off like 1/r2. As a result, 
charges which are near the object of interest will usually create most of the force. We will 
regularly, in fact always, ignore the reality that all other charges elsewhere contribute something 
to the total force. 

The strength constant k in the Coulomb equation is sometimes written in terms of another 
constant according to the definition k = 1/4πε0. This new constant ε0 is called the “permittivity of 
free space” or simply the electric constant. From the comparison to k, you can see that its value 
is ε0 = 8.9x10-12 C2/Nm2. 

Comparing Coulomb and Newton 

It is interesting to compare the relative strength of the gravitational force (Newton) to the 
electromagnetic force (Coulomb). To do so, we have to choose some sensible system in which to 
compare them. Since hydrogen is far and away the most common atom in the universe, we might 
start by thinking about a hydrogen atom, which consists of one proton and one electron, typically 
separated by a distance of about 5x10-11 m. The electron and proton attract one another through 
the Coulomb force. They also attract one another through the gravitational force because both 
have mass. In this interesting case we find the ratio of these two forces is: 

  FCoulomb / FGravitational = 2x1039 

That is, the electromagnetic force is unbelievably stronger than the gravitational force. This is so 
because the intrinsic strength of the electromagnetic force is much, much larger than that of 
gravity. It is for this reason that our bodies are held together by electromagnetic forces (realized 
as chemical bonds) rather than by gravity. 

Measuring charge: the Coulomb 

The official definition of the unit for charge, the Coulomb, is today derived from the flow of 
charge (from electric currents) rather than from the Coulomb force law. This is for practical 
reasons. Measuring electrostatic forces accurately is really difficult, as we have noted above. 

The basic unit of charge is the amount possessed by a negative electron or a positive proton. In 
either case, this is about 1.6x10-19 C. That is, the total charge on a single electron is -1.6x10-19 C 
and the total charge on a single proton is +1.6x10-19 C. From this, you can determine the 
electrostatic attraction between an electron and a proton in a hydrogen atom: 
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When you see macroscopic electric charges around, you’re usually looking at tiny fractions of a 
C. You can see that this is so if you image how large the Coulomb force would be between a pair 
of one Coulomb charges separated by one meter: 9x109 N. That’s a really big force, about twice 
the weight of all the 6.5 billion people on the planet. This just reiterates the extraordinary 
strength of the electromagnetic force. You will never encounter a pair of 1 C charges separated 
by a small distance, because they would immediately either smash together or fly violently apart. 

The great strength of this force is responsible for the usual neutrality of matter; it is the reason 
that most matter contains such a very close balance of positive and negative charges. Any time 
things charges become a little unbalanced, large forces appear which move charges around until 
equality is restored.  

Learning how to put these large forces to work for us, learning how to use the extreme forces 
available from electricity, opened up the modern world. 

1.3 Electrostatics in life: screening 

We pause here to point out that although apparently simple electrostatic forces are important for 
living systems, they occur in a complex environment which has important effects. Instead of 
charges interacting in empty space, in life they interact in complex surroundings which 
continually affect their behavior. In many cases these complexities play a central role in enabling 
life. We will consider here just one example, the way water reduces the strength of 
electromagnetic interactions, reducing the cost of many interactions in the molecules of life. 

Life is wet. Cells are filled with water that contains a complex mixture of dissolved molecules. 
Under ordinary circumstances for life, water will exist mostly as H2O, but also partly as H+ and 
OH- ions. This happens because there is adequate thermal energy around in the liquid water to 
occasionally break up a water molecule. This condition can be described by pH, defined for this 
case as pH = –log10(H+ molarity). For water at 300 K the pH is about 7, which, for this reason, is 
described as neutral. The point is that even in pure water, there are many free positive and 
negative charges around. Electrostatic interactions in living cells take place with many free 
charges nearby. 

There is another, even more important effect. Water is a polar molecule. In its stable form one 
end of the molecule is positive while the other is negative. Such an object is called a “dipole”, 
and can be thought of as having a positive end and a negative end. Put a thing like that near a 
free positive charge and it will spin around until its negative end is toward the charge and its 
positive end is away from it.  
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What happens to the Coulomb 
interaction in this kind of watery 
environment? The presence of a 
polar medium and a bunch of free 
charges leads to electrostatic 
“screening”. This picture illustrates 
what happens. Negative ends bunch 
around the positive charge, while 
positive ends bunch around the negative charge. The details of what happens are complex (there 
are a lot of charges to consider here!), but the overall effect can be usefully estimated by noting 
that this screening effect simply reduces the force between the charges. For electrostatics, we can 
quantify this by introducing a “dielectric constant” for the medium.  

When charges interact in a ‘medium’ like water, the usual Coulomb law is altered in a simple 
way: 

 

 

For a non-polar medium like air, this dielectric constant is very close to one, and we can ignore 
it. For a highly polar medium like water (life’s medium), D is about 80, and obviously this is an 
important effect.  

One approximate way to account for this dielectric effect is by adjusting the constant which 
describes the strength of the electromagnetic force. We could do this in one of two ways, by 
changing “k” or by changing ε0. 

 

   

 

 

As we will see, the reduction of the effective strength of the Coulomb force through screening is 
essential for life. Without it, the energies required to construct and manipulate large molecules 
like DNA would be much larger, and the mechanisms of life would be unavailable at room 
temperature. Water helps things along, allowing electrostatic forces to act, but reducing their 
violence to a point which makes them manageable. Without this medium, many of the processes 
of life wouldn’t work. This is why many scientists suspect that water will play an essential role 
in any life we might discover elsewhere in the universe. 
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A Quick Summary of Some Important Relations 
 

Charge in conductors and insulators: 

All materials are made of electric charges. Electric charge is measured in Coulombs, and the fundamental 
unit of charge is that of the electron: -1.6x10-19 C.  

In most materials that charge is not free to move on scales much larger than an atom. In some charge is 
free to move large distances. Conductivity varies enormously among materials, so there are many in 
which charge motion is so free as to seem effortless (conductors), and many in which it charge motion is 
so limited as to seem impossible (insulators). 

Coulomb’s Law and the electrostatic interaction between charges: 

There is a very precise model for the force between two electric charges called Coulomb’s law. 

 9 2 21 2
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ˆ     with     8.99 10 Nm /Ckq qF r k
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This strength constant k is also sometimes written: 
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Electrostatics in a material and screening: 

In a material, the interaction between two charges may be reduced. This is a complex effect that 
can be reasonably modeled using the ‘dielectric constant’ for the material mediumD . 
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Physics of the Life Sciences II: Chapter 21 

To understand electromagnetism correctly, we have to spend a bit of time on what will seem, at 
first, an abstraction; the idea of an electric “field”. As you will see, this abstraction turns out to 
be an incredibly useful way to think about electrical interactions, and will aid your understanding 
of electromagnetism. But this approach is more than just practical. 

The idea of a field, introduced first in electrostatics, has become central in physics. It was 
introduced initially as a convenience for understanding electrostatics and magnetostatics, but it 
rapidly became clear that these ‘fields’ were more than mere mental constructs. They are real 
entities in themselves, as real as the charges associated with them. As physics progressed through 
the 20th century it became clear that in fact the fields themselves are the real things, and modern 
theoretical physics is based on “quantum field theory”. Today we will see how this development 
got started. 

21.1 “Spooky action-at-a-distance” 

Forces act in a lot of ways, but most of the familiar ones (sliding friction, normal forces, air 
friction, tension, a shove, etc.) involve mechanical contact. A few are clearly different, because 
they act without contact, at a distance. The most obvious is gravity. When you step off a chair, 
the Earth somehow reaches up and grabs you, pulling you downward quite violently, even 
though there is no material connection between you. More dramatically, the Earth does the same 
thing to the Moon, the Sun to the Earth, and so on.  

The Coulomb force is obviously similar. One charge reaches out, even across empty space, and 
attracts or repels another. Something about this is troublingly magical. It seems somehow outside 
a mechanical, connected description of how things work. This is called the “action-at-a-distance” 
problem, and it has troubled physicists since before Newton. Einstein called the problem 
“spooky”. How does the Earth know that it should reach up and grab you? How does it decide 
how large a force to grab with? In a Coulomb interaction, what happens if you suddenly remove 
one of the charges? Does the other instantly know you’ve done this? The resolution of these 
mysteries lies in the concept of a field. 

Fields in general 

First, what is a ‘field’ in a general, mathematical sense? A field is something quantifiable which 
has a value at every point in space (and in fact at every point in time as well). In this sense, a 
field is a limitless thing, a kind of map or description of some property everywhere and for all 
time. In practice, we’ll typically be concerned with a field over some limited region of space and 
for some specified period of time, often just at a particular instant.  We will also consider two 
types of fields; scalar fields and vector fields. Fortunately, weather maps provide us with familiar 
examples of both. 
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A scalar field is some quantity (defined at every point in space and time) which has only a 
magnitude and no sense of direction. Nice examples of this include temperature, pressure, or 
density. When you look at a weather map, it can show you the value of temperature at each point 
on the map. The whole thing, the temperature everywhere, is the temperature “field”, and we 
might write it as T(x,y,z,t0). On a weather map we might only represent the field at the ground 
surface (maybe z=0) and at a particular instant (t=t0), but in fact the field itself is a thing which 
exists at all points and times. The weather map on the left in the picture below represents such a 
scalar 
field.

 

A vector field, by contrast, is something defined at every point of space and time which has both 
a magnitude and a direction. A good example from a weather map is wind, which has both a 
speed and a direction at every point on the map, and an example is shown in the right above. 
This might be represented as v(x,y,z,t), where v is the velocity vector at a particular point 
(x,y,z,t).   

Electric force and fields 

The idea of an electric field was brought into physics by Michael Faraday, one of the great 
experimentalists of the 19th century. Playing with charged objects, Faraday began to believe that 
there was something there around a charge, some kind of region of influence, which existed even 
if no other charge was around to experience it. This something, this “electric field” was present 
even if only one charge was around. It was there even if there was no Coulomb interaction 
happening and no forces being applied. 

Now imagine bringing in a new “test” charge qtest. If you set this charge down at some particular 
point in space, it might experience an electric force, an ordinary Coulomb force. In the old, pre-
field way of thinking about this, we would have said that this happens because each nearby 
charge reaches out and grabs qtest, acting at a distance to apply a force on it.  
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But in Faraday’s new conception something quite different happens. Now you bring in qtest, and 
the force which acts on it is due not to distant charges noticing it is there and grabbing it, but 
instead to the electric field right at the location where qtest sits. In Faraday’s field conception, the 
force which qtest feels comes about because of a local phenomenon, rather than action-at-a-
distance. The electric field at the location of the charge qtest determines the force on it.  

With this idea in mind, Faraday defined the electric field in this simple way: 

 

 

This definition tells you of course how to measure the field. Just take a little charge, move it 
around, and measure the force on it. Divide this force by the magnitude of the test charge (qtest), 
and you have the field E. Where there is a large force, there is a large field. Where there is a 
small force, there is a small field. Note that this electric field is a vector field. Since the force on 
qtest has both a magnitude and a direction, so too does the electric field. 

In this formulation, you imagine measuring the force F on qtest and using it to determine the field 
E. If, instead, you know what the field E is, you can use this to determine the force exerted on 
qtest: F = qtestE.  

Representing electric field 

Since the electric field is a vector field, creating an image of it requires us to specify both a 
magnitude and a direction at every point in space (and time!). There are two common ways of 
doing this. Each samples the field at a subset of points rather than actually giving you the value 
at absolutely every point. Since fields usually vary continuously, your eye can approximately 
interpolate to get an idea of the field at points between those which are explicitly shown. 

The first method, introduced by Faraday, involves drawing continuous electric field lines. These 
field lines come out of positive charges and go into negative charges. In this sense positive 
charges are sources of field and negative charges are sinks of field. At each point they pass 
through, they point along the direction of the force a positive test charge would feel if you placed 
it there. The strength of the electric field is loosely represented in this case by the density of the 
field lines. In places where field lines are all packed together, the field is large. In places where 
they are far apart, the field is small.  

The second way to represent field is more like what you do on a weather map. At some more or 
less regular grid on the map you place an arrow. The direction of the arrow represents the 
direction of the field at that point, while the magnitude of the field can be shown either by the 
length of the arrow or by some other property of the arrows, like their color. Displaying 
magnitude with arrow length is often problematic, because in places where the field is large, the 
arrows overlap one another. In other places, where the field is small, the arrows become points 
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and you can’t see their directions. So using something like color or shade to show magnitude is 
convenient.  

 

When you look at these field maps, remember how to interpret them. At each 
point, the map has arrows which point in the direction of the force a positive test 
charge would feel if placed at that point. The strength of this force is indicated by 
the color (or length) of the arrow (as on the left) in the more modern maps, or by 
the density of field lines (in the older Faraday style). 

21.2 Fields from arrangements of charges: A single charge, the monopole 

Imagine that you are interested in the electric field due to a single point charge of magnitude q. 
To determine the field, we bring in a test charge qtest, measure the force exerted on it F, and 
divide this by qtest. This gives us a field: 

 

 

The electric field from a point charge has a magnitude kq/r2. If the point charge is positive, it will 
always point outward, directly away from the charge. If the point charge is negative, the 
magnitude is the same, but the field always points toward the point charge. For this reason, we 
will refer to positive charges as “sources” of electric field, and to negative charges as “sinks” of 
electric field; as if field comes out of positive charges and goes into negative charges. 

To determine the field from a distribution of charges, we will once again use the principle of 
superposition. The electric field created by many charges is simply the vector sum of the electric 
field produced by each individual charge. In the next sections, we will examine the field 
produced by various simple and symmetric arrangements. These special arrangements provide 
models we can use as approximations for more complex, realistic arrangements of charge. We’ll 
return to this idea after we develop a few special models. 
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Fields from neutral charge arrangements: the electric dipole 

A good, important, example of the field from an 
arrangement of more than one charge is the field due 
to an electric dipole. A dipole is an object with no 
net charge, but which is made of equal amounts of 
positive and negative charge +q and -q separated 
from one another. The simplest case is two point 
charges separated by a distance d. 

The total electric field due to this dipole at any point 
is just the vector sum of the electric field due to each 
of the two charges, as shown in the figure to the 
right. 

Just to take a specific example, consider the electric field at a point G right along the axis which 
runs through both the positive and negative charges. This point G is a distance z from the center 
of the dipole, above the positive charge. The geometry for this case is shown in the figure. 

 For this particular case, we can write the field exactly, choosing the direction up as the positive 
y-direction: 

This exact result can be approximated by a simpler form in the case when the separation of the 
charges d is much less than the distance z to the 
point we’re interested in. In this case, we can 
expand the squares, keeping all terms which are 
linear in the small parameter d/z, and dropping 
those which are quadratic in this small parameter 
(d2/z2), since these will be much smaller. Using 
this approximation, we can simplify the 
equations as shown on the right.  
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The quantity “qd”, the product of the charge on each of the positive and negative charges 
multiplied by the distance between them is called the “electric dipole moment” of this dipole, 
represented here by the symbol “p”. Often this dipole moment is written as a vector which points 
from the negative charge to the positive charge, and which has magnitude qd, in which case we 
can further simplify how we write the field due to the dipole (along its axis, and when z d ) as: 

 ( )along axis of the dipole 3

2kpE z
z

=  

From this calculation you can see that the electric field due to the dipole at some distance z 
(assumed large compared to d) depends on both q and d. So you can have a dipole make a large 
field either by constructing it of large charges (increasing q), or by keeping those charges far 
apart (increasing d). 

For fun, if you have that sort of sense of humor, you can show that the magnitude of the electric 
field due to the dipole at a distance x to the right of the center of the dipole is just half as large as 
it is along the axis. In other words: 

 

 

Note that here the field points straight down, rather than up as in our first example. In both cases, 
we see that the electric field due to a dipole decreases like the distance from the center of the 
dipole cubed. It fades more quickly than the field due to a point charge, which weakens like 
distance squared. 

More complex neutral arrangements, quadrupole and beyond… 

The dipole example is important for several reasons. First of all, it gives a hint to the nature of 
electromagnetic interactions between electrically neutral objects. A point charge creates a field 
around it which weakens as 1/r2. A neutral point object, with no charge at all, creates no electric 
field. While the dipole is neutral, with no net charge, the small separation between its positive 
and negative parts allows electric field from it to extend some distance away, but not as far as it 
would from a point charge. For a dipole the field weakens as 1/r3. 

The next most complex intrinsically neutral object is the quadrupole, an object made of two pairs 
of positive and negative charge. The figure shows one version of this, a balanced arrangement of 
charges which nevertheless produces a net electric field when you’re near it.  
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Using exactly the same approach we used above, you can show that the electric field at a point G 
located a distance z from the center of the square along one of its centerlines, when z d , is 
given by: 

 4

3kqdE
z

=
 

Here are the details of the 
calculation. It begins by 
recognizing that each of the 
pairs of charges is a dipole, 
which allows us to use the 
relation for the field of a 
dipole perpendicular to its 
axis (given above) as a 
starting point. The one 
closest to G creates a field 
pointing up, the one farthest 
away creates a field pointing 
down. The rest is algebra 
and application of the condition z d . 

Notice that the field from a quadrupole fades with distance still more rapidly than the dipole, as 
4z− . It is easy to image more complex, still neutral, arrangements of positive and negative 

charge; with 3, 4, or more pairs of positive and negative charge. As the number of charges in 
such neutral arrangements increases, the net electric field falls off more and more rapidly with 
distance. Exactly how this happens depends on the precise arrangement of the charges. But in 
general, if you examine the field at distances z d , where d is the typical distance between the 
charges, it will fall of with distance more and more rapidly. 

Fields from normal neutral matter and contact forces 

The trend seen here continues in neutral objects made of still more charges. The electric field for 
a neutral electric quadrupole (2 plus and 2 minus charges with the same magnitude) falls off like 
distance to the fourth power, etc. Ordinary matter made of atoms is an analogous equal mix of 
positive and negative charges. But instead of two or four charges, there might by 1020. The 
electric field from such a set of many charges falls off with distance incredibly rapidly. So that 
as soon as you are some distance greater than the typical separation of the positive and negative 
charges, the electric field is effectively zero.  

Remember the limits to this statement. Our derivation of this 1/r3 fall-off for the dipole applies 
when the parameter d/z (the ratio between the separation of the charges and the distance to the 
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point you’re interested in) is small, smaller than one. When d/z approaches 1, the approximation 
we made in this derivation no longer applies, and you have to go back to the exact relation 
instead. In ordinary matter, the typical separation between positive protons in the nucleus and the 
negative electrons which orbit it is the atomic radius; d is typically 10-10 m. If you are interested 
in the electric field from a charge separation like this at greater distances, even something very 
small like 10-8 m, the kind of approximation we’ve made here is perfectly appropriate.   

Consider the surface of your finger, for example. It is made of atoms, with slightly separated 
positive and negative charges. As soon as you are more than about an atomic radius away, the 
net electric field has fallen to essentially zero. If you bring two fingers close together they don’t 
reach out and affect one another with electric fields until they are an atomic radius or so apart. 
Then the electric forces between them become very large indeed. In fact it is just these forces 
that prevent one finger from passing through the other. These electric forces are the normal force 
which prevents one solid from passing through another. 

This is why all the familiar forces like friction and the normal force seem like ‘contact’ forces, 
even though their ultimate source is the long range electromagnetic force. Mixes of positive and 
negative particles shield one another at a distance. You will experience electromagnetic forces 
from a material which is on average neutral only when you are close enough to notice that the 
individual charges are separated from one another. 

21.3 Electric fields from non-neutral charge distributions 

Now let’s consider the electric fields produced by some distributions of charge which are not 
neutral. We’re going to do this for a set of examples, including a ring, a sphere, an infinite line, 
and an infinite plane. We do this not because the world is filled with perfect spheres or infinite 
planes of charge. We develop these simple models because there are cases where a charge 
distribution is roughly spherical, or a plane of charge might appear to be infinite. In such real 
cases, the perfect, and simple, models we calculate here will provide useful approximations for 
what really happens. 

If the electric field is created by more than one charge (or a continuous distribution of charge) we 
can calculate it by adding up the electric field contributed by each little bit of charge. For each 
little bit, the electric field produced is just that produced by a point charge. If we can compute the 
vector sum of all these little electric field contributions, we can find the total electric field.  

Electric field due to a positive ring along its axis 

We begin with a simple example; a positive ring of charge. Just to get a feeling for this, we will 
calculate the magnitude and direction of the electric field only along the axis which passes 
through the center of the ring. The picture below shows the geometry. We have a ring with total 
charge +Q and radius R, and we wish to know the magnitude of the electric field at a point P 
located a distance z above the center of the ring along the axis. Each little piece with length dL 
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along the ring will have a charge dQ = dL(Q/2πR). If we define λ = Q / 2πR as the charge per 
unit length on the ring, we have dQ = λdL. The magnitude of the field from this little piece of the 
ring is given by the point charge value: E = kdQ/r2 = kλdL/r2. 

Symmetry arguments suggest that any horizontal components of the E field from this ring will 
cancel. Why? For each bit of ring on the left which would create an E field component to the 
right (like the one shown), there is a balancing little bit of ring on the right which would create E 
field to the left. Recognizing this simplifies the calculation; we only need to add up the E field 
components along the z-axis, and every one of these has exactly the same magnitude. 

Notice that in this calculation we have made no assumptions about where along the axis we’re 
doing this. Our answer should work as well for the case where z R  as it does for the case 
where z R . Does this answer make sense? As always we should check the limiting cases. 

If we go very far from the ring, the R << z, and we can say that (R2 + z2) ~ z2. In this case the 
electric field reduces to E = kQ/z2, exactly what we would expect for a point charge. This makes 
sense, because at these large distances the ring looks like a point, and the answer we get is just 
that for a point charge. What about when z = 0? In this case, the electric field should be zero 
(from symmetry), and indeed this is what our equation gives. Both these limiting cases check 
out. 

So if you are far away from a ring of charge like this, you can’t really tell it is a ring. The field it 
creates is just like a point charge. But when you get close, the field becomes very different. If 
you go to the center of the ring, the field falls to zero; an answer infinitely different from what 
you would get for a point charge.  

What is the field produced by this ring at other places? You can use the same approach applied 
above to calculate the field at any other point as well. Find the electric field magnitude and 
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direction from each little piece of the ring, then add up all the field vectors to get the answer. At 
points off the z axis, this is much harder, because the simple symmetry argument we used above 
does not apply. But determining the field at any point is not really any more difficult than in this 
simple case; it’s just more complicated. Now that we have computers, determining the field from 
arbitrary arrangements of charges can always be done, and we will examine some examples in 
class. 

Field due to a perfect sphere of charge 

Another important example is the field due to a perfect sphere of charge. Imagine a hollow 
sphere with radius R and a total charge Q. What would the field from such a sphere look like? 
We can start by making simple arguments. Far from the sphere, at distances r R , the field 
from the sphere must look like that of a point charge Q. What is the field like near the sphere? 
We can see from symmetry that the field must remain purely radial; pointing out away from the 
center when Q is positive and in toward the center when Q is negative. But what is its 
magnitude? 

It turns out that a perfect sphere of charge Q produces a field which looks exactly like the field 
due to a point charge Q located at the center of the sphere! This remains precisely true right up to 
the radius of the sphere R. The field inside such a perfect sphere is precisely zero, everywhere 
inside the sphere, from the center right up to the surface of the sphere. These two remarkable 
facts can of course be proven by direct calculation. When we discuss electric potential in the next 
chapter we will see how to do this in a way which is much simpler than forming the vector sum 
of all the field components from the sphere would be. 

What if we had a solid sphere of charge? In this case, we could treat each little shell of this solid 
sphere using the result we just learned, and you can see that such a solid sphere would also 
appear exactly as a point charge at its center, until you reach the surface of the sphere. Then the 
field would begin to change. 

Field due to an infinite line or an infinite plane of charge 

What if we have a perfectly infinite line of charge with charge per unit length λ? In this case, any 
component of the electric field along the line would have to cancel, because any little piece 
below this point producing electric field with an upward component would be balanced by a 
piece above the point producing field with a component down. As a result, we need only add up 
the contributions of electric field from each point in the direction away from the line. 

We find those components by expressing: 

  2 2 2r x y= +   

and the cosine of the angle θ between the horizontal axis and the line to the charge element dQ as  

Physics 235 Winter 2011 
Copyright Timothy McKay

30



  
2 2

cos x x
r x y

θ = =
+

 

Putting all this together, we find a surprisingly simple answer. The electric field due to an infinite 
line of charge depends on the charge per unit length λ, and falls off with distance away from the 
line as 1/r.  

 

A similar result, somewhat more complex to derive, can be obtained for an infinite plane of 
charge. We describe this plane with the “surface charge density” σ, which is the charge per unit 
area on the surface of the plane. In this case, you find that the electric field doesn’t fall off at all, 
but instead is constant throughout all of space! Here is a comparison that will be useful to bear in 
mind: 

 

 

 

  
 

It’s interesting to contrast this to the pattern we saw for neutral matter made of increasingly large 
numbers of charges. There we saw that increasing the complexity of the system made the field 
fall off faster and faster, as 2r−  for a point charge, 3r− for a dipole, 4r− for a quadrupole, and so on. 
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Now in our consideration of charged objects, we find that a zero dimensional point charge has a 
field with falls off as 2r− , a one-dimensional infinite line of charge produces a field which falls 
off as 1r− , and a two dimensional infinite plane of charge produces a field which doesn’t fall off 
at all (it is proportional to 0r if you like). 

Approximations: when is a line or a plane infinite? 

What’s the point of studying all these infinite things? After all, nothing is really infinite. While 
that is true, these solutions provide very good approximations in cases where the line or plane of 
charge would look infinite. This happens when you are considering the field much closer to the 
line or plane than its size. So if a line of charge really has length L, and you ask about the field at 
a distance d from it where d << L, then the line might as well be infinite, and this solution is a 
good approximation. In a similar way, if you’re close to a charged disk with radius R and you 
ask about the field at a distance d << R, this relation will give a good approximation for the field. 

Two good examples of these geometries important for the life sciences are DNA and cell 
membranes. DNA is a strong acid, and in water at normal pH freely releases the electrons bound 
to the two phosphate groups on each base pair. This leaves behind a net charge of +2e / 0.34 nm, 
or about 9.4x10-10 C/m. A small molecule near such a long DNA chain might well ‘see’ it as an 
essentially infinite line with a constant charge density. Such a long chain would have a net 
electric field pointing away from it which falls off in the manner we have seen in our calculation, 
as 1r− , and this will remain true so long as you examine the field in regions where the DNA still 
appears to be a nearly infinite line. 

Cell membranes are quite often lined with charge, positive on one side and negative on the other. 
The electric field near such membranes can be nearly constant in space, just as it is near an 
infinite plane. We will use this idea in a moment to better understand the electric field within the 
membrane. 

21.4 Electric fields and conductors 

What happens with electric fields in conductors? A conductor is a material in which charges can 
move freely. If you put an electric field inside a conductor, the charges inside experience a force, 
and since they’re free to move, they do. In fact they keep moving until they electric field they 
produce completely cancels electric field you’re trying to put in from the outside.  

This has two important effects. First, it guarantees that the electric field inside a conductor 
placed in a static external field is always zero. If it wasn’t, charges would move until it was. 
Second, to make this happen charges will move around in the conductor. They will end up 
distributed on the surface of the conductor in just the right way to cancel the external field 
perfectly. Electric field will reach the surface of the conductor where these charges are. It will 
come out where there are positive surface charges and go in where there are negative charges.  
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Anywhere this happens, the direction of the electric field will have to be perpendicular to the 
surface. If it wasn’t, if it had any component along the surface, the field would create a force that 
would pull charges through the conductor. They’d keep moving until there were no components 
along the surface.  

Why must the charges all be distributed on the surface? If there were any single charge inside the 
bulk of the conductor, it would have to have electric field lines coming out of it (if it were 
positive) or going into it (if it were negative). This would mean there would have to be field in 
the conductor, and that would make charges move until the field was canceled. Charges at the 
surface can, and do, have field lines come out of and into them, but they extend only outside the 
conductor, rather than in it. 

These effects are illustrated in the figures below. The figure on the left shows the initial setup, an 
essentially constant electric field produced between a positively charged plate and a negatively 
charged plate. In the panel on the right, a neutral conductor is put between the two. In it, negative 
charges move toward the positive plate, leaving behind positive charges near the negative plate. 
This is shown as a gray scale charge density on the surface of the conductor. Inside the 
conductor, the electric field is exactly zero. Everywhere along the edge of the conductor, the 
electric field enters or exits perpendicular to the surface. 

 

21.5 Two infinite planes: the capacitor 

We have learned that the electric field from an infinite plane of charge with surface charge 
density σ is a constant in space and has a magnitude E = 2πkσ = σ/2ε0. An especially important 
application of this is the “capacitor”. Most capacitors we use in our technology are an 
arrangement of two conducting plates placed close together, separated by some sort of insulator. 
A simple version is two plates, each with area A, separated by a distance d. As long as d << A1/2, 

Positive charges 

Positive charges 

Negative charges 

Negative charges 

Positive charges 

Negative charges 
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the region between the plates will have an electric field like that from an infinite plane. Imagine 
we charge these two plates so that one has charge +Q and the other has charge –Q. 

The top plate makes electric field E = Q/2Aε0 which always points away from it, up above the 
plate and down below it. The bottom plate makes a field of the same magnitude, but the field 
points toward this plate, down above it and up below. Combining these two fields as a vector 
sum, we find that the field between the plates points down and has a magnitude E = Q/Aε0. 
Above the top plate and below the bottom plate the two fields cancel perfectly and the field is 

zero. 

Such a capacitor has many attractive features, as we shall see. For the moment, notice that it is a 
nice tool for producing a region (between the plates) with a spatially uniform electric field.  

Gel electrophoresis 

One widely used application of this kind of spatially uniform electric field is gel electrophoresis. 
This method is used to separate a mix containing large molecules of different sizes. Doing this is 
very useful in forensics, genetics, molecular biology and other fields. Because electrophoresis is 
simple and cheap, it is very widely used. 

To understand how electrophoresis works, think about how a charge would move if you placed it 
in the constant field region between the plates of a capacitor. The force exerted on a charge in an 
electric field is always just the charge times the field, so in this case it would be: 

  
0

test
test

q QF q E
Aε

= =  

The force would be constant, independent of position, and the charge would accelerate with an 
acceleration given by: 

  
0

testq QFa
m Amε

= =  

A positive charge like this would accelerate toward the bottom plate with a constant acceleration. 

+++++++++++++++++++++++++++++++++++++++++++++

-------------------------------------------------------------------------

Zero field above the plates 

Zero field below the plates 

Field = Q/Aε0 between the plates 
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If, instead of moving freely, the charge is also subject to an additional, velocity dependent 
‘frictional’ force, as it might be if it were moving through some material. In this case the charge 
will start out with the acceleration described above. As its speed 
increases the resisting force will grow larger (it depends on velocity) 
until the resisting force equals the electrostatic force. After this, the 
charge will move along at constant velocity. Notice that this is just the 
same as the problem of the terminal velocity of a falling object you 
drop through a fluid like air. 

In gel electrophoresis the material between the capacitor plates is a 
cross-linked polymer, made of long chain molecules linked together 
into a kind of random mesh. Charged molecules are pulled downward 
by the electrostatic force, while their motion is resisted by the gel network. Small molecules 
suffer little resistance and move quickly, large molecules are always getting tied up and move 
slowly. As you can imagine from the picture at right, this is a case where terminal velocity is 
reached very quickly, and so that the total distance traveled accurately reflects vterm according to 
d = vtermΔt. 

How is this used? Imagine you take several DNA samples, perhaps one from a crime scene and 
several from possible suspects. Each sample is treated with a “restriction enzyme” which cuts the 
DNA into pieces by snipping it everywhere a certain sequence appears. Two DNA samples 
which are the same will be snipped into the same size pieces. If the samples are different, the mix 
of DNA segment lengths will be different. 
Now you put these cut up DNA samples 
into wells cut into the gel and turn on the 
electric field. The DNA fragments will be 
negatively charged, and will begin moving, 
each reaching its own vterm almost 
immediately. If you let this run for a while, 
DNA segments of different lengths will 
have gone different distances. Find a way to 
measure where they are (through 
fluorescence for example), and you can see 
what mix of segment sizes was in each 
sample. Find the one which matches the 
sample from the crime scene and you have your criminal (well, at least someone who left DNA 
at the crime scene, after that you’re on your own). 

 

A polymer gel with two 
different sized strands of 
DNA moving though it. 

Gel 
electrophoresis 
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21.6: Electric flux and Gauss’s Law 

We noted above that positive charges act as ‘sources’ of electric field and that negative charges 
act as ‘sinks’ of field. One might say that electric field lines begin on positive charges and end of 
negative charges. They can only come out of positive sources, and eventually must return to 
negative sinks. This idea for how field lines begin and end is put to use in a very useful theorem 
of electrostatics called Gauss’ Law. 

The basic idea of Gauss’s Law is simple. Imagine a surface which encloses some volume. It can 
be any shape; a sphere, a cylinder, an asymmetric cellular blob. Now picture the electric field 
lines which might pass through that surface. If there is positive charge inside the surface, field 
lines will come out of it, and flow outward through the surface. If there is negative charge inside 
the surface, field lines will end on it, and those lines must flow in through the surface to get 
there.  

In words, Gauss’s Law says that if field lines flow out of a surface, there must be positive 
sources inside, and if field lines flow into a surface, there must be negative sinks inside. 

What if there is no charge inside the surface? In this case, any field lines which enter the surface 
must leave somewhere else, and any field lines which exit the surface must have entered 
somewhere else. What if there are both positive and negative charges inside? The answer 
depends on the net charge. If there are more positive than negative charges, more field lines will 
have to leave the surface. If there are more negative than positive, more field lines will have to 
enter the surface. If the positive and negative charges are balanced, there will be no net flow of 
field lines into or out of the surface. 

Gauss’s law is quantified in a way which relies on measuring the flow of electric field into or out 
of the surface. This flow is called the ‘electric flux’ through the surface, and it is calculated as 
follows. Imagine breaking the surface into many small pieces with area dA. We define a 
‘direction’ of this little piece of surface as the direction perpendicular to the surface and pointing 
out of the volume which the surface encloses. To measure the flux of electric field through this 
little area element dA, we take the dot product: 

 d E dAΦ = ⋅  

When the electric field is in the ‘direction’ of this little area element, electric field is flowing out, 
and this little flux contribution dΦ  is positive. When the electric field is opposite the direction of 
this little area element, the flux is negative. When the field is perpendicular to the direction of the 
area element (meaning that it skims the surface of this area element), the electric flux is zero. 
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Now, imagine that we take the whole surface, and add up the flux dΦ  through the whole thing. 
This total flux is related, as we have already argued, to the total charge within the surface in the 
following very simple way: 

 
0

insideQE dA
ε

Φ = ⋅ =∫  

This relation, connecting the electric flux through a surface to the total charge inside, is the 
formal statement of Gauss’s Law. Note that it is true for any surface that you draw, anywhere in 
space. It doesn’t have to be a sphere, or a cylinder, or anything. It doesn’t have to be centered on 
anything or symmetric. It merely says that, for any surface, the flow of electric field through it is 
directly determined by the net charge inside. If there is no net charge inside, there will be no net 
flux through the surface. If there is a positive net charge inside, electric field will flow out. If 
there is a negative net charge, electric field will flow in. 

This is a nice way to think about field, but it also proves useful in calculations of some kinds. 
Let’s see how Gauss’s Law can simply our determination of the electric field from a point 
charge, a line of charge, and an infinite plane. 

For a positive point charge, we can choose as our surface a sphere, centered on the charge, with 
radius r. For such a sphere each little area element dA  points straight out from the center. The 
electric field from the point charge has the same magnitude at each point on the sphere, and 
always points straight out. So for each little area element the electric flux is just: 

 ( ) ( )E r dA E r dA⋅ =  

And the total electric flux is just what you get by summing this over the whole sphere. Gauss’s 
Law tells us this is equal to the total charge inside over 0ε . So now we have: 
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From this, you can see that in a sense Gauss’s Law and Coulomb’s law are equivalent. 

What about the infinite line of charge? Recall that for such an infinite line, we argued that the 
electric field must, from symmetry arguments, point straight out from the line. This suggests that 
for simplicity we should choose a cylinder for our “Gaussian surface”. So let’s take a cylinder of 
length L, and radius r, centered on the line of charge. Such a surface has two parts; the endcaps 
and the outer cylinder.  

Physics 235 Winter 2011 
Copyright Timothy McKay

37



The electric flux through the endcaps will be zero, as the electric field skims right along their 
surfaces. The electric flux through the outer cylinder will be just  
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∫ ∫
 

And again, we reproduce the result we found, by somewhat more cumbersome means, above. 

How can we do this for an infinite plane of charge? Here we can argue from symmetry what any 
field will have to point directly toward or away from the plane. It might (as far as we know) 
change in magnitude as we move toward or away from the plane, but it must always be 
perpendicular to it. Now image we define a Gaussian surface which is a cylinder of radius r, and 
length L. We place this cylinder so that the plane passes directly through its center, with its two 
circular ends parallel to the plane. 

The electric field from the plane will be parallel to the sides of the cylinder (no flux there!) and 
perpendicular to the ends. So now we can write: 
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Again, this is the same result we cited above for an infinite plane. Gauss’s Law simply makes 
arriving at this result quite a bit simpler than doing it by starting from Coulomb’s law. 

Gauss’s Law can be a useful way to determine electric fields in cases like this with a lot of 
symmetry. When that symmetry is lacking, you can always go back to the field of a point charge 
and add up the contributions in a vector sum. Gauss’s Law is, however, an elegant theorem, 
illustrating a deep connection between the flow of electric field and the locations of charges. 
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A Quick Summary of Some Important Relations 
 

Electric field: 

The long-range interaction between two charges encapsulated in the Coulomb force can be 
envisioned as arising from a local interaction between the electric field which exists at every 
point in space and time and a charge. Electric field is defined by measuring its effect on a test 
charge: 

 test charge

test charge

F
E

q
=  

Combining this with the Coulomb force, we can find the electric field produced by a point 
charge ‘source’: 

 source
point charge 2 ˆkqE r

r
=  

Electric fields from more complex arrangements of charge can be constructed from this. 

Electric fields from neutral arrangements of charge: 

Electric fields from neutral combinations of charges like the dipole, quadrupole, etc. have more complex 
shapes, and fade in magnitude more rapidly than the field from a point charge.  This explains why electric 
fields from neutral matter extend only very short, atomic scale, distances from their surfaces. 

Electric fields from non-neutral arrangements of charge: 

Fields from arrangements of charge are determined by adding up the field from each of their 
constituent point charges. There are several important examples: 

• Charged sphere: acts like a point charge at its center, field inside is zero 
• Infinite line of charge with linear charge densityλ :  

 ( ) 2 ˆkE r r
r
λ

=  

• Infinite plane of charge with surface charge density σ : 

 (away from plane)2E kπ σ=  

Electric fields in conductors: 
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In conductors charges move until they cancel out any electric field. In static cases, the electric field inside 
any conductor is zero. 

Gauss’s Law and electric field calculation: 

Electric fields lines begin on positive sources and end on negative sinks. This can be quantified with 
Gauss’s Law, which connects the net flow of electric field lines into or out of a surface with the charge 
contained within that surface. 

 
0

insideQE dA
ε

Φ = ⋅ =∫  

This law can be useful in calculating the fields from some simple charge distributions, but it also provides 
important insight into the structure of electric fields. 
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Physics of the Life Sciences II: Chapter 22 
 

22.1 Energy in electrostatics 

There is one more crucial element to include in our discussion of electrostatics: energy. We have 
seen before that the effect of a force on the energy of an object can often be usefully accounted 
for by defining a “potential energy” associated with that force. To do this, you calculate the work 
done on a test particle by the force as the test object moves from one place to another. If you find 
that this work is path-independent, if the same work is done no matter how you get from one 
place to another, then the force is a conservative force and it is useful to talk about a potential 
energy associated with it. 

Electric potential energy of two point charges 

Consider the work done moving a test charge qtest from one place to another near a point charge 
qsource. The work is defined by 

 

It cares only about motion of the test charge either toward or away from the source point charge. 
Any motion which is goes ‘around’ the source charge has displacement perpendicular to the 
force, and no work is done. All that will matter is how the distance from the source charge to the 
test charge (r) changes. Imagine we’re moving out from point r1 to point r2. In this case the force 
is along the direction of motion, and  

 

 

Imagine both qtest and qsource are positive. The electrostatic force pushing the two apart does 
negative work on the test charge as it moves closer, taking energy away from it. 

Recalling the definition of potential energy: 

 

 

This tells us that as we move the test charge away from the source charge (r2 > r1) its potential 
energy change is negative; it has less and less potential energy. If we move it closer (r2 < r1), the 
change in potential energy is positive, and it gets more and more potential energy. Remember 
that absolute potential energy means nothing. Our definition of potential energy can only tell us 
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how energy changes. If we want to talk about absolute values, we have to define the potential 
energy relative to some reference position.  

22.2 Potential energy relative to a reference at infinity 

It is often useful to measure the potential energy relative to what it would be at some particular 
reference point. For example, we measure all our gravitational potential energies relative to what 
the potential energy would be at the ground. In such a case we might say:  

 “The potential energy at a point h meters above the ground is mgh” 

When we do this we’re actually still measuring only changes in PE. This statement really says 
that ΔPEground-h = mgh, but since we’re always comparing to a prearranged reference point we 
often loosely say what the PE “is” at a point. There is a similar somewhat loose linguistic custom 
for electric potential energy, though this one is based on a somewhat less arbitrary reference 
point.   

In electrostatics, it is often useful to talk about the potential energy at some point compared to 
what it would be at infinity. When two charges are infinitely far apart, they’re really not 
interacting. So examining the ΔPE going from infinity to some new point captures essentially the 
complete interaction between these particles. For this purpose we use the above relation and say, 
what would the potential energy be at some position r if we started at a point r1 = ∞? 

 

 

What does this tell us?  

Imagine first the case where qtest and qsource have the same sign. If we start at infinity and bring 
our test charge in to a position r, the Coulomb force will do negative work, increasing the 
potential energy of the system. As r becomes smaller, the increase in potential energy becomes 
larger. This makes a lot of sense. If you do this, bring the test charge in from infinity, you store 
up some energy in the repulsive interaction between the charges. If you bring it in to some 
distance r, then let it go, the Coulomb force will push the test charge outward, converting the 
stored potential energy into kinetic energy. How much kinetic energy would the charges have 
when they are again far apart? 

  ΔKE + ΔPE = 0  

  ΔKE = KEf – KEi = -ΔPE = PEi – PEf  

  KEf = PEi 

r
qkqqkq

r
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What if qtest and qsource have opposite signs? In this case the Coulomb force is attractive. As you 
bring the particles closer together, the Coulomb force does positive work, decreasing the 
potential energy of the system. If you bring two oppositely charged particles together like this 
you are releasing some potential energy. If you want to get them apart again, you have to put 
energy in to split them up, you have to pay back what you got out when they first came together. 
Systems with potential energy lower than they would be if the particles were infinitely far away 
are “bound” systems. They won’t fall apart of their own accord. If you want to separate them you 
have to put some energy in to take them apart. 

22.3 Electric potential energy and binding energy 

To find the total potential energy of a system of charges, you have to imagine assembling it from 
scratch. Imagine doing that for the simple three charge 
system shown at right. Let’s build it in steps: 

1. Put down charge 1. Since no other charges are 
around, there is no potential energy associated 
with this. 

2. Now add charge 2. To do this you have to push 
it into place. In doing this you store potential 
energy in it in the amount PE12 = kQ2/r. 

3. Now add charge 3. When you do this it will be 
attracted to both charge 1 and charge 2. For 
each you will get a potential energy 
contribution:  PE13 = -kQ2/r and PE23 = -kQ2/r. 

4. Now add all these contributions together: PE12 + PE13 + PE23 = -kQ2/r 
 

The total potential energy of this system, compared to what it would be if the particles were all 
infinitely far apart is negative. If you want to split these charges up, you have to put energy into 
the system. This is a “bound” system. 

A toy model for an atom 

In a slightly more realistic case, we might consider a little planetary model of an atom. In this 
model, an electron (charge –qe) orbits a proton (charge +qe) at some radius r. The electron has 
kinetic energy because it is orbiting. It also has electric potential energy due to the attraction 
between the electron and proton. How might these two balance? 

r r

r
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-Q 
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3
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From this we can see that the total energy (KE + PE) of this orbiting electron is negative. Such 
an atom is bound, and you have to add energy to it if you want to remove the electron from the 
atom (to ionize it).  This toy model gives a hint to the way in which electrostatic potential energy 
underlies all chemical bonding and produces matter. 

22.4 Further abstraction: the electric potential 

It’s time for one more abstraction. Faraday suggested that the electric force actually arose from 
interactions with an extended electric field, and made the definition for point charges: 

 

 

 

In doing this, he defined a vector electric field which depends only on the source charge and 
exists at every point in space.  

We’re going to do something analogous for energy, defining “electric potential”: 

 

 

This electric potential is a new field, defined at every point in space. This one is a scalar field, 
just a number with no direction. Like the electric field, it too depends only on the source charges 
and is defined for every point in space. Since this electric potential is defined to be an energy 
(ΔPE) divided by a charge (qtest) it has units of Joules/Coulomb, which we will call “Volts”. 
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Force and Field, Potential Energy and Potential  

Let’s stop for a moment to emphasize the pieces we have in place now. The basic thing is the 
Coulomb electrostatic force between two point charges. From this, we defined the electric field 
associated with a point charge. Then we considered the electrostatic potential energy 
associated with the Coulomb force when two point charges are brought together starting from 
infinity. From this, we defined the electric potential associated with a point charge. 

Electric force: r
r
qkqF sourcetest ˆ2=

G
 Electric potential energy:

r
qkqPE sourcetest

r =Δ ∞  

Electric field: r
r

kqE source ˆ2=
G

 Electric potential:
r

kqV source
r =Δ ∞  

 

Each of these four things is very different from the others, but the words are awfully similar. For 
this reason you have to be absolutely clear about what each of these is. 

Imagine how we might treat some object made up of a distribution of charges in this new view. 
All around this object, there is a vector electric field, defined at every point in space. We could 
calculate it by adding up the electric field produced by each little bit of charge in the object, just 
as we did for several examples in the last lecture. If we set down a new charge anywhere in this 
space, we could immediately determine the electric force on it from F = qtestE. 

Now there is something new. All around this object, there is also a scalar electric potential, 
defined at every point in space. We could calculate it by adding up the electric potential 
produced by each little bit of charge in the object. If we set down a new charge anywhere in this 
space, we could immediately determine the electric potential energy of the arrangement from PE 
= qtestV. 

Because electric potential is a scalar field, it 
can be represented by a single number at each 
point in space. This makes visualizing it quite 
a bit easier than visualizing the vector electric 
field. For electric potential we can take 
advantage of the contour map, which allows us 
to show the pattern of change in a scalar field 
in a particularly simple and familiar way. The 
figure at the right shows a contour map of 
elevation in the Nichol’s Arboretum, just to 
give an example. 
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Electric potential in conductors 

We know from earlier discussions that the electric field in a conductor must be everywhere zero, 
otherwise charges would move in the conductor until it became zero. Since the electric field is 
everywhere zero, there can be no changes in electric potential anywhere inside a conductor. As a 
result, every point in any conductor must be at the same electric potential. Remember, it doesn’t 
have to be at an electric potential of zero, it can have any value. But whatever the electric 
potential in the conductor, it will be the same everywhere in it. A conductor is like a big flat 
plane in our contour map of electric potential. 

22.5 Potential and field 

We have defined both electric field and electric potential. We know how to calculate both of 
these for any arrangement of charges. To find the electric field at each point you calculate the 
electric field from each little bit of source charge which is around and form the vector sum of all 
the individual contributions. This is a little complicated because it is a vector sum.  

To find the electric potential at each point you find the electric potential from each little bit of 
source charge which is around and form the scalar sum of all the individual contributions. This is 
quite easy because it is a scalar sum. There are not components to keep track of. This is an 
important part of the power of using the electric potential instead of the field. One quick 

example: three point charges in a triangle. 

To find the all the components of the electric field in this case requires keeping track of three 
non-colinear vectors. To get the electric potential at the center you just have to add up some 
numbers. As we will see, the ease of calculating the potential provides a hint about its usefulness. 

Relating electric potential and electric field 

Both electric field and electric potential are defined at every point in space. What is the 
relationship between them? Electric potential energy changes when the electric force does work. 
This happens when the motion is along (or opposite) the direction of the electric field. 

+

+ -

+

+ -

E field from vector sum V potential from scalar sum 

kq/r + kq/r – kq/r 
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Now imagine you’re sitting at some point in space. At this point the electric potential has some 
value. The electric field is also defined at this point, and has both a magnitude and a direction. 
Now imagine you move away from this point. How does the electric potential change?  

If you move in direction along the direction of the electric field, ΔV will be negative; the electric 
potential will decrease. If you move in a direction opposite the 
direction of the electric field, ΔV will be positive; the electric 
potential will increase. If you move in either direction which is 
perpendicular to the electric field, ΔV will be zero; the electric 
potential will remain the same. This is illustrated in the little 
picture. 

Now this pattern that we just outlined happens at every point on the map of electric potential. On 
our potential contour map, the electric field always points “downhill”, in the direction along 
which the potential decreases most rapidly. The “uphill” direction, in which the potential 
increases most rapidly, is opposite the electric field. Meanwhile, the lines of constant electric 
potential, the contour lines on our map, are always perpendicular to the electric field.   

The figures below show an example of these alternative representations. The first shows the 
vector electric field around two positive charges. The second shows a contour map of the electric 
potential of these two charges. The third combines the two. On it you can see that the electric 
field always points downhill on the electric potential contours, and that the equipotential lines are 
always perpendicular to this field. 
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Calculating field from potential 

Because potential is a scalar, it’s often easy to calculate the values of the potential at all points in 
space. This gives you the kind of contour map of the electric potential that we discussed last 
time. Today we will be more specific about how to determine electric field at all points in space 
if you’re given electric potential map, and how to find electric potential at all points in space if 
you’re given an electric field map. 

The electric field always points downhill on the electric potential map. It actually measures the 
slope of the electric potential landscape. Anywhere the electric potential is changing quickly in 
space, the electric field is large. Anywhere the electric potential is constant in space, the electric 
field is zero. We use this fact to find the three components of the electric field (it is a vector, so 
we need them all!) if we’re given the electric potential.  

To find the component of the electric field in any direction (x, y, or z), we need to measure how 
rapidly the electric potential changes in that direction; we need to measure the slope of the 
electric potential. This slope has units of volts/meter, or J/Cm, or N/C, which is the right unit for 
electric field, so the units agree. This measuring the slope in each direction is a common thing in 
calculus, and can be represented by partial derivatives. Such a partial derivative δV/δx means 
“measure how rapidly V changes when you change x while keeping the other variables y and z 
constant. So you move only along x and see how V changes. Then, since we know the E field 
points downhill, we put a minus sign in front, and we get the components of the electric field: 

 

 

Each one of these partial derivatives tells you how rapidly the potential changes along that 
direction. Putting them together, we get a vector which points in the direction of the most rapid 
change; a vector which points downhill. If the potential is changing rapidly in space, the electric 
field is large. If it changes slowly, or not at all, the 
electric field is small.  

This idea is illustrated in the picture to the right, which 
includes two point charges and an extended, charged 
conductor. The contour lines are contours of constant 
electric potential. The vectors then show the direction 
of the electric field at various points, while their 
intensity shows the strength of the field. 
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Calculating potential from field 

If you have the electric field instead of the potential, and you want to find how the potential 
changes from place to place, you just reverse this process. Since the field points in the direction 
of smaller potential, and tells you how rapidly it changes, you just have to add up all the potential 
changes going from point to point. For any little motion ds, the change in potential dV is just –E-
⋅ds. The minus sign is because E points toward lower V, so if you go along the direction of the 
field E, dV is negative and if you move opposite the direction of E, dV is positive. 

To map out the full potential, to find its value at every point in space, you just choose a reference 
point, define a value there (this may be calling the potential at ∞ zero) and use the relation: 

 

To find out how the potential changes as you go from this reference to every other point. 

22.6 Potentials, fields, and infinities: approximate models 

If you are mathematically curious, you may have noticed a problem in the definitions of the 
electric field and electric potential from a point charge: 

 

 

 

Each of these becomes infinite when the distance r goes to zero. This would suggest that the 
electric field and electric potential at the location of a point charge (with r = 0) would be infinite. 
If we place a test charge there, the force exerted on it (qtestE) and the potential energy associated 
with it (qtestV) would be infinite. 

What to make of this? Would there really be infinite force and infinite energy? That’s what the 
straight theory, all derived from the Coulomb force law, would predict. But would it really 
happen that way? Could there be infinite energy? 

In this classical picture we have, an electron is a purely point object, existing at just one 
mathematical point. With two such objects, you could put them in exactly the same place, and 
encounter these infinities. This is a great example of the limitations of physical laws, and 
physicists (unlike mathematicians) have learned to loathe these infinities; to expect that where 
they occur in the equations we’re using to describe nature, the equations must in some way be 
wrong. In this case, the problem of infinities is eliminated by fact that on very small scales, the 
world doesn’t behave in this “classical” way. Very tiny things are governed instead by “quantum 
mechanics”. In quantum mechanics objects like electrons cannot be thought of as completely 
“localized”. They don’t exist at just one point, but instead are best thought of as being spread out 
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over a (usually very small) region in a manner which can be precisely described by quantum 
mechanics. Such a spread out ‘wave function’ doesn’t have the same problems of infinities 
which plague true point charges, and it’s for this reason that there isn’t an infinite force or 
infinite energy anywhere in the universe. 

The lesson of this is that even in essential physics like static electricity, the equations used 
describe approximate models for reality. When we use them, we must always be cognizant of 
their limitations, and ever aware that they may fail, especially if we apply them in situations far 
from those for which they were established.  
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A Quick Summary of Some Important Relations 
 

Electric potential energy of a pair of point charges: 

In accounting for electric potential energy, we almost always define the potential energy at 
infinite separation to be zero. With this definition, we can write the potential energy associated 
with two point charges as: 

 1 2kq qPE
r

=  

The total potential energy of any arrangement of charges is then the sum of the potential energy 
associate with each pair of charges. 

Electric potential: 

Just as electric field provides an alternate accounting for the Coulomb force, electric potential 
provides an alternate accounting for the electric potential energy. It is defined as: 

 
test

rPEV
q

∞Δ
=  

And the electric potential from a point charge is: 

 source
point charge

kqV
r

=  

Relations between potential and field: 

Both potential and field are defined at every point. They are related by simple relations: 
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Change in potential is found by adding up how much you go ‘up or down’ along the field lines. 
Electric field is given by the slope of the electric potential at each position, and points toward 
lower potential. 
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Physics of the Life Sciences II: Chapter 23 
 

Now that we have some understanding of the basics of electrostatics and have developed the 
ideas of electric field and electric potential, we’d like to start working on how electricity gets 
things done, both in our technology and in the workings of life. It turns out there are a variety of 
tools, functional elements, which appear in analogous form in both technology and life. We’re 
going to learn about the first of these today, the capacitor. 

23.1 Capacitors  

In its most essential form, a capacitor is some structure which can hold some amount of positive 
and negative electric charge separate from one another, usually by placing each of the charges on 
some piece of conductor. When it does this, we say that it “stores charge” in an amount equal to 
the amount of positive charge pulled away from negative charge. Separating positive and 
negative charge in this way also stores some energy, energy which would be released if we 
allowed the positive and negative charges to come together again. So 
we also say that a capacitor “stores energy” in the separated charge. 

The picture to the right shows an example of an abstract capacitor. 
Since we have positive charges in one part and negative charges in 
the other, we know that electric field lines will come out of the 
positive part (where the sources are) and then go into the negative 
part (where the sinks are). Since those field lines point toward 
regions of lower electric potential, we know that there must be some 
potential difference V between these two pools of charge. Since each 
sign of charge is on a piece of conductor, we know that the electric 
potential of all the positive charges are the same and all the negative 
charges are the same. As a result, just one potential difference represents all the charges. 

This fact allows us to define a convenient measure of how efficiently this particular arrangement 
stores electric charge. We will call this measure of “efficiency of charge storage” the 
capacitance of the system. The measure we want compares how much charge is already stored 
(Q) to how much energy per unit charge it would take to separate some more charge. The energy 
required to move a little bit of positive charge dQ from the –Q side to the +Q is E = dQ*V. So 
the amount of energy per unit charge is E/dQ = V. Putting these together, we find the simple 
relation: 

        or     Q QC CE VdQ
= =  

+Q 

-Q

E 
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If the capacitance is large, it is very efficient to store charge in this system. That is, it will take 
very little energy for you to separate some amount of charge Q (compared to what it would take 
in a low capacitance system. The units of capacitance are Coulombs/Volt, and we give this unit 
the name “Farads” in honor of Michael Faraday, the great 19th century electrical experimenter 
who introduced the idea of the electric field. Typical capacitors that you might encounter in 
modern electronics are small on this scale, like micro-Farads. 

How do you make a large capacitance? There are generally two things you can do. First, make 
the parts where you store the positive and negative charges as large as possible. This gives these 
like charges room to spread out and reduces the energy you need to supply to cram them 
together. Second, keep the parts where you store the positive and negative charges close 
together. This too helps to reduce the energy you have to put in.  

Whenever you move a new bit of positive charge to the positive side it is being repelled by the 
positive charges already there, but if you keep the positive and negative sides close together, the 
new positive charge will also be pretty well attracted by the negative charges on the other side. 

The parallel plate capacitor: an example 

One useful example is the “parallel plate capacitor”. In this device, two flat conducting surfaces 
with area A (= L2), and separation d, hold charge +Q and –Q. To find the capacitance of this 
arrangement, we need to know the potential difference V between the two plates. We can find 
this if we have knowledge of the electric field between them.  

If we assume that d << L (that the two plates are close to one another relative to their size), then 
the two plates will look infinite, and the field between them (as we saw a few lectures ago) will 
be a constant with magnitude: 

0 0

QE
A

σ
ε ε

= =    

With this constant electric field, the change in electric potential going from the negative to the 
positive plate is  

0

QdV E ds Ed
Aε

Δ = − ⋅ = =∫  

Now since C = Q / V, we find that the capacitance of the parallel plate capacitor is: 

    0

0
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Notice what this says. The capacitance of this pair of parallel plates depends purely on the 
geometry of the arrangement. To find its value we need only look at the area of the plates A and 
the separation of them d. Remember too what we said about how to make capacitance large: 
make the individual storage pieces large (increase A) and keep them close together (decrease d). 
This explicit calculation bears out our general principle just fine. 

 

Sometimes, for example in cell membranes, it is useful to talk about the “specific capacitance”, 
the capacitance per unit area. For parallel plates this would be C/A = ε0/d. Note that this specific 
capacitance depends only on the separation between the plates d. 

Energy storage in capacitors 

How much energy is stored in a capacitor? As you charge the capacitor you move each little bit 
of positive charge dQ from the negative side to the positive side. This takes an amount of energy 
dE = VdQ. But we know from the definition of the capacitance that V = Q/C, so we can write dE 
= (Q/C)dQ. If we then imagine charging up a capacitor from Q0 = 0 to Qf = Q, we get a total 
energy: 

   
21

2
Q QE VdQ dQ
C C

= = =∫ ∫  

Since we have the defining relation Q = CV, we can rewrite this in three ways, eliminating either 
Q, C, or V 

   
2

21 1 1
2 2 2

QE CV QV
C

= = =  

The energy we can store in a capacitor can be used in many ways. Often, capacitors are used as 
devices in which you store up energy slowly, then release it suddenly. Examples include flash 
bulbs and defibrillators.  

There is one more way important and suggestive way of looking at the energy stored in a 
capacitor. Let’s calculate the energy stored per unit volume inside the capacitor. The volume 
inside it is given by A*d, and the energy by 1/2CV2: 

 Energy / Volume = 
22 2

20 0
02

1
2 2 2 2

A VCV V E
Ad d Ad d

ε ε ε= = =  

Where the final E is the electric field inside the capacitor (which has a magnitude equal to the 
slope of the potential with distance: V/d). What this relation tells us is that the energy per unit 
volume in the capacitor is solely determined by the size of the electric field. It suggests that the 
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electric field, but itself, corresponds to an energy density. It tells us that the presence of electric 
field is equivalent to the presence of energy, that electric field is energy. 

Batteries and potential difference 

To continue the discussion it is useful to introduce a new functional element, a new kind of 
device we might encounter in our electrical toolkit: the battery. A battery is a device designed to 
produce and maintain a specific potential difference. Each has a different potential associated 
with it, and we might call this Vbattery. To make and maintain this potential difference the battery 
is capable of using its own internal energy resources to pump charge from one place to another. 
A battery will always do whatever it can to achieve the goal of maintaining a particular potential 
difference across it. A perfect, ideal, battery will always be able to do whatever it must to create 
this potential difference. While such an ideal never really exists, there are many cases in which 
this is a decent approximate. 

Imagine what happens when you connect such a battery to a capacitor. Initially, there is no 
charge on the capacitor and no voltage across it. This is not what the battery likes to see, so it 
begins pumping charge onto the capacitor until the potential across the capacitor is what the 
battery wants: Vbattery. At this point the pump stops working, and things settle down. Now the 
total charge on the capacitor is Q = CV = CVbattery, and the battery has converted some of its 
internal energy into energy stored on the capacitor Ecap = 1/2CVbattery

2. 

 

The picture above shows this setup, something we will come to call a “circuit”. The symbol with 
two unequal lines is used to denote a battery, while the symbol with two equal lines is used to 
show a capacitor. If, once you charge the capacitor, you remove the battery, the capacitor will 
remain charged, at least until you provide a way for the positive and negative charge on the 
capacitor to come together again, perhaps by touching both sides with a conducting wire. 

23.2 Combining capacitors in series and parallel 

We can use this simple battery circuit to understand what happens if we combine several 
capacitors together in different ways. Do two capacitors combined make a better capacitor 
(equivalent to a single larger capacitor) or is this worse (equivalent to a single smaller capacitor).  

First we will consider what happens if we combine them in parallel with one another. This 
situation is shown in the figure below:  

Vbattery 
C (Q = 
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We’d like to know what Ceq would have the same effect on the battery as the two capacitors C1 
and C2 in parallel with one another. In the left hand case, the battery would have to pump charge 
onto capacitor C1 until the voltage across it is equal to Vbattery, then it would also have to pump 
charge onto capacitor C2 until the voltage across it is Vbattery. So the total charge it has to pump 
is: 

 Qtotal = Q1 + Q2 = C1Vbattery + C2Vbattery 

In the equivalent circuit on the right, I want to pick a Ceq so that it acts just like the first circuit, 
so that it makes the battery pump out exactly the same amount of charge. So again I want: 

 Qtotal = CeqVbattery = (C1 + C2)Vbattery or Ceq = C1 + C2 

So, if I place two capacitors in parallel with one another, that’s the same as having a single 
capacitor with capacitance equal to the sum of the original two. There’s no big surprise in this. 
Putting them in parallel is just like adding more area A to the capacitor. If there are more than 
two in parallel, the same idea works, so that Ceq = ΣCparallel. The equivalent capacitance when you 
put capacitors in parallel is larger than the capacitance of any of the individual pieces. 

Now let’s consider what happens if I combine them in series (one after the other) instead. This is 
illustrated in the next figure. In this case the battery pumps some charge from the bottom of C2 to 
the top of C1. What happens in between the two? If a charge +Q shows up on the top of C1, it 
will attract a charge –Q to the bottom of C1. Meanwhile the –Q at the bottom of C2 will attract a 
charge +Q to the top of C2. This leaves the segment in the middle neutral, which it has to be 
since charge can’t flow into or out of it. In this way, whatever charge Q the battery pumps ends 
up across both C1 and C2. How much charge is this? The potential rise across the battery must be 
equaled by the potential drop across the two capacitors, so  

1 2
1 2

battery
Q QV V V
C C

= + = +   

This implies: 

 

1 2

1 1
batteryV

Q
C C

=
+

 

Now for the equivalent circuit; here we want the battery to pump out the same charge Q, and for 
this simpler circuit we have Q = CeqVbattery. Setting these two charges equal, we find: 

Vbattery 
C1 C2 Vbattery 

Ceq 

Vbattery 
C1 

C2 
Vbattery 

Ceq 

+Q 

+Q -Q 

-Q 
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eq 1 2

1 2

1 1 1     or      1 1 C
battery

eq battery

V
C V

C CC C
= = +

+
 

If there are more capacitors in series, this continues as 1/Ceq = Σ(1/Cseries). For the particular case 
of just two in series, we can write this in a more intuitive form as:   

    1 2

1 2
eq

C CC
C C

=
+

 

From this you can see that if C1 = C2, Ceq = C1/2, while if C1 >> C2, Ceq ~ C2. The equivalent 
capacitance of some capacitors in series is less than the sizes of the capacitors you put in series, 
and if one is much larger than the other, the equivalent capacitance is approximately that of the 
larger capacitor. 

Capacitors and dielectrics 

How can you make a capacitor better? Well, you do 
the obvious things first; make the area A as big as 
possible and the gap d as small as possible. The limit 
on the gap is usually that you have to prevent the two 
conductors from touching, as this would let the 
capacitor discharge. So usually you fill the gap between the conductors with an insulating 
material, and this can be a big plus for the capacitance. The reason has come up before: dielectric 
shielding. The idea is illustrated in the picture to the right. When you put charge on the plates of 
the capacitor, the electric field created tugs on the charges in the internal medium. This polarizes 
it in a way which helps to reduce the electric field in the capacitor. This reduction in field implies 
a reduced potential across the capacitor, and makes it easier to put charge on it. Viola! You get a 
larger capacitance. Remember that one way of accounting for changes in electricity in a material 
is to just imagine that the strength of electrostatic forces changes. We can do this by replacing 
the usual permittivity of free space ε0 with a new value ε = Dε0. What does this do to a 
capacitor? 

The capacitance of the parallel plate capacitor is normally C = (A/d)ε0, so now that it is filled 
with a dielectric material the new capacitance will be C = (A/d)Dε0. It is increased by a factor 
equal to the dielectric constant. Here are dielectric constants for a variety of materials. In our 
microelectronic technology dielectrics can be very important. They allow you to make capacitors 
which are 300 times smaller if you fill them with something like Strontium titinate. Notice the 
relatively high dielectric constant of water. This large value is due to the same polar nature of 
water that makes it an excellent solvent. It is worth noting that for liquids the dielectric constant 
is quite temperature dependent. The value given for here is at 20° C. 
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Material D 

Vacuum 1.0 

Air 1.0005 

Paper 3.5 

Silicon 12 

Water 80.4 

Titanium dioxide 130 

Strontium titinate 310 

 

23.3 The cell membrane as a capacitor 

One of the remarkable ways in which life uses electricity is in signaling, sending messages, 
mostly along nerve cells. To do this, the cell has to store up some energy slowly which it can 
release suddenly. Capacitance is a great way to do this, and that’s what cells use. The 
capacitance is provided by the cell membrane, which acts for all the world like a parallel plate 
capacitor. Typical membranes are around 5 nm thick. We might expect such a thing to have a 
specific capacitance: 

  

212
2

0
9 2

C9 10  
0.002

5 10  

xC FNm
A d x m m

ε
−

−= = =  

In fact the specific capacitance of cell membranes is higher than this by a factor of a few. This is 
because the membrane is itself a dielectric, with a constant Dmembrane ~ 2, so the specific 
capacitance is more like. 

  0
20.004membrane membraneDC F

A d d m
ε ε

= = ≈  

23.4 Dielectric breakdown and lightning 

Imagine a dielectric molecule inside the plates of a capacitor. The positive charge in this 
molecule is pulled one way, while the negative charge is pulled the other. The internal attraction 
between the positive and negative parts of the molecule balances this, and there is no net motion. 
But if the external electric field becomes too large, the internal strength of the molecule isn’t 
large enough to keep the positive and negative charge together, and the molecule gets ripped 
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apart. This is called “dielectric breakdown”, and will happen for each material at some particular 
field value called the “dielectric strength” of the material. It’s usually measured in Megavolts per 
m, or 106 V/m. Typical values range from a few MV/m (air is 3, strontium titinate is 8) to a few 
tens of MV/m (teflon is 60).  

When this happens, the charges are now subject to large unbalanced forces, and accelerate away 
from one another toward the plates. Along the way, they smash into other molecules, helping to 
split them up too. This leads to a flow of charge (negative toward the positive plate, positive 
toward the negative plate) which acts to discharge the capacitor. This sudden, rapid flow heats 
the material dramatically, giving rise to a glowing spark, like a lightning flash. In fact, lightning 
is nothing more than dielectric breakdown of the atmosphere. 

Dielectric breakdown limits the maximum voltage you can use on a capacitor. Since it is really a 
restriction on the maximum field, it can be expressed as a restriction on the total energy stored in 
the capacitor.  
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A Quick Summary of Some Important Relations 
 

Capacitance: 

Capacitance measures the efficiency with which charge can be separated on two conductors. It is 
defined as: 

 separated

between conductors

Q
C

V
=  

Our most common example of a capacitor is the parallel-place capacitor, made of two plates 
separated by a distance (d) much less than their size. For two plates with area A and separation d: 

 0
parallel plate inside

0 0

     A QC E
d A
ε σ

ε ε
= = =  

Energy stored in any capacitor: 

 
2

21 1
stored 2 2 2

QE CV QV
C

= = =  

Thinking about the energy stored in a capacitor suggests that electric field itself represents 
energy. 

Combining capacitors in series and parallel: 

 parallel
equivalent series

equivalent

1 1     and      i
i

C C
C C

= Σ =∑  

Improving capacitors with dielectrics: 

Filling the part of the capacitor where there is electric field with a dielectric material improves 
the capacitance according to the relation: 

 filled material emptyC D C=  
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Physics of the Life Sciences II: Chapter 24 
 

It’s time to move a little beyond electrostatics. We’re going to talk about what happens when you 
make electric charges flow, when you create an electric current. 

24.1 Moving beyond electrostatics: steady currents 

How to create a flow of charge? First of all, you have to have a material in which charge is 
relatively free to move, something which is at least a reasonable conductor. As we said when we 
introduced conductors and insulators, conductivity varies continuously over a very wide range 
for different materials. To have a reasonable current, you need only have some material with 
reasonably high conductivity. 

Take a piece of some such material and turn on an electric field. This field applies a force on the 
charges in the conductor and they begin to move. If the conductor is not connected to anything, 
these charges will pile up at one end of the conductor (leaving charges of the other sign behind) 
until they create a new contribution to the field which cancels the external field. How long this 
takes to happen depends on how high the conductivity of the material is. For most things we’d 
call conductors, like metals, the time it takes for this to happen is very short. 

Now imagine that we change things, providing a place at one end of the conductor for charges to 
escape, then we connect up the other end to a source of new charges, so that whenever one leaves 
another can enter. Now when you turn on the field they start to move, but they never build up at 
the downstream end and cancel the field, so they just keep flowing at a steady pace. All the time 
new charges enter at one end and flow out the other. You have a steady current, drive by the non-
zero electric field in the material. 

One way to make this happen, for a while at least, is to connect your conductor to a capacitor. A 
charged capacitor contains an amount of charge Q separated by a potential difference V. If you 
hook a conductor across this capacitor, current will start to flow. How long this will continue 
depends on the size of the capacitor (C) and the conductivity of the material. If the capacitor is 
large, or the conductivity is small, then it may last a long time. But if the capacitance is small 
and/or the conductivity is large then this will be brief. 

For many years, discharging a laboriously charged capacitor was the only way to generate an 
electrical current. In systems like this, current was a transient thing. This made it nearly 
impossible to reliably study what happens when charges flow. To do that, a better way to make 
currents flow was required. 

To make a current flow continuously what you need is a ‘charge pump’, something which can 
take the charges out of the bottom of the conductor and put them back in at the top. To do this, 
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the pump has to be able to raise the electric potential of the charges. As they move through the 
conductor, the move along the electric field. Since the electric field points down the potential, 
this means they’re moving to lower and lower potential. To send them through again the battery 
must lift the charges back up to a higher potential before sending them back though. This is what 
a battery does. It pumps charges from low to high potential, using up its internal energy, in order 
to maintain a specific potential difference between its two ends. 

Here are schematic pictures of these two different ways of making currents flow. There are four 
elements with different symbols here: 

• The capacitor (shown as two equal length lines) 
• The battery (shown as two unequal length horizontal lines) 
• Some conducting wires (shown as thin straight lines). These are for connecting things, we 

assume their conductivity is perfect. 
• A “resistor” (shown as the zig-zag line) 

 

This last, the resistor, is actually a material with reasonably high conductivity, something 
through which you can make current flow, though with more difficulty than through the 
conducting wires in the system. This resistor is neither a great insulator nor an excellent 
conductor, but something in between. 

Current: charge in motion 

The direction of current is conventionally taken to be the direction in which positive charges 
would flow through the circuit; from high electric potential to low. But in fact the moving 
charges could also be negative, in which case they would flow from low electric potential to 
high, in the opposite direction that positive charges would flow. In both cases, they are flowing 
from high electric potential energy to low electric potential energy, then the battery pumps them 
from low electric potential energy back to high electric potential energy and they go around 
again. 

Ben Franklin defined the conventional current direction without any way of knowing whether the 
actual flow was positive charges flowing one way, negative charges the other, or both. We still 
use this convention, though in fact the flow of charge in most materials is carried by negative 
electrons moving in the direction opposite the conventional current. 

C Resistor 
Vbattery 

Resistor 

Transient current 
Continuous 
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Electric current is measured in units of Coulombs per second, and one C/s is called one 
“Ampere” of current, in honor of a French experimentalist who did much of the early exploration 
of current. Sustained currents typically flow in circuits like those above, and there are two 
common forms. Direct currents (DC) always travel through the loop in the same direction. 
Alternating currents (AC) actually flow back and forth, first one direction, then the opposite. 
Such AC currents have many advantages as we will see in a bit.  

Electrical potential, resistance, and current 

Imagine that you make a resistor from a cylinder of some material which has cross-sectional area 
A and length d, then connect this resistor across the terminals of a battery. The battery creates an 
electric potential difference between the two ends of the material. This potential difference 
corresponds to an electric field in the material E = dV/dx = V/d. This internal electric field 
accelerates any free charges that are available to flow in the material. Rather than continuously 
accelerate rapidly to high speed, the charges instead are quickly subject to internal friction in the 
material. As a result, they rapidly reach a relatively slow, but steady, terminal velocity. Notice 
the similarity of this electric current flow to the slowly migrating pieces of DNA rattling through 
the matrix in gel electrophoresis. 

When you connect this object to a battery, a constant, steady current starts to flow. The rate at 
which it will flow depends on the potential, but also on the properties of the resistor. The basic 
relation is a simple one, codified in Ohm’s Law: 

  V = IR  or I = V/R or  R = V/I 

where R is the “resistance” of the resistor you hooked up to the battery, V is the potential of the 
battery, and I is the current. Resistance is measured in units of “Ohms”, where 1 Ohm = 1 V / 1 
A, and the symbol Ω is usually used to represent them. A 1 Ω resistance is quite small. 

The resistance depends on the properties of this little cylindrical resistor in three ways: 

• If the resistor is thicker (A is larger), more current will flow. The potential difference 
across it will be the same whether A is large or small, so if A is large there will be more 
material with charges being pushed through. This will increase the current. 

• If the resistor is longer (d is larger), less current will flow. The potential is fixed, so the 
internal electric field, which pushes the charges is V/d. When d is larger, this is smaller, 
the charges are not pushed as hard, and don’t flow as rapidly. This will decrease the 
current. 

• The internal structure of the material also matters. In some materials charges can flow 
very freely, the internal friction opposing flow is small. In other materials this internal 
friction is large. The magnitude of this internal friction is quantified by the “resistivity” 
of the material, for which the symbol ρ is typically used. When this resistivity is large, 
the charges will flow slower, and the current will be smaller. When the resistivity is 
small, the current will be larger. 
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These three properties come together to create the resistance R of this resistor in a simple way: 

  R = ρ(d/A) 

From this definition, you can see that resistivity has units of Ohm*meters. It is this property (the 
resistivity of a material) that varies so much among different types of substances. Some example 
values range from 1.7x10-8 Ωm for copper (a decent conductor) to 1017 for paraffin wax (a good 
insulator). If you construct identical cylinders of copper and paraffin, they will have electrical 
resistances which differ by a factor of 1025. Hook each up across a battery and the currents 
through them will differ by the same truly enormous factor.  

This fact allows us, by wisely choosing the right materials, to very effectively channel the flow 
of electrical current. For example, we can build a wire through which electrical current flows 
very freely, with essentially none of the current leaking out through the sides. If the resistivities 
of materials varied by less, it would be very hard to control electricity, and we would not have 
been able to create the extraordinary array of electronic technologies we enjoy today. 

Conductivity and current 

There is a completely equivalent, alternate way to discuss the relation between potential and 
current. Instead of talking about resistance, you can talk about conductance. The relation 
between the conductance and resistance is trivial: 

  Conductance = 1 / Resistance 

From this you can see that conductance is measured in units of Ω-1, and the symbol G is often 
used for this. Officially, this unit is called the “Siemans”. In a particularly geeky little 
engineering joke, this unit, the inverse Ohm, is sometimes referred to as the Mho, 
with the symbol     , especially by electrical engineers.  

Another version of Ohm’s Law can be written for this: V = IR becomes V = I/G, or as an 
alternate I = VG. Notice that this means G is the slope of a graph of current vs. applied voltage. 

Just as the conductance is the inverse of the resistance, so too the conductivity is the inverse of 
the resistivity: 

  σ = 1 / ρ 

Conductivity is measured in units of Ω-1m-1 or Siemans/meter. With these new variables, you can 
write: 

  Conductance = σ(A/d) 
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Conductance is often used in water purity measurements. The conductivity of pure water is very 
low, as there are not many free charges around in it. But as soon as you dissolve something else 
in it, like salt, the conductivity jumps up dramatically. This makes conductivity measurements a 
simple test of water purity, and this approach is often used in pollution monitoring projects, for 
example. 

24.2 What is current really like? How fast do charges flow? 

To get a feeling for what current is really like, it is useful to figure out how fast charges actually 
move. To do this, consider a cylinder of conductor with length L, cross-sectional area A, and a 
charge carrier density n. This “n” tells us the number of charge carriers per unit volume in the 
material. It is usually a very large number. In copper, for example, there is one free charge 
carrier per copper atom. To find the charge carrier density, we use the molar mass and density of 
copper to find the number density of copper atoms per m3. With one charge carrier per atom, the 
charge carrier density is the same: ncopper = 9x1028 / m3 

The total amount of charge in this cylinder of material is: 

 qtotal = (nAL)qe 

The qe is the charge of a single electron. The amount of time it takes the charges in this tube to 
pass all the way through, traveling at a constant speed v, is t = L/v. Combining these we write the 
electric current: 

 

 
e e

( ) I J    or    
nAq nq

total e
e

q nAL q vI nAq v v
t L

= = = = =   

In this last, we have written the velocity in terms of the “current density” J = I/A. What is a 
typical value for this drift velocity? Consider a copper wire, 1 mm in diameter (and hence with A 
= 7.9x10-7 m2) carrying a rather large current of 1 Amp. Putting these numbers in, we get: 

  -5
28 3 -7 2 -19

1 Ampv =  = 9x10  m/s
(9x10 /m )(7.9x10 m )(1.6x10 C)

 

This is really slow. Electrons moving this fast take three hours to travel a meter! This electron 
velocity is really at odds with our sense of the quickness of electricity. When you turn on a 
switch, you don’t have to wait three hours for the electrons to get to the light bulb. What’s going 
on? 

There is no such large delay in electric circuits because they don’t work like this. When you turn 
on an electric current in a circuit, it almost instantly begins to flow everywhere. The speed with 
which charges actually move is quite slow, but the whole circuit is filled with them in advance 
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and they immediately begin moving everywhere in the circuit at once. It’s like a pipe prefilled 
with water. When you turn on the faucet, it immediately begins to flow. 

24.3 Resistors in simple circuits 

When resistors are combined in series or in parallel they act collectively as if some equivalent 
resistance were in the circuit. For resistors it’s relatively easy to see how this works.  

Imagine first two resistors, R1 and R2, in series in a circuit. The current goes first through R1, 
then through R2. In this case the equivalent resistance is simply the sum of the resistances. 

  Req
series

 = ΣRi 

One way to see this is to recall that the resistance of each resistor is R = ρ(d/A). Putting these 
resistors in series is like creating a new resistor which is longer, which has a larger “d”. So 
resistors placed in series always increase the equivalent resistance.  

Now imagine two resistors R1 and R2 in parallel in a circuit. In this case current will flow either 
through R1 or through R2, but not through both. This will tend to reduce the equivalent 
resistance, giving the charges more ways to get through the circuit. For parallel resistors, the 
equivalent resistance is: 

  1 / Req
parallel

 = Σ(1/Ri) 

Again, you can understand the origin of this by recalling that R = ρ(d/A). What you do when you 
put resistors in parallel is to keep d the same, but increase A, the area through which charge can 
flow. Other things being equal, you would have  

eq
total

dR  =  
A

 

with Atotal = A1 + A2. So  

1 2

1 2

1 2

R

1 1 1

eq
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ρ
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+
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Power and current flow 

When current is flowing, electric charges are moving from regions of higher to regions of lower 
electric potential. Potential energy is being lost. How rapidly does this happen? Each bit of 
charge dQ that flows through the system undergoes a change in electrical potential energy dE = 
VdQ. The rate of energy loss is the power P = dE/dt = VdQ/dt = IV. Where Ohm’s Law applies, 
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for instance in describing the flow of current through a single resistor R, we can use V = IR to 
write this in three equivalent forms: 

  P = IV  P = I2R  P = V2/R 

Where does the energy lost by the charges go? It can’t just disappear. Remember that this energy 
is being lost to friction as the charges move through the resistor. As a result, it appears as heat in 
the resistor. This conversion of electrical potential energy to heat is called “Ohmic heating”, and 
it is one of the important ways in which we use electrical energy. In toasters, space heaters, hair 
driers, electric stoves, and incandescent light bulbs, we directly use the conversion of electrical 
potential energy into heat. 

24.4 Analyzing simple circuits: Kirchoff’s rules 

In this section we will focus on the analysis of circuits constructed of batteries, resistors, and 
capacitors. Analyzing circuits is important for obvious practical reasons (we use them a lot in our 
technology), but it is also a classic sort of a logic puzzle, a good place to learn how to 
systematically pick apart a problem and analyze it in detail. This makes circuits a favorite of the 
authors of standardized tests. Study of circuits is useful for both reasons. 

Much of what we can do in analyzing electrical circuits derives from two nearly obvious rules 
called Kirchoff’s rules: 

1. The sum of electric potential differences around any loop in a circuit must be equal to 
zero (this is an energy conservation statement). 

2. At any junction in a circuit, the sum of the electrical currents into and out of the junction 
must be equal (this is a charge conservation statement). 
 

These two rules can be applied to a circuit to generate a set of coupled equations relating the 
various circuit elements and the currents flowing through them. Solving these equations can 
allow us to determine just how the circuit will behave when we turn it on. 

Basic applications 

Let’s consider a few examples to show how this works. First 
we will look at a circuit with just a few resistors. We begin by 
applying the loop rule around three loops. Each goes up 
through the battery, then down through one of the resistors. 
When you go up through the battery, the electric potential rises 
by V. When you go down through a resistor, the electric 
potential falls by an amount given by Ohms law Vdrop = IR. Here are the three equations: 

 V – I1R1 = 0  V – I2R2 = 0  V – I3R3 = 0 

R1 R2 R3 V 
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Now let’s use the junction rule. We know that whatever current the battery Ibat will then go out 
and pass through the resistors. Consider the two junctions at the top of the circuit: 

 Ibat = I1 + Inext  Inext = I2 + I3 

In these equations I’ve used Inext to refer to the current in the segment between the first and 
second junctions. Note that we could also have done the junctions at the bottom of the circuit, 
but they would give exactly the same information. Now we’re done with Kirchoff’s rules, and all 
that’s left is to solve the equations. There are currents through four circuit elements that we want 
to know (Ibat, I1, I2, and I3) and we have enough information to find them all. 

First use the loop rule equations to find the currents through each resistor: 

  1 2 3
1 2 3

V V VI  = I  = I  = 
R R R

 

Now combine the junction equations to get the rest: 

  bat 1 2 3
1 2 3

1 1 1I  = I  + I  + I  = V( + + )
R R R

 

Notice what this says. Hooking this battery up to these three resistors in parallel requires the 
same current we would use in the simpler equivalent circuit with one resistor that has: 

  
1 2 3

1 1 1 1

eqR R R R
= + +  

which is of course just the equation for the equivalent resistance of resistors in parallel we had 
before. In fact, it is often useful to start a circuit analysis by first using the relations for resistors 
and capacitors in series and parallel to simplify the circuit first. 

Parallel paths and dividing up current 

There’s another comment worth making here, about how current divides up among the different 
paths that it might follow. The current through each resistor in this circuit is given by Ii = V/Ri. If 
the resistance of this path is large, very little current will flow through it. If the resistance is 
small, a lot of current will flow. This “seeking the path of least resistance” is what flowing 
charge will do. It’s also a metaphor for the natural, statistically most likely, evolution of any 
system.  

It is worth thinking about this model of parallel resistors in a more general way. Imagine a 
battery sitting on the table, not connected to anything else. The two ends are connected, at least 
by the air in the room. This provides a path through which charge might flow. But the resistance 
of the air is so large that the corresponding current is tiny. If you connect a wire between the two 
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ends, there are now two paths (the air and the wire). One has very high resistance, one low, so 
almost all the current flows through the low resistance wire. 

This kind of idea is very important for electricity in life. For example, a cell membrane which 
acts like a capacitor is not some completely isolated circuit element. It is connected to other 
things, with various properties, in a rich variety of ways. Many different channels pass through 
the membrane, allowing various ions to flow. If any one of those things has smaller electrical 
resistance, more electrical current will flow through it. What’s more, these complex, continuous 
living circuits change all the time, enhancing the dynamism of living circuits. This dynamism 
makes living circuits difficult to model with the precision of man-made circuits, but it also makes 
them incredibly flexible, powerful tools for life.   

A more complex circuit example 

Now let’s look at a more complex example, with several 
loops that have batteries and resistors in them. How should 
we approach a problem like this? Now before we set up 
equations using Kirchoff’s rules, we should make some 
definitions, just to help us keep things straight.  

There are three different segments of this circuit along 
which current can pass. For each, let’s provide a label and 
choose some direction as the positive direction for the current in each. It’s convenient to make 
the positive directions we choose our best guess for which way the current will actually go, but if 
we’re wrong, we’ll just derive a current which is negative when we solve the circuit. So we don’t 
have to get it right. My choices are shown on the diagram. 

Now let’s write the loop equations, clockwise around the left loop, around the right loop, and 
around the outer loop. 

• Left loop: V1 – I1R + I2R – V2 = 0 
• Right loop: V2 – I2R – I3R = 0 
• Outer loop V1 – I1R – I3R = 0 

 

Something to notice here: the first equation is the difference of the last minus the second. That is, 
there are really only two independent loop equations. 

What about the junction equations? There is only one: I1 + I2 = I3. Just to reiterate, here are the 
three independent equations: 

 V1 – I1R – I3R = 0   

 V2 – I2R – I3R = 0   

V1 

R R R 

V2 

I1 

I2 

I3 
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 I1 + I2 = I3 

There are three unknowns here, the three currents. So this is clearly a solvable problem. 

Solving these: First, substitute for I3 in terms of I1 and I2 using the third equation in the first 

 V1 – I1R – (I1+I2)R = 0   

 I2 = (1/R)[V1 – 2I1R] 

 Now use this for I2 in the second equation 

 V2 – I2R – (I1+I2)R = 0    

 V2 – 2I2R – I1R = 0   

 V2 – 2[V1 – 2I1R] – I1R = 0 

 V2 – 2V1 + 3I1R = 0 

 I1 = (2V1 – V2)/3R   

 I2 = (1/R)[V1 – 2/3(2V1-V2)] = (2V2 – V1)/3R 

 I3 = (1/3R)(V1 + V2) 

Here they are all laid out: 

 I1 = (2V1 – V2)/3R  I2 = (2V2 – V1)/3R  I3 = (V1 + V2)/3R 

Do these make sense? In each case, the current has units of V/R, which Ohms law says it must. I3 
will always be positive, which makes sense. These batteries both want to push current in the 
direction we chose. I1 and I2 have the same form, which also makes sense. They’re really 
interchangeable. 

But both I1 and I2 can be either positive or negative. For example, if V1 > 2V2, then I2 will be 
negative. In this case, the potential difference across V1 is so big that it not only pushes current I3 
down through the right hand branch, it also pushes current I2 down backwards through the 
battery in the central branch.  

This is an essentially random example, just meant to show how you do this kind of analysis. You 
will be presented with a variety of these examples. With a little practice you can pick apart just 
about any circuit you make up.  
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24.5 Measurements in circuits: ammeters and voltmeters 

When doing experiments, or even understanding some circuit we have built, we often want to 
enter into the system and make measurements. Two of the main things we might like to measure 
are the electric potential across some section of the circuit (with a “voltmeter”) and the electric 
current through some section of the circuit (with an “ammeter”). The challenge in making these 
measurements is to do so without altering the behavior of the circuit. Of course this is the 
essential challenge of all scientific measurement. This will place basic limits on the construction 
of the instruments we’d like to use for this. 

A voltmeter is a device which you connect up “across” a circuit element in 
order to measure the electric potential change in this element. When you do 
this, you’re putting the voltmeter in parallel with the item you want to 
measure. If the voltmeter has an internal resistance which is small 
compared to the resistor you’re measuring, the current will run through the 
voltmeter instead of through the resistor. This will reduce the current 
through the resistor, and alter the voltage drop you see. To avoid this, 
voltmeters are designed to have large internal resistance. In practice, they 
need to have internal resistances much larger than that of the circuit 
element you want to measure. 

An ammeter is a device which you connect “in series” with a branch of a circuit along which you 
would like to know the current. When you do this, you’re adding a circuit element through which 
the current must flow. If the ammeter has an internal resistance, it will increase 
the overall resistance of the circuit and alter the current. To avoid this, 
ammeters are devices which should have small internal resistance. In practice, 
they need to have resistances substantially smaller than the overall resistance of 
the rest of the circuit branch on which you place them. 

Limitations on real batteries 

We have treated a battery as an ideal charge pump which will produce as much current as it must 
to maintain a perfectly fixed potential difference between its two ends. 
Not surprisingly, real batteries are subject to important limits on how 
much current they provide. One reason for this is the internal resistance 
of the battery itself. All the current being pumped through the circuit 
also has to pass through the battery. If the battery is not a perfect 
conductor, there will be both potential increases in the battery (due to the 
pumping) and potential decreases (due to the internal resistance). The 
effect of this internal resistance can be illustrated by considering the little circuit shown at right.  

V 

Rint 

Rext 
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This one loop circuit has V – IRext – IRint = 0, and a total current given by I = V/(Rint + Rext). As 
usual, it’s useful to consider a couple of limits.  

If Rext >> Rint, then we have what we usually assume. Essentially the whole potential rise put in 
by the battery shows up as a potential drop across Rext, and the current is I~V/Rext. 

If Rint >> Rext, then things look very different. In this case, the whole potential rise being put in 
by the battery shows up as potential drop across Rint within the battery! The external resistor now 
has essentially no potential drop across it, even though a current I~V/Rint is flowing through it. 
After all, our condition requires that Rint>>Rext, so the voltage drop across Rext would be Vext = 
IRext = V(Rext/Rint) ~ 0. 

So if a battery is to work as you’d like it to, you want the internal resistance of the battery to be 
small compared to whatever you hook it up to. If you violate this principle, the battery won’t 
function the way you would like. For example, if you “short circuit” the battery by connecting a 
conducting wire across its two terminals, the battery will pump a large current I=V/Rint. This will 
heat up the battery due to the power V2/Rint. Since Rint is probably small, the power consumed 
will be large, and the battery will rapidly use up its full store of internal energy.  

If, instead, you hook it up to a large external resistance Rext, the current will be a much smaller 
I=V/Rext, the power consumed in the external resistance will be a much smaller V2/Rext. There 
will still be power consumed in the battery itself, but this will be small, approximately I2Rint = 
V2/Rext*(Rint/Rext). 

24.6 Time dependence: RC circuits 

So far we’ve looked at static cases: at currents and voltages that don’t change with time. This is 
easy for circuits which contain only batteries and resistors. Resistors “start resisting” 
immediately when you turn on a voltage, and stop immediately when you remove it.  

Introducing capacitors in circuits changes this: they take time to build up or drain off charge. The 
charge on them at any instant determines the electric potential across them according to V = Q/C. 
The charge built up on (or removed from) a capacitor is a time integral of the electric current 
flowing in the circuit. In this sense, it’s a kind of memory of what has happened in the circuit, 
and imposes time dependence in circuits. 

The basic features of this time dependence can be explored by 
analyzing the simple circuit at right. This circuit has a battery 
with potential V, a resistor R, and a capacitor C. The switch 
in the circuit allows us to connect the battery in a loop with 
the resistor and the capacitor, or to switch over to a case 
where only the resistor and capacitor is in the loop. 

V 

C 

R 
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Consider the case with the battery in the loop (the position shown) first. For this loop, we have 
the loop equation: 

  0QV IR
C

− − =  

At the first instant there will be no charge on the capacitor at all, and the loop equation will 
reduce to: 

  V – I0R = 0  or  0
VI
R

=  

As time goes on, this current will dump more and more charge onto the capacitor, until 
eventually the capacitor is filled, and the current falls to zero. Now, at this final time, we’ll have 
I=0, and: 

  0     or     f
f

Q
V Q CV

C
− = =  

So we’re going to start with a large current I0, which will then gradually fall off until we have 
some total charge Qf on the capacitor. 

We can work this out in general too, if we recognize that the current I is given by the time rate of 

change of the charge dQ
dt

. Now we can write the general loop equation as: 

  0     or    dQ Q dQ Q VV R
dt C dt RC R

− − = + =  

This is a linear differential equation for the charge as a function of time. Any function Q(t) which  
satisfies this equation would tell us how the charge changes as a function of time. Just looking at 
this, it says the time derivative of Q(t), plus the function Q(t) times a constant, is equal to some 
constant value. What sort of function has this property? 

  ( ) ( )1    has a derivative  
t t

RC RCdQ VQ t CV e I t e
dt R

− −⎛ ⎞
= − = =⎜ ⎟

⎝ ⎠
  

plugging this into the loop equation we find that it works: 

  1 1
t t

RC RCdQ Q V Ve CV e
dt RC R RC R

− −⎛ ⎞
+ = + − =⎜ ⎟

⎝ ⎠
  

So this solution works. It tells us exactly how the charge Q builds up with time, starting at zero 
and increasing to a final value CV: 
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 ( ) 1
t

RCQ t CV e
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

And how the current starts at a large value and V/R and falls off to a final value of zero 

 ( )
t

RCdQ VI t e
dt R

−
= =  

What’s important here is how the time dependence works. We already knew what the initial and 
final states would be, but now we can see exactly how it will change from one to the other. It will 
vary exponentially. 

How long will the change take? Looking at the equation for current, you can see that the current 
will drop off from its initial value V/R to a value (V/R)e-1 in a time τ = RC. This particular 
amount of time is called the “RC” time of this particular circuit. The time τ is how long it takes 
the current to fall to e-1 (or 0.37) of its initial maximum. It doesn’t tell us how long it will take 
the current to fall to zero. That actually takes infinitely long, but it does tell us how long it takes 
the current to change substantially. It characterizes the time variability of the system, tells us 
about how long things take to change.  

The two processes, increase in charge and decrease 
in current, are shown in the figure to the right. The 
top curve shows how the charge (and hence voltage) 
builds up with time, while the bottom curve shows 
how the current falls off with time.  

On this figure the time axis is labeled with an 
alternative “characteristic time”: t1/2. This is the time 
it takes the current to fall to ½ its original value, or 
the time it takes the charge to reach ½ its final value. 
This is related to the time constant t1/2 = ln(2)RC = 
τln(2) ~ 0.7τ. 
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A Quick Summary of Some Important Relations 
 

Batteries and electric potential difference: 

A battery is a device which will do what it must (including moving charge) to maintain a 
potential difference V between its poles. An ideal battery does this perfectly. 

Resistance, potential, and current: 

 V IR=  

Resistance and resistivity: 

Resistivity ρ is a material property (like density or elastic modulus). A cylindrical resistor with 
length d and cross-sectional area A has resistance: 

 dR
A
ρ

=  

Resistors in series and parallel: 

 series
equivalent parallel

equivalent

1 1     and     i
i

R R
R R

= =∑ ∑  

Power in current flows: 

 
2

2 VP I R IV
R

= = =  

Kirchoff’s rules for circuit analysis: 

• The Loop Rule: The sum of electric potential differences around any loop in a circuit 
must be equal to zero 

• The Junction Rule: At any junction in a circuit, the sum of the electrical currents into and 
out of the junction must be equal  

 
Real batteries and their limitations: 

Real batteries have some internal resistance. When the current flowing through them becomes 
large, this internal resistance can have an important effect on circuits. 

Time dependence in RC circuits: 

Circuits containing resistors (which limit current) and capacitors (which must be charged) exhibit 
transient behavior, changing from an initial state steady state to a final steady state in a smooth 
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and continuous manner. The simplest ‘RC’ circuit in which the capacitor begins uncharged obeys 
the following relations: 

 

battery
capacitor battery 1      and     

t t
RC RC

V
Q CV e I e

R

− −⎛ ⎞
= − =⎜ ⎟

⎝ ⎠  

In general, such circuits will have time constants (in this case t = RC) which depend on the 
relevant resistors and capacitors. 
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Physics of the Life Sciences II: Chapter 25 
 

25.1 Signaling and life 

Later in this class we will talk extensively about how sensing the outside world is important for 
life. Organisms need to be able to sense what’s out there beyond them so that they can find what 
they need and avoid what they must. For this purpose they often use passive sensing, waiting for 
signals (light, sound) produced elsewhere to arrive at them. When that doesn’t work, many 
organisms switch over to active sensing; sending out signals which elicit response from what’s 
out there. Often the response is as simple as echoes or reflections, but sometimes it involves 
more subtle things like variations in the electric field. In all of this sensing, signals are being sent 
from one place to another. Usually these signals are electromagnetic or acoustic, mostly because 
signals like this travel so fast. 

Living things need to do more than just sense the outside world. They need also to both sense 
and control their inner world. They need to send signals to and receive information from the 
many different parts of their own bodies. And these signals need to be extremely specific. The 
message that light has been sensed by a particular rod in your eye needs to go to just the right 
place in your brain. It’s not enough, for example, for each rod cell to just use sound, letting out 
an “I’ve detected light!” shout. The resulting cacophony would be useless. Specific messages 
have to reliably, and very quickly, get to specific places. 

Likewise the control messages have to be extremely specific. Catching a ball requires an 
exquisitely precise, carefully coordinated series of control signals. Every one has to get to the 
right place at the right time. These signals coordinate the myriad muscles in your arm with the 
rapidly changing signals coming from your eye in just the right way to have your hand end up, 
open and oriented the correct way, at just the moment the ball arrives. 

Accomplishing all this requires a system which knows what to do and can rapidly transmit 
signals very specifically from one place to another; a network of independently operable 
message channels which work rapidly and reliably. It requires a brain and a nervous system. The 
brain and the nervous systems are iconically complex; the ideal example of something we are 
still unable to analyze in detail. Exploring how they really work is well beyond this class. But we 
can at least get a sense for one key physical mechanism which allows these systems to work. So 
today we’ll discuss a simple model for how an electrical signal propagates within a nerve cell. 

25.2 Nerve cells: basic structure 

Like all cells, nerve cells have an interior partially isolated from their surroundings by a 
membrane. This membrane is incredibly important, as it enables the cell to control the conditions 
in which it conducts its business, making possible all the complex biochemistry needed to stay 
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alive. Cell membranes are also extremely complex, and include many mechanisms for 
controlling the transport of different materials into and out of the cell. These mechanisms will 
play a key role in signal transmission on nerves. 

 

Nerve cells are very different from other cells in their 
shape. Instead of a compact spherical or oval shape, 
nerve cells have extraordinary, often very long, thin, 
cylindrical extensions called “axons”. This is 
illustrated in the figure above. The figure is way out 
of scale. The typical size of the main cell body (the Soma) is a few to a hundred microns across, 
while the axons are about one micron thick and range in length from one millimeter (103 
microns) to more than a meter (106 microns). On the far end the axon branches out, terminating 
at a number of “synapses”. At synapses the nerve cell ends, and is separated by a very narrow 
gap, typically only about 20 nanometers, from a neighboring cell.  

It may help to compare this to a road system. Imagine the axon were a typical two lane road, let’s 
say 10 m across. On this scale, the Soma might be stadium sized, a few hundred meters in 
diameter. The axon road would stretch from this stadium at least 10 kilometers (like across Ann 
Arbor), and perhaps as far as 10,000 kilometers (or about ¼ of the way around the Earth). On the 
far end, the axon road would end and be separated from connecting axons by synaptic gaps 
which are about 20 centimeters (less than a foot) wide. Nerve cells take on these crazily 
elongated shapes to guarantee specific connections for communication. 

Signals travel rapidly down the axons as electrical disturbances. When they reach the synapse 
they trigger the release of special chemicals called “neurotransmitters”, which diffuse across the 
gap, carrying the control signal through the next step. Since the gap between the two synapses is 
very thin, this chemical diffusion happens very quickly. This combination, rapid electrical 
transport through outrageously elongated cells, combined with rapid chemical diffusion from 
synapse to synapse, is what allows your body to send signals from the brain to a distant cell 
incredibly quickly. 

Many animals have additional structures on their axons called “Schwann cells”. Each of these is 
a little segment, typically about 1 mm long, wrapped in myelin. Myelin is a phosolipid 
membrane which encloses these regions. This myelin wrapping changes the properties of the 
axon in these regions, increasing the electrical resistance by a large factor (perhaps 5000) while 
decreasing the capacitance (by something like a factor of 50).  

Schwann cells are separated by short (~ 1 μm) gaps called the “nodes of Ranvier”. At these 
locations the normal axon membrane is exposed to the intercellular fluid. As we’ll see, the 
Schwann cells allow the nerve signal to travel very rapidly. This being the case, you’d think the 
best nerve cell would just have the whole axon wrapped in myelin. But unfortunately, the signal 
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amplitude drops as it travels down the myelinated Schwann cell. After a millimeter or so, it’s 
really dropping off. That’s where the nodes of Ranvier come in. They act as little signal 
amplifiers, boosting the nerve impulse back up and sending it off into the next Schwann cell. 

That’s a descriptive picture for how a nerve cell works. Let’s look now at the specifics of a few 
pieces of their physical function. 

6.3 Membranes, ion transport, and the Nernst equation 

In most of our technology, electrical signals are carried by traveling electrons. In nerve cells, 
electrical signals are related instead to the motion of positive and negative ions. To understand 
how this works, we need to return to a basic idea from Physics 135, the entropic origin of 
diffusion.  

Imagine a cell membrane surrounded on both sides by electrically neutral mixes of positive and 
negative ions. Now imagine that the positive ions can penetrate the membrane, while negative 
ions cannot. Here’s a picture taken from an upcoming book “Physical Biology of the Cell” by 
Phillips, Kondev, and Theriot which gives the idea: 

 

If the concentration of ions on the two sides of the membrane (C1 and C2) are the same, then 
equal numbers of positive ions will move left and right, and nothing very interesting will happen. 

But imagine that the concentrations are different, so that C1 < C2. Remember, though both sides 
still start electrically neutral, there are just more ions (both positive and negative) on the outside 
than the inside. What will happen now? In this case, more positive ions will move to the left than 
the right, just by random chance, only because there are more of them available on the right 
ready to move left than vice versa. This directed motion (to the left) emerging from a purely 
random process is what I mean when I speak of the ‘entropic origin of diffusion’. Other things 
being equal, positive charge would continue to flow until the concentration of positive charges is 
equal on the two sides, at which point they would flow back and forth, left and right, in equal 
amounts. 
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But things are not equal. If more positive charge moves left than right, the two sides will no 
longer remain electrically neutral. Instead, the left side will gradually become positive, while the 
right side will become negative. In the end there will be an electric potential difference between 
the two. This has a consequence. Once positive charge starts to build up on the left, it acts to 
prevent new positive charge from entering, pushing it back toward the right.  

If the electric potential difference between the two sides is ΔV, the energy required for an ion to 
move from right to left is ΔE = qionΔV. The only thing which will allow a positive ion to climb 
that barrier, to move upstream to the left, is the fact that each ion possesses thermal energy, the 
random motion associated with heat. Recall that the typical amount of thermal energy possessed 
by such an ion is given by Ethermal = kBT, with kB the Boltzmann constant 1.38x10-23 J/K. 

These two effects, the random thermal motion and the cost of climbing into a higher electric 
potential, are balanced in the following way. The probability of a new positive ion moving to the 
left can be written: 

 

 

Does this make sense? If the change in potential energy qionΔV is zero (as it is at the start), this 
probability is one. If the change potential energy qionΔV is very large, this probability becomes 
zero. But if the change in potential energy qionΔV is about equal to the typical thermal energy 
kBT, the probability of moving from right to left is decent; roughly e-1 or around 34%. So what 
happens is that positive charge builds up on the left until qionΔV ~ kBT. 

This probability allows us to write the ratio of the final concentrations on the two sides in the 
following form: 

 

 

 

And turning this around, we can find what potential difference ΔV will emerge given a certain 
concentration ratio c1/c2: 

 

 

 

Let’s look closely at this equation, which is one form of what is called the Nernst equation.  
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The electric potential across a membrane is what’s being determined. The equation involves a 
scale factor, kBT/qion, which for life (T = 37° C, and qion = qe = 1.6x10-19 C) is about 27 
milliVolts. This tells us that membrane potentials will typically be tens to hundreds of mV.  

The second term in the equation is the logarithm of the final concentration ratio. If c1 > c2, this 
natural log will be positive, ΔV will be negative, and V2 will be greater than V1. That’s not 
surprising. If you have a higher concentration in region 1, some positive charges will migrate to 
region 2, making the electric potential there higher. If c1 < c2, the natural log will be negative, 
ΔV will be positive, and V1 will be greater than V2.  

If the concentrations differ by a factor of 10, this term ln(c1/c2) will be ±2.3. If the concentrations 
differ by a factor of 100, this term will be ±4.6. To make the equilibrium potential ΔV large, you 
need somehow to set up a large concentration gradient across the membrane. For example, if you 
want to make a membrane potential of 27 mV, you need a concentration ratio which is a factor e, 
or 2.72. If the concentration ratio is a factor of 10, you’ll get a membrane potential around 27 
mV * 2.3 = 62 mV. If the concentration ratio is a factor of 100, you’ll get 27 mV * 4.6 = 124 
mV. If you wanted a membrane potential of 270 mV, you’d have to have ln(c1/c2) = 10, which 
would require c1/c2 = e10 = 22,170. So you can see, membrane potentials will typically be around 
10-100 mV. 

So, just to recap: 

• set up a membrane with different concentrations of ions on both sides 
• allow one species of ion (+ or -) to pass through the membrane while blocking the other 
• the ions which can pass will flow until the is a potential difference across the membrane 

which counters the flow 
• the magnitude of this potential difference ΔV will depend on the temperature, the charge 

of the mobile ion qion, and the concentration ratio c1/c2 
 

This is the basic mechanism by which membrane potentials are set up in your body. Here are 
some typical values for the kinds of concentrations and membrane potentials you might find for 
different ions around your nerve cells. 
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Controlling transport and setting the “resting potential” 

The simple picture presented above explains how a potential difference can be generated across a 
cell membrane, and gives an approximate calculation for how large this will be. To understand 
what really happens in a cell, we must remember several things: 

• there are many ions in play, a few of the most important are listed above 
• transport of ions through the cell membrane can be changed rapidly, turning on and off 

the flow of various ions 
• there are several hundred different kinds of ion channels in your cell membranes, each of 

which has different selectivity for ions 
 

All of this complexity allows nerve cells to function in a wide variety of ways. 

Excitable membranes and the “action potential” 

Through the mechanisms describe above, a membrane can become “polarized”, with each little 
bit of it acting like a charged capacitor. Concentration gradients between the inside and outside 
of the cell drive the charging of this membrane as discussed above. The charge state of this 
membrane capacitor at any time is governed by the inside and outside concentration of each of 
the many ions which is around, along with the ease with which each passes through the 
membrane.  

This last bit is the key. The conductivity of various ions through the membrane can be changed 
in large and rapid ways. By altering this conductivity, the polarization of the membrane can be 
altered. Signals are sent in nerves by altering the membrane polarization in a transient way. Let’s 
look first at what happens, then try to get a sense of how it happens. 

Now a repeated caution; what happens in nerve cells is, like many biological circumstances, 
complicated. It’s different in detail in different kinds of cells. But it always acts something like 
this, and is always governed by the same basic physics of charge flow described above. 

Imagine a long axon sitting undisturbed. If everything is working right, there should be a resting 
potential of around -90 mV all along it. This is set up primarily by transport of Potassium and 
Sodium across the membrane. The cell can sit there like this, nice and stable, for as long as 
conditions (ion concentrations, temperature, etc.) remain the same. So long as any changes to the 
membrane polarization (from, for example, flow of other ions) which occur are small, this 
situation is stable. The mechanisms which set up this resting potential in the first place will 
restore equilibrium for small disturbances. 

If, however, something happens to alter the membrane potential beyond a modest threshold, a 
new effect may spring into action. If the local polarization of the membrane is reduced, so that it 
rises above a threshold state, a new channel for ion transport is suddenly opened. When this 
happens, positive Sodium (Na+) ions are suddenly able to diffuse through the membrane, and 
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they rush into the cell, driving the potential from negative to positive, reversing the polarization. 
This sudden flood stops when the membrane reaches the sodium equilibrium potential of about 
+67 mV (see the table above). After this the sodium conduction channels which opened the 
floodgates are closed, and the process which originally created the negative membrane takes over 
again, gradually pumping things back to the roughly -90mV resting potential seen before.  

This pattern is illustrated for both weak (subthreshold) and strong stimuli in the figure below: 

 

This figure shows the membrane potential at one particular location on the axon. What happens 
through the neuron is a chain reaction. When one patch is pulled high, it races higher still (as 
shown above). This drags up the potential of the neighboring patch, causing it to go over the 
threshold, which drags up the next one, etc. 

This transient depolarization of the membrane moves along it with a speed set by the specific 
capacitance of the membrane and the conductance of the ion channels (remember that 
conductance is the inverse of resistance). If the conductance is high or the capacitance is low, 
this can all happen fast. If the conductance is low, or the capacitance is high, it will take longer. 
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A Quick Summary of Some Important Relations 
 

Diffusion, concentration gradients, and the charging of a membrane: 

When only one sign of ion can diffuse across a membrane and a concentration gradient exists, it 
will diffuse until an electric potential builds up across the membrane. 

 in
in-out

out

lnB

ion

k T cV
q c

⎛ ⎞
Δ = − ⎜ ⎟

⎝ ⎠
 

This basic mechanism is what charges membranes. The membrane potential can be altered by 
altering the conductivity of the membrane, opening and closing ion channels which allow 
different ions to pass.  

The difference between diffusion of charge and diffusion of neutral atoms: 

Neutral atoms will always continue to diffuse until concentration gradients are eliminated. These 
ions do not, instead their random flow is quickly halted by the emergence of potential differences 
which resist their flow. 
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Physics of the Life Sciences II: Chapter 7 
 

7.0 Adding a new element: magnetism 

Today we’re going to begin adding a crucial new element to our existing discussion of electricity: 
magnetism. Some of the phenomena of both electricity and magnetism were known in ancient times. At 
the time they seemed completely separate. A magnet doesn’t attract electric charges, and electric charges 
don’t affect compass needles.  

There was one similarity. Both electricity and magnetism involved “action-at-a-distance” forces. Both had 
the ability to reach out across empty space and grab things. We have seen for electricity that this 
mysterious ability to affect distant objects can be understood as a consequence of an electric field which 
is present at every point in space. Not surprisingly, we will soon be introducing a “magnetic field”.  

By the time we are done, we will see that electricity and magnetism are not just similar, and not just 
related in a variety of ways. They’re actually just different aspects of one underlying phenomenon: 
electromagnetism. The connections between electricity and magnetism were initially overlooked because 
in purely static circumstances, there are no connections. Electricity and magnetism come together only in 
dynamic situations, at times when something is changing. Electric charges will affect magnetism only 
when they are moving. Magnets will affect electric charges only when they are moving. This leads to 
many beautiful and subtle connections between the two. It also means that calculus, which describes 
motion and other change, will be central to expressing these connections.  

But we will begin again with the simple: magnetostatics. 

7.1 Mapping a magnetic field 

Experimentation with magnetism began in the ancient world, with natural magnets: stones which exhibit 
magnetic phenomena. In Greece, these stones were commonly found in the region called Magnesia; hence 
the name. Such magnets have two “poles”, called a north pole and a south pole. A little piece of this sort 
of rock, if suspended so that it can spin without friction, will align itself so that its ‘north pole’ points 
toward geographic North. 

Two of these magnets will interact with one another, with north poles repelling north poles, south poles 
repelling south poles, and north poles attracting south poles. This ability to reach out and act at a distance 
suggested to Faraday that a magnetic field existed in addition to 
an electric field. 

To map an electric field, you take a test charge to each point, 
measure the force on it, then the electric field E = F/q. To map the 
magnetic field, Faraday took advantage of the tendency of little 
magnets, compass needles if you like, to align with a local field. 
Taking a little magnet to each point and looking at how they line 
up you can map the magnetic field. What you find when you do 
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this is magnetic field lines which come out of the north pole of a magnet and loop around to go back into 
the south pole. Note the similarity between this magnetic field and the electric “dipole” field created by 
one positive and one negative charge. 

It is useful to compare directly electric and magnetic fields, just to emphasize their similarities and 
differences. 

Electric charges can be separated into positive 
and negative charges 

North and South magnetic poles always come 
in pairs 

Electric field lines emerge from positive 
charges, the sources of electric field 

Magnetic field lines emerge from the north 
poles of magnets 

Electric field lines go into negative charges, the 
sinks of electric field 

Magnetic field lines go into the south poles of 
magnets 

Electric field is mapped by measuring the force 
on test charges 

Magnetic field is by examining the alignment 
of magnetic dipoles 

 

One remarkable difference between electric and magnetic charges is that in magnetism you never find 
“monopoles”. You can never take a magnet which starts with a north and south pole, split it in half, and 
end up with a separate north pole and south pole. This is perfectly possible with electric charge, but not 
the magnet poles. The reasons for this asymmetry remain unknown, though many suspect they are related 
to very fundamental questions in physics. 

The Earth as a magnet 

The Earth itself is such a dipole magnet. If you think a bit about what 
the magnets in compasses do when you use them, you should be able to 
see that the  north pole of the Earth’s internal magnet is at the 
geographic South pole (where the penguins live), rather than at the 
geographic North pole (where the polar bears live).  The Earth’s 
magnetic dipole is not perfectly aligned with its axis of rotation; there is 
an angle of about 7.3°  between them. 

This intrinsic magnetic field of the Earth is thought to be generated by 
internal electric currents associated with the Earth’s molten core. We 
will see later that electric currents can indeed create magnetic fields. The Earth’s field plays several 
important roles for life. First, it helps to shield life on Earth from damaging high energy protons from the 
solar wind and cosmic rays by deflecting them toward the North and South magnetic poles. Second, the 
magnetic field of the Earth is present all the time, day and night, cloudy and clear. As a result, many 
organisms use the Earth’s field to navigate over distances both very large and quite small. 

On long timescales, the Earth’s magnetic field is rather unstable. The magnetic poles wander relative to 
the geographic poles on timescales measured in years. Meanwhile there are also much rarer and more 
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dramatic changes. Every so often, typically once a million years, the magnetic field of the Earth actually 
reverses direction. These magnetic field reversals are not completely understood, though the geological 
evidence for their reality is incontrovertible.  

7.2 Magnetic forces on a moving charge 

The first connection between electricity and magnetism involves electric charges moving through a 
magnetic field. An electric charge in a magnetic field will experience a force if it is moving through the 
field and the velocity of the charge has at least some component perpendicular to the magnetic field 
direction. We can quantify this force by writing: 

 

 

We’ve used the cross product notation here to signify that this force depends on the perpendicularity of 
the particle velocity and the magnetic field. In addition, this notation tells us the direction of this magnetic 
force. It’s useful to single out a number of features of this: 

• The force acts in direction perpendicular to both  the particle velocity v and the magnetic field B 
• The magnitude of this force can be written qvBsin(θ) (where θ is the angle between v and B), or 

qv⊥B (where v⊥ is the component of v perpendicular to B), or as qvB⊥. In any case, it depends on 
the charge, and the velocity, the magnetic field, and the degree to which v is ⊥ to B 

• If the velocity of the particle is entirely along the direction of the magnetic field, there will be no 
magnetic force 

• Since the force always acts perpendicular to the direction of motion, it can never do work on the 
charge, it can never change its energy 
 

In fact this magnetic force is just a part of a larger “electromagnetic” force usually called the Lorentz 
force on a charge. This can be written more generally: 

 

 

This Lorentz force includes both electric and magnetic forces which a charge q might experience. 

Quantifying the magnetic field 

This magnetic force can be (and is) used to quantify the magnetic field, rather than simply to map it. It 
defines the magnitude of the magnetic field as: 

  FB
qv⊥

=  

The units for magnetic field are N/C(m/s) = Ns/Cm. One Newton-second per Coulomb-meter is called 
one “Tesla” (T), a unit named for electrical inventor Nikolai Tesla. It turns out that one Tesla is a pretty 
large field, so it is common to use an alternative unit, the Gauss. They are simply related: 
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  1 Gauss = 10-4 Tesla 

What happens to a charge moving in a magnetic field? Let’s take a simple example, a charged particle 
moving with velocity v in a plane perpendicular to a constant magnetic field B. In this case, since the 
angle between v and B is 90°, the magnitude of the force is F=qvB. It acts 
perpendicular to the velocity, and will cause the particle to travel in a circle, 
with the magnetic force providing the “centripetal force” required for it to 
circulate. The radius of the circle it will orbit in is given by: 

  
2mv mvqvB = or r = 

qBr
 

Notice that the top of this is the momentum of the charged particle. If this 
momentum is large it is difficult to change the direction of motion of the 
particle, and the radius of the circle it orbits in will be large. If the magnetic 
field or the charge of the particle is large, then there will be a lot of force available to turn the particle. 
This will cause the radius of the circle in which it orbits be smaller. 

One thing to beware of in this: the magnetic force depends on the electric charge of the moving particle. 
Since electric charges come in both signs (positive and negative) the direction of the magnetic force 
depends on the sign of this charge. A moving positive charge and a moving negative charge with the same 
velocity will experience forces in opposite directions. In the example above, while a positive charge will 
circulate clockwise, a negative charge would circulate counterclockwise. 

If the velocity of the particle is not completely perpendicular to the magnetic field then the particle will 
travel in a helical path, rather than a circle. The part of the velocity along the field continues unchanged, 
while the part perpendicular to the field turns around and around, with the particle spiraling along the 
field line. If field lines bend gradually, the particles may spiral along the lines, following them. This effect 
is important for guiding solar wind particles into the atmosphere near the North and South poles of the 
Earth, where they smash into the atmosphere, producing the Aurora. This mechanism is also important for 
solar flares. 

7.3 Mass spectrometers: an important 
application 

 There is one very important practical application of the 
magnetic force on moving particles: the mass spectrometer. 
Just as an optical spectrometer takes light and analyzes its 
content by spreading it out, the magnetic spectrometer 
takes charged particles and analyzes them by spreading 
them out.  

The basic mass spectrometer begins with some charged 
particles with charge qi and masses mi which you want to 
identify. The process begins by accelerating the particles 
with an electric field. Once they have been sped up, the 
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particles are injected into a region of constant magnetic field. Once in this region with field the paths of 
the charged particles bend, with a radius of curvature which depends on both the charge and momentum 
of the particle according to the equation r = mv/qB.  

By recording where the ions land, you can determine what kinds of particles are present in the beam. 
Mass spectrometry of this kind is particularly good for identifying the composition of very small samples, 
since it effectively counts very small numbers of atoms. Let’s work out the details for a simple example.  

First atoms you’re interested in have to be vaporized, so they are free to move, and ionized, so they may 
be accelerated and analyzed. There are various ways to do this, but let’s assume it is done and that each is 
ionized and has a positive charge +qion. The process then continues by accelerating the ions across an 
electric potential difference V. This gives them an energy qionV = 1/2mionv2. This can be used to find the 
velocity: 

 v = (2qionV/mion)1/2  

The particles then enter the region of constant magnetic field and have their paths bent with radii that 
depend on their charge and mass. Putting in the velocity from the accelerating stage, we find  

 ion ion ion ion

ion

m m 2q 2m1r = =  = 
q Bion ion ion

v V V
q B B m q

 

If you then measure r, B, and V, the charge to mass ratio of the ions is 

 2 2

2ion

ion

q V
m r B

=  

Notice that all you can really measure with this is the “charge-to-mass” ratio of the ions, rather than their 
masses. Since the ions can only be charge in integer multiples of the electron charge, you can often work 
out from this the actual masses of the ions as well. 

Applications of mass spectrometry 

Mass spectrometry is used in many applications where identification of small samples is needed. It is 
especially useful, nearly essential, for the identification of different isotopes of an element in a sample. 
Isotopes are atoms with the same number of protons, and hence electrons, but different numbers of 
neutrons. These are denoted by adding to the chemical symbol the combined number of protons and 
neutrons in the nucleus. For example 12C is “carbon 12”, the usual type of Carbon with 6 protons and 6 
neutrons. Alternative forms include 13C and 14C.  

Because they have the same numbers of electrons different isotopes are chemically almost identical, 
though they may have quite different masses. Their chemical similarity makes it very difficult to separate 
them out using chemical methods. Mass spectrographs, which separate based solely on the charge to mass 
ratio, are much more useful for this purpose. As a result, they are the essential tool for determining 
isotopic composition. Knowing the isotopic composition of an object can provide important clues about 
the origin of an object. A few applications follow. 
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Isotopic Dating 

Carbon appears in the atmosphere in three isotopic forms. 12C is the most common, making up 98.93% of 
naturally occurring carbon. 13C is also relatively common, making up almost all of the remaining 1.07%. 
A very small amount of 14C is also present, about one part in a trillion (10-12). It is rare because it is 
radioactive, decaying into 14N with a time constant of 5730 years. This means that if you begin with some 
number of 14C atoms N0, you will find after some time t that the amount remaining is: 

 N(t) = N0e-(t/5730 years) 

This decay is the reason for the rarity of 14C. Any 14C which might have been present at the formation of 
the Earth is long gone. The only way to have any in the atmosphere now is to produce it anew. This 
happens on Earth when energy ions called cosmic rays smash into the top of the atmosphere. This 
production mechanism is adequate to maintain the tiny pool of 14C which we typically find. 

Living things are built partly of carbon, which they absorb from the atmosphere. So you and I have about 
a part in a trillion of our carbon in this radioactive 14C form. Once you die, your body stops incorporating 
new carbon. From then on, the fraction of 14C in your remains falls according to the decay law above.  

If you find organic remains and can accurately measure this 14C content, you can tell how long ago they 
died. This is a prime means for measuring the age of organic remains, and is accurate for organic material 
with ages less than about 40,000 years.  

Other forms of isotopic dating exist, similar in spirit, but differing in the half-lives of the radioactive 
elements they rely on. For example, 238U has a half-life of about 80,000 years. Various techniques of this 
kind have been used to determine the age of the rocks which make up the Earth, currently best estimated 
as 4.56 billion years. 

Material analysis 

Mass spectrometers are increasingly important for protein characterization, and essential part of modern 
biochemistry. They are also extensively used in space exploration, where they provide a simple and 
reliable method for identifying the composition of materials in space and in the atmospheres of other solar 
system bodies.  

7.4 Magnetic force on a current carrying wire 

We have seen last time that a magnetic force is created when a charged particle moves through a magnetic 
field with a velocity at least partly perpendicular to the field. The same force acts when charges travel in a 
wire which carries a current. A little piece of such a wire with length ΔL has a total charge passing in 
some time: 

 tot
Lq I t I

v
Δ

= Δ =  
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where we have related the amount of charge passing through a length ΔL to the velocity through ΔL = 
vΔt. Rearranging this, we find qtotv = IΔL. The force on some length of wire ΔL with current I traveling 
through it is: 

 F = qtotv x B = IΔL x B 

In this, we have written ΔL as a vector with the idea that it has a direction the same as that of the current. 
Just as with individual charges, if the current is traveling along the field B there will be no force. 

Current loops and magnetic torque 

Imagine a loop of wire in which a current flows. If this loop is 
placed in a region of constant magnetic field, each of the 
segments of wire in the loop may experience a magnetic force. In 
the example at the right, the left hand wire experiences an 
upward force while the right hand wire experiences a downward 
force. The wires on the front and back sides experience no force, 
as they are parallel to the field. 

 

You can show that this application of the normal magnetic force on a current loop leads to a torque which 
causes the current loop to rotate. There is one orientation in which the current loop will feel no torque: 
when the plane of the loop is perpendicular to the magnetic 
field. An example is shown in the figure at right, in which the 
magnetic field goes into the page. There are still magnetic 
forces here, but they push all four sides of the loop outward, 
stretching the loop rather than causing it to rotate. The 
interaction between the magnetic field and the loop creates a 
torque that pushes the loop to align so that the plane of the 
loop is perpendicular to the field.  

The magnetic moment 

The effect of field on a current loop can be simply quantified by defining the “magnetic moment” of the 
loop. This magnetic moment is a vector μ with magnitude equal to the current in the loop multiplied by 
the area of the loop: IA. The direction of this magnetic moment vector is perpendicular to the loop, 
pointing out in a direction given by the right hand rule. If you curl the fingers of your right around the 
loop in the direction the current flows, your thumb will 
point in the direction of the magnetic moment vector. This 
is illustrated in the figure. With this definition of the 
magnetic moment μ, we can write the torque on the 
magnetic dipole as: 

 

Into page Out of page 

B
GGG

×= μτ
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When μ is parallel to B, the torque on the loop is zero. When μ is not parallel to B, there is a magnetic 
torque which tends to align the magnetic moment of the loop with the field B.  

In this way, a little current loop acts exactly like a little compass needle. Both are pushed to align with a 
magnetic field, but are able to remain at rest so long as they are so aligned. As it turns out, we can treat a 
little current loop like this exactly as if it were a little magnet. Even more than this, we will see that such a 
little current loop actually is a little magnet. We care about such little current loops both because some of 
our technology (especially electrical generators) uses such loops. But also because electrons orbiting 
atoms are also little current loops, and these can give atoms magnetic moments which tend to make them 
align with fields.  

7.5 Moving charges produce magnetic fields: the law of Biot-Savart 

The next major connection between electricity and magnetism has to do with the way in which magnetic 
fields are produced. It was first discovered by Oersted, who was experimenting with currents produced by 
batteries for the first time. He noticed, apparently by accident, that when he turned a current on in a wire, 
nearby compass needles changed the direction they pointed, and when he turned it off, they returned to 
their original orientation. He correctly surmised that the current was actually producing a new magnetic 
field.  

The magnetic field produced by a little piece of current with length dL carrying current I is given by the 
Biot-Savart law, which we give here compared to the familiar form for the electric field due to a charge 
dQ: 

 

 

There are a few things to notice. First, there’s a new strength 
constant here. Instead of k=1/4πε0=9x109Nm2/C2, we have μ0/4π = 
10-7 Tm/A. The constant μ0 which shows up here is called the 
“permeability of free space”, and has a magnitude μ0 = 4πx10-7 
Ns2/C2. Second, the direction of this little bit of magnetic field dB is perpendicular to both dL, and r, the 
vector which extends from the current segment to the point where you want to know the field. In the case 
shown in the figure here dL x r is a vector into the page, so that’s the direction of the bit of magnetic field 
produced at point P by this bit of current. 

Just as we can use the formula for electric field from a charge to find the electric field from any charge 
distribution, so too we can use this Biot-Savart formula to determine the magnetic field from any set of 
currents that might flow. There are a few important, simple arrangements for which it is useful to know 
the answers. 
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Field due to an infinite wire 

The magnetic field due to an infinite wire is very simple. It circulates around the wire in rings, with a 
magnitude that falls off as you go farther from the wire. The 
magnitude of the field is given by the simple relation: 

 

 

The direction of the magnetic field produced by this wire is given by 
the right hand rule, as shown in the figure. As usual, we can use this 
result even when the wire isn’t actually infinite, so long as we are 
interested in the field at distances from the wire much less than the 
actual length of the wire. 

Field due to a current loop 

A current loop produces magnetic field which looks like that of a magnetic dipole. It has magnetic field 
lines which come out the top of the loop and circulate back into the bottom of the loop. From the Biot-
Savart law, it is easy to show that the field right at the center of the loop with radius rloop has magnitude: 

 

 

Be careful with this result. This is only the field at the center of the loop. The shape of the field at other 
points is shown in the figure, but its magnitude varies in 
a relatively complex way. Notice that the shape of this 
field produced by a current loop is just like the dipole 
magnetic field produced by a permanent magnet. They 
are in fact precisely the same, and permanent magnets 
are actually due to little atomic current loops from a 
bunch of atoms with magnetic moments aligned. 

Field due to a solenoid: a whole stack of loops 

If we take a whole series of loops and stack them on top of one another, as we might do if we made a 
tightly wound coil of wire, we would make a “solenoid”. If we assume that this stack of coils is infinite in 
length (impossible, but possible to reasonably approximate) then we can show that the internal magnetic 
field, inside the coil, is constant in space everywhere in the coil and has magnitude: 

 

 

where N is the total number of loops of wire stacked up in the solenoid 
and L is the total length. This is sometimes written in the second form 
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with n=N/L equal to the number of coils per unit length.  The solenoid, like a single loop, looks and acts 
like a normal bar magnet. It too is a magnetic dipole and will generally want to align with a magnetic 
field. 

A nice tool for these calculations: Ampere’s Law 

There is a powerful theorem relating magnetic field to currents which can be used in deriving some of the 
results above called Ampere’s Law. It says that if you imagine a loop in space and can go around that 
loop adding up at every point the amount by which the magnetic field is along the loop, that sum will be 
related to the total current which passes through the loop. We write this mathematically as: 

 

 

The left hand side of this is called a contour integral or a line integral, and it means what we said above. 
Choose a loop in space, then go all the way around it, calculating B⋅dl for each little segment and adding 
it up. This integral is then equal to a constant (it’s just a sum of 
scalar dot products) which is related to the amount of current which 
passes through the loop. 

Now while this is always true, it’s not always so useful. But let’s 
look at one example where it is; the magnetic field due to an infinite 
wire. In this case, we know the magnetic field will circulate around 
the wire. Symmetry argues that it should not vary along the wire, 
though it might vary as you move away from the wire. Let’s take the 
loop on top of the picture. Here B is always along dl, so B⋅dl is just 
Bdl, and the loop integral is just B(2πr). Ampere’s law tells us: 

 B(2πr) = μ0I  or 
2

o IB
r

μ
π

=  

This is just the result we saw above. It can also be derived from the Biot-Savart relation, but this much 
more general Ampere’s law makes it simpler to show. 

7.6 Magnetic forces between wires, in loops, and in solenoids 

Now we can combine two ideas from above; the notion that a current carrying wire in a magnetic field 
will experience a force, and that a current carrying wire will produce a magnetic field. Let’s consider two 
parallel wires, separated by a distance r, with a current I 
traveling in each of them. Wire 1 will produce a magnetic 
field at the location of wire 2. In our picture here both 
currents go into the page. For this, the field from wire 1 
circulates clockwise, making the ILxB force pull wire 2 
to the right. Not surprisingly, the field produced by wire 2 
and wire 1 creates an equal and opposite force on wire 1, 
pulling it toward wire 2. The magnitude of each force is: 
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Any two wires in which the current runs in the same direction are 
attracted to one another, while any two wires in which the currents run 
opposite one another are repelled. 

This effect has an important impact on current loops and solenoids. First consider a loop. Every point on 
the loop has another point straight across from it on which current flows in the opposite direction. This 
means each piece of the loop is being pushed outward. This magnetic self interaction pushes the loop to 
expand. Only some mechanical strength prevents the loop from pushing itself apart. 

In a solenoid it’s even more complex and interesting. Each individual loop is pushed outward just as 
before, but now you also have one loop stacked up on another. These neighboring loops have currents 
flowing in the same direction. So even while each loop is trying 
to expand, the neighboring loops are being pulled together, 
creating forces which endeavor to squash the solenoid.  

These internal forces can become very large in loops and 
solenoids in which large currents circulate. This is a major factor 
which must be considered in the design of large magnets like 
those used in magnetic resonance imaging in hospitals.  

7.7 Dipoles in fields both uniform and not 

We have seen that magnetic dipoles experience a torque if they are placed in a uniform magnetic field. 
This torque pushes the dipole to “align” with the field. It is helpful to remember that exactly the same 
thing happens with electric dipoles in electric fields. Here are the two laid out side by side: 
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This is a magnetic dipole in a uniform magnetic field. 
There is no net force on the dipole, but there is a net 
torque which tends to align it with the field. The dipole 
moment μ=IA.
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This is an electric dipole in a uniform electric field. 
There is no net force on the dipole, but there is a net 
torque which tends to align it with the field. The dipole 
moment p=qd. 
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In each case, the dipole won’t move in any direction on average, because there is no net force acting on it. 
But it will experience a torque that will make it rotate until its moment is aligned with the external field. 
When it does this, it will be at equilibrium. The net torque on such an aligned dipole is zero and the 
potential energy it has will be at a minimum.  

There is one more thing to notice. In addition to the uniform external field, each dipole produces its own 
electric or magnetic field; a dipole field. When the dipole reaches its equilibrium, aligned state, the field 
from the dipole will be arranged to partly cancel the uniform external 
field. It is this fact that makes the aligned state the lowest energy state. 
In this aligned state there is actually less field, and since the field 
contains energy, there is less total energy around. This is shown in the 
figure to the right. In it, a uniform electric field (pointing down) is 
disturbed locally by the presence of an aligned electric dipole. In the 
region of the dipole the electric field strength is reduced. This reduction 
in field strength due to dipole response to a field is why electrostatic 
effects are so reduced in a polar medium like water. It is why we write 
the permittivity of water εwater = Dε0 with the factor D ~ 80. In water 
you need a LOT more external field to get the same effect as you would in a vacuum. 

What happens if the dipoles are in non-uniform electric and magnetic fields? To see this, let’s draw a 
picture of such a situation for each: 

 

When you put a dipole in a non-uniform field like this, it experiences both a net torque and a net force. It 
is this fact that actually causes magnets to attract one another, pulling one another together, instead of 
merely aligning with one another. When two magnets are far apart, the magnetic field the 2nd magnet sees 
from the first is nearly uniform. When they get closer, the 2nd magnet sees that the magnetic field from the 
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This is an electric dipole in a non-uniform electric 
field. Now there is a net force on the dipole. It will be 
pushed to the left and a little up. There is also a net 
torque which tends to align it with the field. 
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This is a magnetic dipole in a non-uniform magnetic 
field. Now there is a net force on the dipole, it will be 
pushed up and a little right. There is also a net torque 
which tends to align it with the field. 
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first changes; it no longer looks like a uniform field. The effect gets stronger as they get closer. This is 
why two magnets aligned N to S and S to N will slowly move together, then once they get close they will 
“snap” into one another.  

Just the opposite happens when the magnets are aligned N to N and S to S. Then when they get close they 
strongly repel one another.  

Magnetic dipole oscillations 

We have seen that a magnetic dipole in a uniform magnetic field will experience a torque which tends to 
align it with the external field. Imagine how the dynamics of this work: 

• You start with a dipole and no field, then turn on the field in a direction not aligned with the 
dipole.  

• It experiences a torque which starts it rotating toward the 
equilibrium alignment, rotating faster and faster  

• It gets to the equilibrium alignment, but it’s moving fast, so 
it swings past. Now the torque is slowing it down 

• Eventually, it stops moving past the aligned state, the torque 
pulls it back, and it swings back the other way 

• It will continue oscillating back and forth around the 
equilibrium alignment, just like any oscillator 

• The frequency of oscillation will depend (as it always does) 
on the strength of the restoring force and the inertia. In this 
“rotational oscillator” the restoring force is the torque due to the field, and the inertia due to the 
mass and shape of the dipole itself. Smaller, lower mass dipoles will oscillate more quickly. 
Larger, higher mass dipoles will oscillate more slowly. 

• If there is damping (some way for energy to be drained from this oscillator) then the oscillations 
will either slowly die away (if it is underdamped) or will never occur (if it is overdamped). 
 

Each dipole magnetic oscillator of this type will oscillate with an angular frequency known as the Larmor 
frequency: ω = γB. In this relation, both the strength of the magnetic moment of the dipole μ, and the 
inertia of the dipole (which slows oscillations) are included in the single factor γ. This factor γ is called 
the “gyromagnetic ratio” of the dipole. This angular frequency ω corresponds to a frequency of f = ω/2π 
= (γ/2π)B. It is fairly common to tabulate this factor γ/2π rather than 
γ. 

This way of quantifying things is very useful when talking about the 
dipole moments of atomic nuclei because they are all quite precisely 
the same. Any two Hydrogen nuclei have the same magnetic 
properties, with γ/2π = 42.6 MHz / Tesla. If you put a Hydrogen 
nucleus in a 1 Tesla magnetic field, then bump it away from 
equilibrium, it will oscillate back and forth with a frequency of 42.6 
MHz. That is, it will oscillate 42.6 million times per second. You can 
see that the more massive nuclei all have smaller frequencies of 
oscillation. This shouldn’t be surprising, as they all have more 
inertia. 

Nucleus γ / 2π (MHz/T) 

1H 42.576 

3He 32.434 

7Li 16.546 

13C 10.705 

14N 3.0766 
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Magnetic resonance imaging 

These magnetic resonances are now one of the most important tools of medical imaging. Here’s how it 
works. You put the object (a person perhaps) you want to study in a strong magnetic field and wait a bit 
for all the magnetic dipoles in the sample to settle to equilibrium. Then you introduce a sudden change to 
a new stable field. This leaves all the magnetic dipoles in a non-aligned state. They all begin to oscillate, 
just as described above. As it turns out, an oscillating magnetic dipole like this will emit electromagnetic 
waves which have the frequency it oscillates with. So, an oscillating Hydrogen nucleus will emit radio 
waves with a frequency f = (γH/2π)B.  

If you detect emission of radio waves with this frequency you know there is Hydrogen in the sample, and 
the magnitude of the signal tells you something about how much there is. To tell where the Hydrogen is 
in the sample (which you obviously need if you’re going to image the person), you make the magnetic 
field the person is in vary in space B(x,y,z). Each Hydrogen dipole oscillates with a frequency determined 
by its local field. Measuring how much radiation you get with each frequency tells you how much 
Hydrogen there is in each position (x,y,z). Measuring the mix of frequencies tells you about the 
distribution of Hydrogen nuclei in space. 

Magnetic dipoles and life 

Life on Earth lives embedded within the magnetic field of the Earth. Not surprisingly, living things have 
evolved ways to take advantage of this. Most of these involve navigation. The full range of animals able 
to sense magnetic fields in a manner adequate for navigation is unclear, but it is certain that many 
migratory species, including birds and probably marine mammals do. It is also clear that while the 
magnetic sense is useful to them, they actually navigate using a rich array of clues drawn from all their 
senses, very much as you might. 

One surprising group of magnetic navigators is the magnetotatic bacteria. These are single-celled 
organisms which live in aquatic environments. They are motile, able to propel themselves through the 
water. They live in the anaerobic environments which characterize many marine sediments. So as a rule 
they want to swim to the bottom. But bacteria are not what you’d call smart, and lack very complex 
senses. Usually they just swim at random and stop if they land somewhere which seems better. 

The trick of magnetotatic bacteria is to grow within themselves a little inorganic needle of magnetic 
material, usually Fe3O4 or Fe3S4. The magnetic dipole moment of this 
needle is large. When it interacts with the Earth’s magnetic field it 
generates a torque large enough to align the entire bacterium with the 
Earth’s field. Since the Earth’s magnetic field lines actually point down 
into or up out of the Earth (except at the equator), pointing along the field 
line can very nicely lead you into the muck on the bottom.   

How to choose which way to go? Bacteria in the Northern hemisphere, where the field lines point down 
into the Earth would like to swim down along the direction of the field. Bacteria in the Southern 
hemisphere, where the field lines point up out of the Earth would like to swim opposite the direction of 
the field. So that’s just what they do. The picture below shows the arrangement of the needle for Northern 
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hemisphere examples and Southern hemisphere examples. The picture shows one of these beasts, inside 
of which you can easily see the little magnetic needle. 

 

  

Northern Hemisphere 

Southern Hemisphere 

Physics 235 Winter 2011 
Copyright Timothy McKay

99



A Quick Summary of Some Important Relations 
 

Mapping magnetic field: 

Magnetic field can be mapped by placing small test magnets at each point; they will align with 
the magnetic field. The field of a typical bar magnet, or the Earth, is a dipole field, with a 
magnetic north pole that is a source of field lines, and a south pole that is a sink of field lines. 

Magnetic forces on moving charges: 

 magneticF qv B= ×
G GG

 

Circular motion of a charge in a constant magnetic field: 

 mvr
qB

⊥=  

Mass spectrometry: 

The circular motion created when a charged particle moves in a magnetic field can be used to separate 
particles with different properties in a mass spectrometer. A typical mass spectrometer might accelerate 
ions through an electric potential difference V, then measure their magnetic gyroradius r in a magnetic 
field B to find a charge to mass ratio: 

 2 2

2q V
m r B
=  

Force on a current carrying wire: 

 F i L B= Δ ×
G G G

 

Torque on a current loop: 

     with     B IAτ μ μ= × =
GG G G  

Magnetic field produced by a current: 

The general relation (analogous to Coulomb’s law) is the Biot-Savart law: 

 0
2

ˆ
4

IdL rdB
r

μ
π

×
=

GG
 

This is used to find the magnetic field from a long wire, a loop at its center, and a solenoid. 
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Currents and magnetic circulation – Ampere’s Law: 

The fact that a current produces magnetic field that loops around it can be expressed as Ampere’s Law for 
magnetic circulation, which is closely related to Gauss’s Law for electric flux. 

 0 enclosedB dl Iμ=∫
GG

iv  

Magnetic forces between wires: 

Since currents created magnetic fields, and currents experience forces when in fields, currents induce 
magnetic forces on one another. Two parallel currents will attract one another, while antiparallel currents 
will repel one another. The size of this force depends generally on the product of the currents and the 
inverse of the distance between the wires. 

Magnetic dipoles in magnetic fields: 

A dipole in a constant field may experience a torque attempting to align it with the field. A dipole in a 
varying field may experience both a torque tending to align it with the field and a net force pushing it 
through the field. It is this effect, a net force exerted on a dipole in a non-unifrom magnetic field that 
causes two bar magnets to attract one another, rather than simply aligning with one another. 

Oscillations of magnetic dipoles around magnetic field alignment: 

If a magnetic dipole is moved out of alignment with the local magnetic field, it will oscillate around the 
aligned direction with an angular frequency determined by the gyromagnetic ratio of the dipole γ, which 
depends on both its dipole moment and its rotational inertia. 

 Bω γ=  
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Physics of the Life Sciences II: Chapter 27 
 

Another connection: changing magnetic fields produce electric fields 

We have seen already two connections between electric and magnetic phenomena: 

• a charge moving in a magnetic field experiences a force F = qv x B (and as a result a 
current carrying wire also experiences a force Fwire = iL x B) 

 

• a current produces a magnetic field  
 

We now introduce a third connection between the two. The magnetic fields produced by currents 
were discovered by accident, by noticing that compass needles were deflected whenever sizable 
currents were turned off or on nearby. As soon as this was discovered, Michael Faraday set out 
to determine whether the opposite was true as well, whether a magnetic field could somehow 
produce a current. 

He discovered very rapidly that if be moved a magnet around somewhere near a coil of wire, a 
current would be induced in the wire. This current came about as a result of an “electromotive 
force” or EMF. This EMF is really very like a voltage, in the sense that, if the loop has a total 
resistance R, the current in the loop will obey the relation: 

  EMF = IR or EMFI
R

=  

EMF is different from the voltage on a battery though.  

Normally when we go around a loop in a circuit like we have done before, the total change in 
electric potential is zero. This is just Kirchoff’s loop rule. Now we’re saying that, in going 
around the loop once, the potential goes up by some amount equal to the EMF. You can think of 
it as being spread all the way around the loop, kind of like a distributed battery. It makes each 
little part of the loop like a small battery with  

2
dLV EMF

rπ
=   

in series with a little resistor 

2
dLdR R

rπ
=  

2
0 ˆ

4 r
rLIdBd ×

=
GG

π
μ
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In a quick series of experiments he uncovered the main phenomenological features of the 
“magnetic induction”. These include: 

 

1. A static, unchanging magnetic field induces no current at all 
2. If the magnetic field going through the loop increases, the EMF increases. If the magnetic 

field through the loop decreases the RMF is reversed, pushing current in the opposite 
direction. 

3. The magnitude of the EMF depends on how rapidly the field through the loop is changing 
4. The magnitude of the EMF depends on how many times the wire goes around the loop 
5. Stronger magnetic fields produce bigger EMFs 

27.1 Magnetic flux and Faraday’s law 

To understand this magnetic induction in detail we need to define the “magnetic flux”. This 
magnetic flux measures how much magnetic field passes through some surface (like the interior 
of the loop). It is calculated by defining, for each little bit of the surface, an area vector dA. This 
vector has a magnitude equal to the area dA and a direction which is perpendicular to this little 
piece of surface. If the surface is a closed surface (like a sphere), the direction of dA is usually 
taken to be out of the surface. If it is not a closed surface (like a loop) the direction has to be 
clearly defined. 

If some magnetic field is passing through this surface, then at the center of each little element dA 
there will be some magnetic field B. If the magnetic field goes straight out through the surface, 
the flux will be dA*B. If it goes straight along the surface, the magnetic flux will be zero. From 
these limits you can guess that the magnetic flux in general will be given by dΦB = dA⋅B = 
dA*B*cos(θ).  

The total flux through the surface is then found by adding up the 
flux through each little bit dA: 

 

 

In the example figure to the right you have B parallel to dA everywhere, so the total flux ΦB = 
BA. If we turned this loop sideways in the field, so the B would always be perpendicular to dA, 
then the magnetic flux through the loop would be zero. 

Once you know how to calculate this flux, Faraday’s law tells you that the EMF induced in any 
loop is given by: 

 

∫ ⋅=Φ AdBB

GG

dt
d BΦ

−== ξEMF
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How might the magnetic flux through a loop change? There are three independent ways to do 
this: 

• change the magnitude of the magnetic field 
• change the angle between the magnetic field and the loop 
• change the area of the loop 

 
Of course it’s possible to do all three at once, but any one of them will result in a changing flux 
and consequently in a non-zero EMF.  

The minus sign in Faraday’s law is really a reminder that the EMF will be induced in a way 
which resists this change in magnetic flux. How does this work? The EMF in the loop will 
produce a current IL = EMF / R. When this current in the loop flows, it will produce its own 
magnetic field. The field from the loop will itself produce some amount of magnetic flux through 
the loop. And here’s the connection: the current will flow in the loop in whatever direction is 
required to so that the flux from the loop will act to reduce the change in flux which is driving 
the EMF in the first place.  

Let’s say that another way. If the flux through the loop due to the external field is reduced, the 
induced EMF will produce a current which will create flux that tries to replace the external flux 
which has disappeared. If the flux through the loop due to the external field is increased, the 
induced EMF will produce a current which will create flux that tries to eliminate the increase in 
external flux.  

The figure at right shows an example. The magnet, with north 
pole down, is moving toward the loop. This increases the 
magnetic flux going down through the loop. The EMF will be 
induced so that it attempts to prevent this change. Since more 
magnetic field is going down through the loop, the current 
created by the EMF will flow to send field back up through the 
loop, trying to cancel the increase. To accomplish this, the 
current in the loop has to go counterclockwise as we see it 
here. If we pulled the magnet back upward, all of this would 
reverse. The external flux would decrease and the induced 
EMF would drive current the other direction, trying to replace 
the flux which has been lost. 

How is EMF related to electric field? Remember back to our discussion of the relation between 
electrical potential V and electric field E. We said that the electrical field always points toward 
lower electric potential, and that if you add up the product of E⋅dl along a path from one place to 
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another you get the potential change ΔV. What we have here in the EMF is really adding up E⋅dl 
all the way around a loop. This allows us to write Faraday’s law of induction in another way: 

 

 

 

When you have the magnetic flux through a loop changing, it means the sum of E⋅dl around that 
loop is non-zero. It means there is some net “circulation” of electric field around that loop. This 
alternate way of thinking about the EMF will be very important at the end of our discussion of 
electricity and magnetism next time. 

Lenz’s law and energy  

The direction of the induced EMF discussed above is sometimes called “Lenz’s Law”. There is a 
simple way to see, from energy conservation, that it must be so. Imagine a loop dropped into a 
region of uniform magnetic field pointing out of the page.  

When the loop is at position A, falling downward, the magnetic 
flux through the loop is zero and not changing. No EMF is induced. 
When the loop starts to enter the field region (as at point B), the 
magnetic flux out through it begins to increase. A current is 
induced which resists this. The induced current produces magnetic 
field back into the page, to resist the increase coming out of the 
page. To do this, it must be a clockwise current. 

At point C, in the midst of the fall, the magnetic flux is positive but 
unchanging. At this point again no EMF is produced. At point D, as 
it is leaving the magnetic field, the magnetic flux out through the 
loop is decreasing, and the induced current acts to try to replace the 
flux which is being lost. To do this, the induced current must be 
counterclockwise. Finally, at E, the flux is zero and unchanging so 
no current is induced.  

Now we have to think about another aspect of this. After all, when the loop is at B it has a 
current flowing in it, and that current is actually in a magnetic field! Any current in a magnetic 
field experiences a force F = iL x B.  

For this case, the net force on the loop due to this is: 

• Point A: zero (there is no current and no field) 
• Point B: upward (it will tend to slow the fall of the loop)  

A

B

C

D

E

dt
dldE BΦ

−=⋅= ∫
GG

EMF
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• Point C: zero (there is no current though there is field) 
• Point D: upward again! (it will also tend to slow the fall of the loop) 
• Point E: zero (there is again no current and no field) 

 
Every time there is a magnetic force coming about because of the induced currents, it resists the 
motion, slowing the fall in this case.  

Imagine what would happen if it worked the other way. This loop would reach the field region, 
be shoved forward by the magnetic force, cruise through the middle, then be accelerated again, 
falling faster in the presence of the field than without. All the time it would extract no energy 
from the external field, which doesn’t change at all. So this couldn’t happen; you can’t just create 
energy in the falling loop without paying for it!  

You can, however, take energy out. Where does it go? The energy removed from the loop by 
slowing it shows up as Ohmic I2R energy losses in the loop itself. So of course it’s not lost, it’s 
just converted into thermal energy in the loop. 

This is the real reason for Lenz’s Law, the minus sign in Faraday’s law of induction. If it weren’t 
there, Faraday’s law would violate the conservation of energy. While this would be cool, and 
would give us a source of free energy, it’s impossible. 

Interestingly, the slowing observed in this falling ring occurs any time you move metal in a 
magnetic field. Imagine that, instead of a loop, you drop a solid piece of metal; something like a 
coin. Any time the magnetic flux through the coin changes, currents will 
be induced in the loop resisting this change, and as we have seen, they 
will flow in a direction which slows the fall of the coin. When fields are 
large these “eddy currents” and the energy losses associated with them 
can be huge. Try a search like “MRI magic” on you-tube if you want to see this in action. 

27.2 Applications of magnetic induction 

There are many different applications of magnetic induction. They include: 

• Motion sensors (guitar pickups and microphones) 
• Metal detectors (like those you walk through at the airport or use at the beach to search 

for pirate treasure) 
• Induction heating (eddy currents in a metal produce resistive heating, this can be used to 

produce heat without a heat source) 
 

But far and away the most important application of induction is in the process of transforming 
mechanical motion into electric current (as in electrical generators) and transforming electric 
current into mechanical motion (as in electric motors). The two are exact opposites of one 
another. Let’s look at generators first. 
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Electric ‘generators’ 

One simple form of electric generator has two main parts, a 
flat coil of wire and a permanent magnet. The coil is placed 
between the poles of the magnet so that the magnetic field 
going from north to south poles passes through the loop. The 
magnetic flux through this loop is then: 

 ΦB = ABcos(θ) 

If the coil now rotates at a constant angular velocity so that θ 
= ωt, the magnetic flux will change with time: 

 dΦB/dt = -ABωsin(ωt) 

and this makes the EMF in the loop : 

 ξ = -dΦB/dt = ABωsin(ωt) 

There are several things to notice about this. First, the magnitude of the induced EMF depends 
on the area of the loop A, the magnitude of the magnetic field B, and the rate of rotation of the 
loop ω. To get a large EMF, make all three of these large. Another thing to notice, the EMF is 
not constant, it varies in time sinusoidally, from a maximum of ABω to a minimum of zero. It 
also changes direction, going first one way around the loop then the other. Notice too, the EMF 
is maximum with the angle θ is 90°.  

This EMF causes current to flow in the loop. The size of the current depends on the resistance of 
the loop I(t) = ξ(t) / Rloop. So, it the loop has a large resistance (like if it’s made of an insulator), 
the current will be very small. If the loop has a small resistance (like it it’s a good conductor), the 
current will be large. 

This is all very well, but having a loop spinning in a 
magnetic field with a current flowing in it is not especially 
useful. To be useful we want to take that EMF and put it to 
work outside the generator. To do that, we have to connect 
the spinning loop, which has EMF shoving charge back and 
forth around it, to an exterior circuit. This is done with 
something generically called a commutator. One example,  
shown in the figure, is a “split-ring” commutator. This device 
is ring split into two parts which is attached to the loop which 
rotates in the field. On either side of the ring is a brush, able 
to make continuous electrical contact with the ring while 
letting it slide by almost freely. The two brushes are then connected through an exterior circuit 

N 

S 

θ 
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which includes something we want to run current through (like the light bulb shown here). 
Splitting the commutator like this means that, although the induced current rises and falls, it is 
always going in the same direction. 

Energy is required! 

Once again, you don’t get something for nothing, so 
turning this coil in the magnetic field to make 
electric current is going to require an input of 
energy. Turning the coil will require working 
against some force which resists the motion. Where 
does this force come from? Just as in the falling 
loop case, once currents are induced, you have 
wires with currents in magnetic fields, and they 
experience iL x B forces. Not surprisingly, these 
forces will oppose the motion. They will create a torque which resists the rotation of the loop.  

To see all these factors consider the picture. In it a square coil with edge length L is turning in a 
clockwise fashion, so the flux through the coil is increasing. The current in the coil flows to 
resist this increase, so the coil makes field back up toward the top. To do this, current must flow 
in the direction of the dashed arrow. 

With current flowing that way, it goes into the page on the upper right of the loop and out on the 
lower left. That’s where the forces that create torque act. 
You can see that these forces act opposite the direction of 
rotation. The size of the torque depends on not only the 
size of the force F, but also on how far the two end wires 
are from the center. 

Details of the calculation of this torque and the power 
required to maintain it are presented in the box to the right. 
What we see is that the total torque which must be applied 
depends not only on the parameters of the generator (B, A, 
and ω), but also on the resistance of the circuit the 
generator loop is attached to. In this fashion, the generator “senses” the load which it’s attached 
to. If that external resistance is large, the currents flowing will be small and only a small torque 
will be required to turn the coil. If the external resistance is small, currents will be large, and a 
large torque will be required to turn it. 

How much power, how much energy per unit time, is required to keep the coil turning? In 135 
we learned that when a force F is applied to an object moving with speed v, the power (work per 
unit time) is given by the relation P = Fv. There is an analogous relation for rotational motion 

N 

S 

θ 

Direction 
of 
rotation

Forces 
resisting 
rotation

( ) ( ) ( )
( ) ( )
( ) ( ) ( )

( )
( ) ( )

( ) ( )tAB

tLAB

tFFr

tALBtF
LBtItF

tNBAtI

Rtotal

total

L
R

L

R

R

ωωτ

ττ
ωωτ

ωτ

ωω

ωω

2221

 side one

2
2

21
 wireone

2 wireone

21

1

sin

2
sin

sin

sin

sin

=

=
=

=×=

=

=

=

GG

Physics 235 Winter 2011 
Copyright Timothy McKay

108



which we need to use here. In rotation, when a torque τ is applied to an object which is rotating 
with angular velocity ω, the power is given by the relation P = τω. When we use this, we can 
calculate the total power we have to put in to keep the coil turning.  

It is interesting to compare this power put in to the power 
you get out of the electric circuit beyond the generator. The 
power in this electric circuit, for our simple example, is just 
I2R. If we insert what we know for I and calculate this we 
find, not surprisingly, that the power we put into the generator is just equal to the power we get 
out.  

It would probably be more sensible, more honest, to call these devices “converters” instead of 
“generators”. Perhaps that would make what they are actually doing, converting one form of 
energy to another, more transparent. Recognizing this reality, that electrical energy doesn’t get 
“generated” by magic, but is energy of another kind converted to electrical form, is essential if 
we’re ever going to get a handle on human energy consumption. 

Our electrical generators are largely turned by extracting energy from burning coal. This 
accounts for a bit more than half our electrical power generation. In 2006, the US burned about 
900 billion kilograms of coal for this purpose. Yep, that’s a lot. It comes to about 3000 kilograms 
of coal a year for every single person in the US, including you. 

Electric motors: generators in reverse 

An electrical generator can take mechanical power (forces and torques) and turn it into electrical 
power. If you reverse the process you can put in electrical power (current) and get out 
mechanical power (torque). This reversed generator is an electric motor. You push current 
through the coil, then because it’s in a magnetic field, the coil experiences a torque which starts 
it rotating.  

You can see that electric motors intrinsically produce rotation. Some very simple applications 
include fans, electric drills, etc. 
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27.3 The final connection: displacement current 

To complete our discussion of electricity and magnetism we have to recognize one more 
connection. So far, we have seen that: 

• a charge moving in a magnetic field experiences a force 
• a current produces a magnetic field  
• a changing magnetic field can produce an electric field, an EMF 

 
Now we need to add the fact that a changing electric field produces a magnetic field. To do this, 
let’s think back to an old problem: a little circuit with a battery, a switch, 
a resistor and a capacitor. Imagine the capacitor begins uncharged. When 
you close the switch, current will begin to flow out of the battery causing 
charge to build up on the top of the capacitor, it will gradually fall off, 
with a time constant RC, until the capacitor is fully charged with voltage 
Vbattery. 

Wait a minute though. How does current flow through the capacitor? After all, it is made of 
conducting plates separated by an insulator. So it’s not physical current that goes through the 
capacitor, no charges flow through there. As it turns out, there’s another kind of current in there, 
something called “displacement current”. This idea was first introduced by James Clerk 
Maxwell, a Scottish physicist who is the single person most responsible for our modern 
understanding of E&M. 

To see what this is, consider a capacitor with voltage V across it. This voltage is related to the 
electric field in the capacitor through the relation V = Ed. We also know that the voltage is 
related to the charge on the capacitor through the relation Q = CV. Putting these together, we can 
write:
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The current Id here is this displacement current. It’s not a physical current due to charges 
flowing, but it acts just like it is. Positive charges arriving at the top of the capacitor send out 
electric field through it. That electric field pushes positive charges on the other plate away, 
continuing the current across the gap by using electric field. In the last line we have defined the 
product EA to be the “electric flux” through the area A, and noted this quantity with the symbol 
ΦE. This should remind you of the magnetic flux from last lecture. This relation tells us that any 
time there’s an electric field that changes with time, there will be something that acts just like a 
current, a displacement current.  

Now here’s the key idea: this displacement current acts exactly like a real current, doing 
everything that it would do, including producing a magnetic field. 

27.4 Fields begetting fields: electromagnetic waves 

Let’s now put together two pieces to see how electricity and magnetism is related to light. The 
first piece is Faraday’s law, written in reference to the electric field, and the second is Ampere’s 
Law, this time with the current being the newly identified displacement current Id = ε0dΦE/dt. 

 

 

 

 

What do these two equations tell us?  

The first says that if you have a changing magnetic field you’ll get an electric field. If the change 
in magnetic field were constant in time, always steadily increasing for example, you’d get a 
constant, unchanging electric field. If the rate at which the magnetic field is changing is not 
perfectly steady, then you’ll get an electric field which varies with time. 

The second tells us that if you have a changing electric field you’ll get a magnetic field. If the 
change in electric field were constant in time, always steadily increasing for example, you’d get 
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a constant, unchanging magnetic field. If the rate at which the electric field is changing is not 
perfectly steady, then you’ll get a magnetic field which varies with time. 

It’s hard to miss the symmetry here. Changing magnetic fields produce changing electric fields 
which produce changing magnetic fields which…You get the idea. Fields can create fields, and 
keep doing this over and over, with no charges at all around! Maxwell was able to work out the 
nature of these fields feeding on fields. He showed that, rather than just trading back and forth in 
one spot, the are always leaping forward, propagating out through space as a traveling wave. 

The great surprise was in the speed of these waves. Maxwell was able to predict that the speed of 
these electromagnetic waves should be simply v = (1/μ0ε0)1/2. Putting in the numbers we get: 

 v = [1/(4π * 10-7 * 8.85x10-12)]1/2 = 3x108 m/s 

Amazingly, this is just the speed of light, a quantity already well known by the time Maxwell 
was working on this. Not surprisingly, he realized that electromagnetic waves, these electric and 
magnetic fields feeding off one another as they race through space, must actually be what light 
really is.  

Unlooked-for connections and dreams of unification 

It’s hard to imagine what a big deal this was. Here was Maxwell, working on electricity and 
magnetism, on how charges attract one another and magnets work. This subject was going great, 
with two seemingly disparate phenomena (electricity and magnetism) coming together into one 
intimately connected, unified framework. Just at the end of this process, he discovers that not 
only are electricity and magnetism unified, but in fact they include another huge, well established 
area of physics.  

Maxwell’s successin unifying electricity and magnetism with light is one of a number of great 
examples of ‘unification’ in physics; a recognition that a wide range of phenomena can 
sometimes be explained with just one simple idea. The example set here continues to provide a 
model for the intellectual sensibilities of physicists. Most hope that the world will one day be 
explainable using a minimal set of rules, or perhaps just one. Particle physicists seek a ‘grand 
unified theory’ which might explain it all.  

Over the last five or six weeks we have really only sketched out the framework of this grandly 
unified field of electricity and magnetism. But hopefully even this glimpse gives you some idea 
of the beauty and elegance of the subject. E&M is an iconic success for science, a subject of both 
great theoretical charm and enormous practical importance. If you have any serious interest in 
physical science, I strongly encourage you to consider studying this subject further, perhaps 
taking a more advanced course in electricity and magnetism. 
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A Quick Summary of Some Important Relations 
 

Magnetic flux and Faraday’s Law: 

When the flux of magnetic field lines through a loop changes, an electromotive force (EMF, or a 
circulation of electric field) is created according to Faraday’s Law: 

 EMF BdE dl
dt

ξ Φ
= = = −∫

GG
iv  

The minus sign in this relation is essential. It encodes Lenz’s Law, and ensures that the EMF induced acts 
to resist the change in magnetic flux through the loop. It is a requirement of energy conservation. 

Electric ‘generators’: 

Electromotive force (potential difference) can be created using induction. If a coil with area A is located 
in a constant magnetic field B and rotates with angular velocity ω, it will generate an EMF: 

 ( )sinAB tξ ω ω=  

To create a large EMF, you can use a large loop, wrap many turns of wire around it, place it in a 
large magnetic field, or rotate it really rapidly. Generators don’t create anything: they convert 
mechanical motion to EMF and then electric current. Electric motors are generators run in 
reverse: current is put in and converted to rotational motion. 

Displacement current: 

While changing magnetic flux produces EMF (circulation of electric field), a changing electric 
flux produces circulation of magnetic field. This is described by making an equivalence between 
changing electric flux and a current called the displacement current: 

 displacement 0
EdI

dt
ε Φ

=  

This displacement current produces a circulating magnetic field around it, just as an ordinary 
current in a wire does.  

Induction and electromagnetic radiation: 

The coupling of changing magnetic fields to electric fields, and changing electric fields to 
magnetic fields, creates the possibility of electromagnetic waves in which energy trades between 
electric and magnetic fields, propagating through space far from any electric charges. Such 
electromagnetic waves are predicted to have a speed: 
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in empty space. These electromagnetic waves play an incredibly important role in the physical 
world, as we will see in the next set of chapters. 
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POLS Chapter 28: Waves and the flow of energy and information 
 

All living things are connected to their environment; they are open systems, continually 
exchanging energy, information, and matter with their surroundings. Animals which move 
around face a special challenge - they must find what they need, see what (and who) is coming, 
and not least, communicate with one another. Fortunately, the laws of physics provide a 
wonderfully flexible tool for sending and receiving such messages. Sound and light waves allow 
animals to sense the world around them with remarkable precision. They carry energy and 
information from place to place with no net motion of matter, enabling animals to communicate 
with one another in a rich variety of ways.  
 

In this chapter we will explore the basics of waves, putting in place essentials you need to 
understand how living things use waves to reveal the world around them. In this chapter we will 
introduce several examples of waves. We will learn how to describe them using a wave function 
which varies in space and time, and define a set of parameters which characterize periodic 
waves. We will see how rapidly various waves travel, explore the way they fade with distance 
and through absorption, and discover how moving sources and receivers of waves alter their 
appearance. This chapter concludes with an extended discussion of how bats and other animals 
use the properties of sound waves to probe the world around them. 

 
Subsequent chapters will build on these basics; discussing how waves interact with one 

another and with their surroundings. Our central goal throughout is to learn how the properties of 
waves enable the formation of images. Living things form images of their world using eyes and 
ears. Modern scientific instruments, enabled by our understanding of waves, extend our evolved 
senses enormously, allowing us to see and hear things previously beyond our imaginations. We 
will conclude our discussion of waves with an introduction to a few of these methods of modern 
imaging. 

28.1 Waves are traveling disturbances 
 

Consider first a familiar example: the ripples which spread from a stone dropped in 
puddle. The water in the puddle begins at equilibrium; flat and smooth. It starts there because it 
has had time to settle to this lowest energy state, allowing any excess energy it might have had to 
spread to its surroundings.  
 

When the stone strikes the surface, it briefly pushes down on the spot where it hits. This 
spot, connected to the water around it by the cohesion of the liquid, pulls the neighboring surface 
down. As Newton’s third law requires, this neighboring region pulls the original spot back up. A 
ring around the impact point begins to descend, pulling the ring beyond it down. Meanwhile, the 
original point of impact responds to the upward pull of its neighbors, and begins a return to 
equilibrium. The ripple, a ring of descending then recovering points, spreads from the original 
point of impact, passed from place to place across the connected surface of the water. After a 
time the surface returns to its original equilibrium position. No water has, in the end, moved 
anywhere. Yet something has happened; a disturbance has traveled across the surface. This is a 
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wave in its most basic sense; a disturbance passed from point to point through a continuous, 
connected medium. 
 
Illustration: sequence of images of a drop striking a surface, coupled with a diagram 
showing the motion of material in a water wave 
 

Now consider a less familiar example. When you strike a table with a hammer, something 
happens which is very like what happened with the pebble in the pond. The table begins at rest, 
with every atom oscillating gently about its equilibrium position. At the instant the hammer hits, 
bits of the table very close to the impact are displaced significantly downward. These points, 
solidly connected to their neighbors, pull them down strongly. These neighbors pull their 
neighbors, and the displacement created by the hammer strike at one spot ripples out across the 
table. It takes time for the hammer strike to be felt at the far end of the table. The disturbance you 
created in one location spreads across the table top as a wave. 
 
Illustration: hammer striking a table, coupled with a diagram showing the motion of 
material along the surface, in the bulk of the table, and in the air 

 
When the hammer strikes the table, it also pushes air out from beneath its head. Rushing 

away, this expelled air pushes into the air around the hammer head, increasing its density and 
pressure. The resulting ring of enhanced pressure expands outward from the source, each ring 
pushing on the next. This wave of enhanced pressure is a propagating sound. After it passes, the 
air returns to its original, uniform pressure. There has been no net movement of air, but 
something happened. A wave has traveled out from the impact of the hammer.  

 
In each case, the material in which the disturbance travels oscillates around equilibrium, 

moving side to side, forward and back; always returning to where it began. The disturbance, by 
contrast, travels forward continuously, spreading from its point of origin. You should keep the 
difference between the motion of the material and the motion of the wave clearly in mind when 
learning about waves.  

 
Light too is a wave, a traveling disturbance with all the same essential qualitative 

properties as water waves and sound. Light waves are not fluctuations in the density or position 
of a substance (as sound and water waves are), but rather variations in the electric and magnetic 
field. While the mechanisms by which light waves travel are different, they share a rich set of 
essential phenomena with all other waves, and we will consider them waves equally here. 

Waves as a way of transmitting energy and information 
 

We have already learned about two ways to move energy from place to place; through 
organized bulk motion and through random thermal conduction. A ball thrown through a room 
carries energy in bulk motion. Its energy transport can be rather rapid - faster than a speeding 
bullet even - and quite directed. Convection is another form of organized bulk motion: once 
again, material which contains the energy moves from one place to another. Both matter and 
energy flow. 
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Energy may also flow through completely disorganized motion. When one part of a 
material is hot, with atoms moving fast, while another part is cold, with atoms moving slowly,  
energy flows from the hot to the cool side, passed from atom to atom as they interact. This kind 
of flow is random and disorderly, so it happens rather slowly, and cannot be directed at all. In 
thermal conduction, energy flows without matter going anywhere. 
 

Waves provide a third way to transfer energy. Like bulk flow, they involve organized 
motion, all the atoms in a region move back and forth together, but like conduction, they transmit 
only energy. Because they involve organized motion, energy transmitted as waves travels 
rapidly, especially compared to transport by conduction. All three modes of energy transport are 
important for life. Solar energy arrives on Earth as light waves, is transported through air and 
water in enormous convective flows, and works its way through the solid Earth by conduction. 
Beyond the Earth, most energy is transported through the universe with light waves, because 
only they travel freely through a vacuum. 
 

Waves also carry much of the information which travels from place to place. Everything 
you know about the world beyond your skin, from sunsets you have seen to the text you’re 
reading now, you learned by judiciously sampling the waves which wash over you. These waves, 
emitted by or reflected from distant objects, carry a record of their source. Your eyes and ears 
help you to extract the tale they tell. Your eyes measure precisely where light comes from, 
perceive its frequencies as color, and its intensity as brightness. Your ears perceive frequency as 
pitch and intensity as loudness. Other animals do the same, often with a facility far greater than 
our own.  

 
Scientific instruments like microscopes and telescopes allow humans to extend our 

senses, reading the information encoded in waves ever more precisely, often in ways no other 
living thing can. Much of our discussion of waves will focus on how to extract information from 
them, measuring where they come from and what kind of waves they are. If we cared only about 
absorbing the energy they deliver, rather than decoding the information they carry, our study of 
waves would be much more concise. 

28.2: Describing a wave: the ‘wave function’ 
 

A wave is a disturbance in a continuous medium that varies in space and time. As a 
result, we describe it mathematically as a function recording the size of the disturbance at each 
point in space and each instant of time. For our initial example of ripples in a puddle, we might 
write this as ( ), ,z x y t . This function expresses how far the water is above or below equilibrium 
(the size of the disturbance) at every position (x,y) and for every time t. The figure below shows 
an example of what such a function might look like for all positions x, and y at some particular 
instant t.  
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The concept of a wave function is very general, and can be applied to all sorts of waves, not 
just ripples on the surface of water. It may describe a changing pattern of disturbance of any 
kind. Instead of water moving above and below a level surface, it might be variations in the 
pressure of the air, oscillating above and below an equilibrium value, as in sound waves, or 
variations in the strength of the electric field from place to place, as it would be for light waves. 
It is worth noting that this ‘wave function’ is another kind of a field, very like those we discussed 
when studying electricity and magnetism. Like those fields, the wave function is a quantity 
defined at all points in space and time. 

  
 Most often, we will visualize wave functions by taking snapshots of them. One of your 
challenges is to imagine not only what the wave function looks like at a particular instant, but 
also how it changes with time. The figures below, for example, show three snapshots in the 
evolution of a wave which begins at the top center of the grey area and spreads downward with 
time. The picture at each of these three instants is a snapshot of the wave function at each 
moment.  

 

A generalized model for a traveling wave 
 

It is easy to imagine describing these snapshots of waves with mathematical functions. 
The tricky part is thinking of a mathematical function which describes how this snapshot changes 
with time; how the wave travels. There is a simple way to do this. Imagine a one-dimensional 

( )1, ,z x y t ( )2, ,z x y t ( )3, ,z x y t
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wave described by the wave function ( ),y x t . A snapshot of this wave at a particular instant 

0t =  is just some function of position ( )f x : 
 

 ( ) ( ),0y x f x=  
  
How could we alter this snapshot function ( )f x  to make it travel to the right at a constant 

speed v? To see this, imagine some location xmax where, at the instant t = 0, the wave function 
has a local maximum; a peak in the wave. We want that peak to move to the right at speed v, so 
its location should obey this equation:  

 
  

 
In fact every location on the original snapshot y(x,0) should also move in the same way. The 
entire wave function simply slides to the right. If this is the case, we can write a general form for 
a wave traveling to the right by replacing x in the original function ( )f x with x-vt: 

 

 ( ) ( )traveling right ,y x t f x vt= −  
 
Using a similar argument, we would 
expect a wave traveling to the left to 
take on the form: 
 

 ( ) ( )traveling left ,y x t f x vt= +  
 
Here is one concrete example of how to 
do this. Imagine a snapshot of a wave 
which at time t = 0 is a Gaussian 
function with width σ centered at x = 0. 
We would write this: 
 

 ( ) ( )
( )2

2, 0
x

y x f x e σ
−

= =  
 
If this pulse were traveling to the right as 
a wave with speed v, we would rewrite 
this equation for all times as: 
 

 ( ) ( )
( )2

2,
x vt

y x t f x vt e σ
− −

= − =  
 
The peak of this function will always 
occur where the argument x – vt = 0, so 

( ) ( ) ( ) ( )max max max max0        or           0x t x vt x x t vt= + = −
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it will move the right according to the equation maxx vt= . 
 
A snapshot of a wave expressed as a function ( )f x can be transformed into a traveling wave by 
replacing the argument x with the combination x-vt. 

28.2: Periodic waves: frequency and wavelength 
 

If you disturb a material in a regular, periodic way, perhaps by shaking the end of a rope, 
you will create a wave which has a particular frequency. This frequency is determined by how 
many times a second you shake the rope. Frequency is usually denoted with the symbol f, and 
measured in units of 1/seconds, or “Hertz”; one oscillation per second is one Hertz. The inverse 
of the frequency is the period, a measure of how long each oscillation lasts. Period is measured 
in seconds and we will often use a capital T to denote it. 
 

Each time you shake the rope, the disturbance you apply to the end travels down the rope.  
Between the time of one upward shake and the next, the first disturbance will travel some 
distance. How far it gets before the next shake depends on the wave speed. The distance from 
one peak to the next we will call the wavelength, for which we will usually use the Greek symbol 
lambda (λ ). This description implies a guaranteed relation between frequency, velocity, and 
wavelength: 
 

 
  = distance traveled in a cycle     wave

wave
vv T

f
λ = =

 
 
Or 
 

 
     wavev f

T
λλ= =

 
 
This is how most periodic waves come about. The frequency of the wave is set by an outside 
source, while the velocity (and hence the wavelength) are set by how rapidly the disturbance can 
‘flee’ the source. This is something that’s true for all kinds of periodic waves; an important 
general relation. 

Wave travel: how fast do they go? 

To explore how rapidly waves travel, consider a simple example. Imagine a rope held in 
your hand, attached firmly to a wall at the other end. You pull the rope rather tight, let it settle to 
rest, then shake your end sharply up and down once. The bit of rope in your hand tugs on the 
next piece of rope, which in turn tugs on the next; allowing the disturbance to travel. What 
determines the speed with which this disturbance travels?  

 
The force returning the material to its original state plays an important role. The strength 

of this restoring force can be expressed by an appropriate measure of the ‘stiffness’ of the 
material. If a material is difficult to distort, it will spring back to its original shape with great 
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force. This forceful return to equilibrium will tend to make waves travel through the material 
more rapidly. For the rope, tension is the appropriate measure of stiffness. The more tightly you 
stretch the rope, the more rapidly a disturbance will travel through it. For sound waves, the 
appropriate measure of stiffness is a form of the elastic modulus (bulk, shear, or Young’s 
modulus, depending on the application). For surface water waves, the restoring force may be 
either surface tension, as it is for small ripples, or gravity, as it is for larger waves. 
 

A second property which affects the rate at which waves travel is the inertia of the 
material. If it is extremely dense, then it will take longer for it to return to equilibrium even when 
the restoring force is large. For the rope, inertia is best expressed as a linear density, a mass per 
unit length. For sound waves, inertia is best expressed as the usual density, mass per unit volume. 
So we expect the velocity of a wave in a material to depend on both stiffness and its inertia.  
 

Here are some more specific examples of how this competition between restoring force 
and inertia plays out in different circumstances. These relations describe waves traveling on a 
rope, sound waves in a solid or gas, and large water waves in deep water. 
 

Material Restoring Force Inertia Wave Speed 

Rope Tension 
M
L

μ =  
T
μ

 

Sound in Gases Bulk Modulus 
M
V

ρ =  
B
ρ

 

Sound in 1D Solids Elastic modulus (Shear 
or Young’s) 

M
V

ρ =     or   S E
ρ ρ

 

Sound in 3D Solids Elastic modulus (Bulk 
and Shear) 

M
V

ρ =  
4
3

B S

ρ

⎛ ⎞+⎜ ⎟
⎝ ⎠  

Large Water Waves in 
Deep Water with 
Wavelength λ  

Gravity 
M
V

ρ =  
2
gλ
π

 

 
 

Notice that for sound and waves on a rope the 
speed of travel is independent of the wavelength or 
frequency of the waves. All waves like these travel at 
the same, constant speed. In this sense their motion is 
very simple. Water waves, while more familiar to most 
of us, are actually very complex, with wave speeds 
which depend strongly on wavelength. As a result, we 
won’t say a lot more about water waves here. One 
interesting thing to note before leaving them behind; long wavelength swells travel more rapidly 
than short wavelengths. This is why a storm far out as sea is often announced first at shore by 
large, long wavelength swells which gradually become shorter as the storm approaches. 
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It’s useful to consider one specific example. Let’s compare the speed of sound in 

different media: 
 

Material Speed of Sound 
Air (20° C) 343 m/s 
Air (0° C) 331 m/s 

Water (Pure 25° C) 1497 m/s 
Water (Pure 10° C) 1447 m/s 
Sea Water (25° C) 1536 m/s 
Sea Water (10° C) 1491 m/s 

Lead 1322 m/s 
Iron 5130 m/s 

Diamond 12000 m/s 
 
There are several patterns to note in this table. First, sound speed increases with temperature. 
Variation with temperature exists both because the velocities of particles change with 
temperature and because the density of materials changes with temperature, altering the inertia. 
Second, liquids and solids have much higher sound speeds than gases like air, despite their very 
much larger densities. This is because solids and liquids are so much harder to compress than 
gases. Their restoring forces are way bigger because they’re much stiffer. Diamond, stiffest of all 
solids, also has the highest sound speed on this list. 
 

How do these sound speeds compare to what we might expect for waves on a rope, or 
water waves? Imagine a rope with a mass per unit length of 0.2 kg/m. If you stretch this out with 
a tension of 100 N (about the weight of 100 apples), the speed with which waves would travel on 
the rope is about 22 m/s. To get waves to travel on this rope at the speed of sound in air you 
would have to stretch it very tightly indeed: the tension would need to be around 23,000 N, or 
about the weight of several full size cars. What about water waves? For a typical wavelength of 
15 meters, deep water waves travel at about 5 m/s; a little over 10 miles per hour. Sound waves 
travel very rapidly compared to other material waves you are likely to encounter. 
 
Sound: a familiar wave which is often periodic 
 
 The most familiar periodic waves are sounds. Sounds which have a clear pitch, high or 
low, are produced by regular oscillations of an object. Their source might be your vocal cords, a 
guitar string, or the sides of a bell, but each presses against the surrounding air regularly, 
disturbing it periodically.   
 

The sounds humans can hear range in frequency from around 20 to around 20,000 Hz. 
Given the speed of sound in air and the relation between frequency and period derived above, we 
can calculate that these waves must have wavelengths between roughly 20 m and 2 cm 
respectively. Remember that low frequencies correspond to large wavelengths, while high 
frequencies correspond to short wavelengths. Some animals are sensitive to broader ranges of 
sound frequency. Elephants, crocodiles, and some whales for instance, can sense very low 
frequency ‘infrasounds’, while bats, toothed whales and other echolocating animals sense very 
high frequency ‘ultrasounds’. 
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Light: another wave which is often periodic 

Light too is a wave, a traveling disturbance with all the same qualitative properties as 
sound. Light waves are not fluctuations in the density of a substance (as sound waves are), but 
rather periodic variations in the electric and magnetic fields. For these “electromagnetic waves” 
we can also write wave functions which tell us the magnitude and direction of the electric (or 
magnetic) field at each point in space and time: 

 
  

Light differs from sound and other mechanical waves in one important sense: it does not travel 
because of forces applied by one part of a material on its neighbors. Light travels because 
changing electric fields generate changing magnetic fields, which in turn generate changing 
electric fields. No material is needed for light to travel; it propagates freely through completely 
empty space. This is essential for life, as it allows energy from the Sun to travel to the Earth. The 
speed with which light waves propagate has nothing to do with restoring forces and inertia, but 
instead is set by the nature of electromagnetic induction. Their speed in empty space, as shown 
by Maxwell, is given by the relation: 
 

 

8

0 0

1 3 10  m/sc
μ ε

= = ×
  

 
Light waves are produced by accelerating electric charges. Electric charges (like 

electrons and protons) are sources of electric field. When you shake an electric charge up and 
down, you cause the electric field in that region to change with a regular frequency. These 
changes in the electric field then travel out from their source at the speed of light. Just as in 
sound waves, there is a tight connection between the frequency of the disturbance, the speed with 
which it travels, and the wavelength which is produced: 
 

  
 
 
This is one place where there’s a quantitative difference between sound and light. The speed of 
light is much larger than the speed of sound: c = 3x108 m/s, or about a million times faster than 
sound. While light does not require a medium to travel, it can propagate through transparent 
materials like air and water. When it does, its progress is slowed. We account for this with a 
material parameter called the ‘index of refraction’ which relates the speed of light in the material 
to its speed in a vacuum: 
 

 

light in a vacuum
light in a material

material material

v cv
n n

= =
 

 
The index of refraction of air is about 1.0003, for fresh water it is about 1.33. While light moves 
very freely through air, its progress is significantly slowed in water. 
 

( ), , ,E x y z t
G

lightv c fλ= =
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There are in principle no limits to the wavelengths and frequencies of electromagnetic 
radiation. If you disturb the electric field with a frequency f, you’ll get waves with a wavelength 
λ = c/f. Shake an electron up and down at 1 Hz and you’ll produce waves with λ = 3x108 m. 
That’s a really huge wave, with a wavelength about the distance from the Earth to the Moon.  

 
The figure below shows some of the kinds of EM radiation you might encounter in 

nature. There are several things to note here: 
 

1. The range of wavelengths encountered with light, from 10-14 m to 10 m, is extremely 
large, varying by a factor of 1015 at least. 

2. The frequencies, of course, vary over a similar range, from 107 Hz to 1022 Hz. Notice 
that even the low frequency waves are still pretty high: the lowest frequencies 
represent oscillations which occur around ten million times per second! 

3. Visible light makes up only a small portion of this broad spectrum. The visible light 
regime runs from around 400 nm to around 700 nm in wavelength, and from 
4.3x1014 Hz to 7.5x1014 Hz. Within that region, each wavelength corresponds to a 
different color, running from blue at the short wavelength end to red on the long end. 

4. All of the other EM waves have names which are familiar because we use essentially 
all of the EM spectrum for some purpose or another in our technology. 

 
The wavelengths of visible light are tiny, smaller than the smallest bacteria. On the other 

hand, their frequencies are very high, much higher than we can easily sense; oscillations which 
happen 400 trillion times a second! These facts explain why it is not easy to notice the wave 
properties of light, though of course it is possible. We will see in the next chapter how to show 
experimentally that light is a wave. 

Sound and Light: longitudinal and transverse waves 

Sound and light differ in another important way. A sound wave in air is made from 
variations in the pressure of the air as the air moves back and forth along the direction in which 
the wave is traveling. Such a wave, in which the disturbance happens in the direction the wave 
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moves, is called a longitudinal wave. Air can really only be disturbed in compression; it is a 
fluid. Fluids respond to shear forces by flowing rather than stretching elastically, so if you were 
to try to shake air from side to side (rather than shoving it forward and back) it would merely 
flow: no wave would propagate. So sound waves are longitudinal, with the air moving forward 
and back along the direction in which the wave travels. In this sense sound waves are simple: 
once you know the direction of motion of the sound wave, you know the direction along which 
the air moves as well. 

Light waves are different. In a light wave, the changing electric and magnetic fields are 
always perpendicular to the direction of motion of the wave. The direction of the electric field 
associated with a light wave is never along the direction of motion of the wave, but always 
perpendicular to it. This fact adds a level of complexity to the light wave. We can see the 
problem from an example. Imagine that a light wave travels in the x-direction. Because the light 
wave is transverse, the changing electric field associated with it must lie somewhere in the yz-
plane, but we don’t, without additional information, know which way it points. 

To keep track of this additional factor associated with light we record the direction along 
which the electric field changes in addition to the direction in which the wave travels. The light 
wave described above travels along the x-axis. If its electric field varies only along the y-axis, we 
would say this light is ‘linearly polarized’ in the y direction. If the field varies only along the z-
axis, we would say it is linearly polarized in the z-direction. Of course it is possible for the light 
to vary along any other direction in the yz-plane, or even to vary randomly along every other 
direction in the yz-plane. If the electric field varies along all directions, we say the light is 
‘unpolarized’. Most light encountered in nature is unpolarized in this way. Polarized light is 
sometimes produced in reflections, and as we will see, quite a few organisms use the polarization 
of light to learn about the world around them. 

28.3: A specific and very useful example: a traveling sine wave 
 

One important model of a traveling wave function is the traveling sine wave; a wave with 
the shape of a sine function which travels by sliding at a constant speed either right or left. There 
are two reasons to focus on this specific case. First, a traveling sine wave provides a concrete 
example, useful for calculation in some explicit exercises; it is a simple model with which to 
work. But there is a more important reason for considering such sine waves. Surprisingly, any 
wave function can be constructed as a sum of appropriate sine waves; they can be used to build 
up any wave at all. In the next chapter, we will describe in some detail how this works. So when 
we study sine waves, we are actually studying a kind of ‘atom’ from which all other waves can 
be constructed. 
 

A wave function for a sinusoidal wave traveling to the right can be constructed using the 
prescription developed in Section 28.1. We start with a snapshot of a completely general 
sinusoidal function at time t=0.  
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This function is characterized by three numbers. The first is an amplitude A, which describes 
how large the minima and maxima of the function are. The second is a wavelength λ, which tells 
us how far along the x-direction we must travel to go from one peak to the next. The third is a 
‘phase angle’φ. Changing this phase angle allows us to shift the points where the sine function 
passes through zero, sliding the entire function left (for positive φ) or right (for negative φ). We 
can write an equation for this function in the form: 
  

 
( ) 2,0 siny x A xπ φ

λ
⎛ ⎞= +⎜ ⎟
⎝ ⎠  

 
Since the sine function varies between plus one and minus one, this function varies between +A 
and –A, as it should. When we move a distance λ along the x-direction, the argument of the sine 
function changes by 2π; it passes through one cycle and returns again to its original value. The 
presence of the phase angle φ allows us to slide the whole function left or right. 
 
 Given this snapshot of the wave, we know how to turn it into a wave traveling to the right 
with a constant speed v: simply replace the argument x with x-vt. When we do this, we get the 
equation for the traveling sine wave: 
 

 
( ) ( )2 2 2, sin sin vy x t A x vt A x tπ π πφ φ

λ λ λ
⎛ ⎞ ⎛ ⎞= − + = − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  

  
We simplify this equation a little using the relation v fλ = and defining two new parameters, 
the wave number k and the angular frequency ω using the relations: 
 

 

2     and     2k π ω π
λ

= =
 

 
Doing this allows us to write the wave function for a sinusoidal wave traveling to the right in the 
following clean and general form: 
 

  
 
We might also note that, in terms of these new parameters, the speed of the wave can be written: 

( ) ( ), siny x t A kx tω φ= − +

λ 

x 

y 
A

φ 
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v f

k
ωλ= =

 
Let’s review the four parameters which define this wave: 
 

• The amplitude A represents the maximum size of the disturbance. 
• The angular frequency ω is another way of writing the frequency f.   
• The wave number k is another way of writing the wavelength λ. In fancier terms we 

might call λ the spatial period and k the spatial frequency. 
• The phase angle φ defines where the peaks and zeros of the sine wave occur. 

 
This phase angle φ  deserves a little extra comment. It shifts the location of the wave left or right. 
This arbitrary, fixed shift is needed if one is to describe all possible waves within one fixed 
coordinate system. If the coordinate system is ours to define, and we’re concerned with just a 
single wave, we can always choose coordinates so that φ is zero. For this reason, we will often 
leave the phase angle out in further discussions. It will return, and become very important, when 
we consider more than one wave traveling in the same medium. In this case, it may not be 
possible to shift coordinates so the φ will be zero for all the waves. With multiple waves, these 
phase angles will describe irreducible relative shifts between the waves. 
 
How could we express a similar, sinusoidal wave moving to the left? To do this, we would like 
to have the velocity be negative instead of positive. This makes the sign of the ωt term the same 
as the sign of the kx term. In the function describing a wave traveling to the right, the parameters 
k and ω have opposite signs. To construct a wave function for a wave traveling to the left, k and 
ω must have the same sign. Here are two examples: 

 
  

 
So remember, when k and ω have the same sign, the wave travels left, and when they have 
opposite signs, the wave travels to the right.  

28.4: Wave fronts and rays, intensities, dimensionality, and absorption 

The simplest waves to imagine are those traveling in just one dimension, like waves on a string. 
But most waves, like sound waves, will actually travel in three dimensions. It is often useful to 
consider a simple picture of a point source of sound waves and describe "wavefronts" and "rays" 
for this. The wavefronts are the actual peaks of the waves produced by the source. They move 
forward, out from the source, and along this direction of motion we define rays which are 
perpendicular to the wavefronts. Near the source, the spherical nature of wavefronts is obvious; 
they are clearly curved. If you are very far from the source, the curvature of the wavefronts is no 
longer so apparent, and the waves begin to look like “plane waves”. We will often talk about 
these plane waves in later chapters. They are produced naturally by point sources, so long as the 
sources are far away.  

( ) ( ) ( ) ( )traveling left traveling left, sin      or      , siny x t A kx t y x t A kx tω φ ω φ= + + = − − +
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As these waves spread out over a larger and larger area, the energy put in by the source is 
dispersed and their ‘intensity’ declines. Intensity is a measure of how much energy is delivered 
by the wave per unit area per unit time; a power per unit area. As a result, the intensity of 3D 
waves is measured in W / m2. For a wave propagating in three dimensions, as sounds typically 
do, the energy released by the source as an initial power 0P  must spread out over a sphere with 
area 4πr2, and the intensity will decline with distance in this way: 
 

 
( ) 0

3 24d
PI r

rπ
=

 
    
If the wave is propagating in two dimensions, as surface water waves do, the energy released by 
the source must spread out over a circle, and the intensity (here measured as power per unit 
length rather than area) falls off more gradually: 
 
 
 
If the wave is propagating in just one dimension, as waves on a string do, all of the energy 
released by the source travels through all points on the string, and the intensity (here measured 
simply as power) doesn’t decrease at all. 
 
 
 
 

Often the real propagation of a wave is intermediate among these three possibilities. We 
will see in later chapters how wave sources can be arranged to form a ‘beam’. In this case, a 
wave propagating in three dimensions is confined for a while to a narrower two dimensional 
region, only more slowly spreading into the third dimension. This phenomenon may be familiar 
from playing with flashlights and laser pointers. These sources send out their light waves in a 
way which allows them to arrive at a distant point little diminished from when they left their 
source. This is very different from the way the intensity of a point source like a light bulb or the 
Sun fades with distance. 
  

( ) 0
2 2D

PI r
rπ

=

( ) 0
3 24D

PI r
rπ

=

( )1 0DI r P=

Waves from a point source “Plane” waves far from a 
point source 
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Motion and energy in sound 
 
How does the intensity of a sound relate to its wave function? We can determine this precisely 
for sound. In a sound, we describe the displacement of the air from its equilibrium position as: 
 

  
 
where s is the distance (forward and back) that the air is moving Now that we have determined 
the motion  of the air, we can work out the kinetic energy associated with it: 
  
 
 
 
Some amount of mass moves with this velocity, and it has KE 
 
  
 
 
In this equation we use A for the area of a little pad of  air moving forward and back, and dx for 
the thickness of it, so that ρAdx is the amount of mass that’s moving. Note that the area A used 
here is nothing to do with the amplitude of the wave As! 
 

This calculation tells us how much kinetic energy is present in a little part of the wave. If 
we divide this little dKE by the short time it takes to arrive dt, we find: 

 
  
 
 
or 
 
  
 
 

Light propagating 
in 3 dimensions 

Light propagating in a 
1 dimensional beam 

     cos( -  )s
dsv A kx t
dt

ω ω= =

( ) ( )( )2 2 2 21 1
2 2 cossdKE mv Adx A kx tρ ω ω= = −

( )( )2 2 21
2 coss

dKE dxA A kx t
dt dt

ρ ω ω⎛ ⎞= −⎜ ⎟
⎝ ⎠

( ) ( )( )2 2 21
2 cosKE s sP Av A kx tρ ω ω= −

( ) ( ), sinss x t A kx tω= −
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If we now ask for the average amount of kinetic energy arriving per unit area per unit time, and 
recognize that the average value of cos2 is one half, we find: 
 
  
 
 

This is a prediction for the kinetic energy arriving in the wave. What's the total energy 
arriving? The air here is oscillating back and forth. In oscillators the energy, averaged over time, 
is equally shared between kinetic and potential energy. This idea of ‘equipartition’ suggests that 

average averageKE PE= , so the total intensity is twice that arriving as kinetic energy: 
 
  
 
 
This equation tells us how the intensity of a sound, the amount of energy per unit time per unit 
area which it delivers, is related to the properties of the wave and the material through which it 
travels. The intensity depends on some properties of the wave itself; the angular frequency 
squared and the amplitude squared. It also depends on some properties of the material, its density 
and the speed of sound in it.  
 

This product of density and speed of sound is called the “characteristic acoustic 
impedance” of the material, often denoted by the symbol Z. We will see later that this quantity 
plays a very important role in the reflection and transmission of sound. It measures a part of how 
freely sound energy travels through a material.   

Intensity expressed in decibels 
 

Because waves traveling in three dimensions fade in intensity relatively rapidly (when 
you go 10x farther away a sound typically becomes 100x fainter), we will talk about sounds 
which vary in intensity a lot. To do this, it is common to use a logarithmic scale for intensities of 
sound. The standard system works by comparing the intensity of a sound to something very faint. 
Most often we compare to a sound which is about the faintest a typical person can hear. This Imin 
is chosen to be 10-12 W/m2, a very small amount of energy per unit area. You can actually just 
barely hear such a sound, at least if you don’t use your Ipod headphones too much…. 
 
    
 
 
 
So given the intensity of a sound I, measured in W/m2, you can determine the intensity in 
decibels from this equation. If a sound is 10x as loud as you can possibly hear, so that I10 = 
10*Imin, the intensity in decibels is: 
 
   
 
 

( )
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2 21
4
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If the sound is 1000 times as intense as Imin, it is  
  
   
 
 
 
The loudest sounds you can comfortably hear are around 100 dB. Working backward, you can 
see that this sound is: 
 
  
 
 
 
 
 
This intensity is 10 billion times louder than the faintest sound you can hear. Sounds with 
intensities of 120 decibels can quickly damage your ears.  

Absorption of sound 
 
Another important consideration in the propagation of sound is absorption. The energy contained 
in a traveling disturbance is not passed from one point to another with perfect fidelity. Some of 
the energy is lost from the wave as it travels through the material. As always, the total energy is 
actually conserved, but it is converted from the organized motion of the wave to random thermal 
motion. Sound absorption is a complex phenomenon, dependent both on the frequency of the 
sound and the detailed properties of the air or water through which it passes. 
 
The rate at which sound is absorbed during travel is often tabulated in decibels per kilometer. 
This measure has a value of around 1.5 dB / km for 1 kHz sounds in dry air. A sound with this 
frequency will fall in intensity by a factor of 0.71 when traveling through one kilometer. The 
figures below show the rate of attenuation for sound in air and water as a function of frequency. 
The rate of attenuation for sound is much larger in air than in fresh water, and much larger in sea 
water than in fresh water. You can also see that attenuation in air depends on humidity, 
especially at low frequency. The increased attenuation of sound at high frequencies explains why 
thunder from distant lightning strikes is heard as a low rumble, while nearby strikes are heard as 
high frequency crashes. 

( )min
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min

100010log 10log 1000 30 dBII
I
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The absorption rates shown here are the minimum. Often the full absorption of sound is 
dominated by the presence of small concentrations of impurities, like dust or water droplets in 
air, or air bubbles in water.  

28.5: The Doppler effect: 
 
There is one last wave phenomenon to introduce in this chapter, one especially relevant with 
sound: the Doppler effect. This familiar effect involves a change in frequency which occurs 
when there is relative motion between a source and recipient of sound. When an ambulance 
drives towards you, or you drive towards it, the frequency of its siren appears higher. If the 
ambulance is driving away from you, or you are moving away from it, the frequency you hear is 
lower.  
 

Let’s work out how large the effect is. First imagine the source of sound is sitting still and 
so are you. In this case waves from the source are traveling through the medium with a speed 
vsound. The number of waves you hear per second is the frequency. You can think of it as 
determined by how many wave peaks pass by you per second: 
 
  
 
 
Now imagine you are moving directly towards a stationary source with a velocity whose 
magnitude we write vreceiver. Now since you’re moving towards the wave, peaks will pass you 
more often. How large an effect will this be? The total distance which waves move past you is 
(vsound+vreceiver)t, and the frequency with which peaks arrive at your ear is: 
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From Denny, Air and Water, Princeton, 1993. 
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(Source stationary, detector moving towards) 
 
What if you’re moving away from a source which is stationary? This is the same, except that 
now vreciever changes sign, so 
 
  
 
 
 

(Source stationary, detector moving away) 
 
It should be clear from these calculations that the Doppler effect can either increase or decrease 
the frequency of the sound you hear. 
 

The situation is a little different if the source is moving and the detector is stationary. In 
this case the sound still moves through the medium at the same rate; what changes is the 
apparent wavelength. The source is always ‘catching up’ to the waves it has just emitted, making 
the distance between them now: 
 
  
 
 
 
 
 
 
What does the detector receive? It observes waves arriving with frequency: 
 
  
 
  
 

(Source moving towards, detector stationary) 
 
If the source is moving away, we just reverse the sign of vsource to get the analogous relation. 
 
Combining these various relations we can obtain two general Doppler shift equations: 
 
  
 
 
where the ±  and ∓  imply motion toward and motion away respectively. So if the receiver 
moves toward the source, you use the + sign in the numerator of the frequency equation. If the 
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source moves toward the receiver, you use the – sign in the denominator of the frequency 
equation. When the source and detector move closer together, frequency increases and 
wavelength decreases. When the source and detector move apart, frequency decreases and 
wavelength increases.  
 

It is often true that the speeds of the source and receiver are substantially less than the speed 
of sound. In this case, we can approximate the frequency shift as: 

 

 

relative
0 relative source receiver

sound

1        where       uf f u v v
v

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠  
 
The fractional change in frequency for this case is given by the ratio of the relative velocity of 
source and receiver divided by the speed of sound: 
 

 

0 relative

0 0 sound

f f uf
f f v
− Δ

= =
 

 
We can see why the Doppler effect is more often important for sound than for light. The 

magnitude of the effect is dependent on source and receiver velocity divided by the speed of the 
wave. While sound travels rapidly, it is not unusual for living things to move at speeds a few 
percent of the speed of sound. When they do, they experience Doppler frequency shifts of a few 
percent. People encounter these most commonly in mechanized transport, but many animals, 
particularly fliers like birds and bats, regularly travel at tens of meters per second. As we will 
see, these Doppler shifts can create interesting challenges for them. You can also see why the 
Doppler effect is not commonly observed with light. The speed of light is so large that even the 
fastest living thing, a Peregrine Falcon diving at 90 m/s, cannot significantly approach it. 
Doppler shifts of light for this speeding bullet of a bird are on the order of 90 m/s / 3x108 m/s ≈ 
3x10-7, or 0.3 parts per million; hardly noticeable. 

Traveling faster than the speed of a wave 
 

Motion through the medium of wave travel also gives rise to the interesting possibility of 
traveling faster than the waves you emit. When a source of waves does this, it produces a wake: a 
cone shaped front along which waves emitted from the traveling object pile up. Within this cone, 
waves from the source are present. Outside the cone, no waves from the source have yet arrived.  
The angle which this wake follows depends on the relative speed of the wave source and the 
wave itself.  
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This phenomenon is most familiar where it occurs most freely; on the surface of water. 

Surface water waves travel relatively slowly, with typical speeds around a meter per second. 
Many objects, man-made and natural (like ducks), travel across the surface of water more 
quickly than this, trailing behind them the familiar wake. These water waves provide a nice 
familiar example, but it’s important to remember that water waves are actually quite complex, 
with velocities that are different for different wavelengths. So remember that applying these 
ideas to water waves will provide only a rough approximation for what’s really happening. 

 

 
 

While this phenomenon is most familiar for surface water waves, it occurs for all kinds of 
waves. When an object like a jet plane travels faster than the sound it emits, the sound piles up in 
a shock wave of large amplitude along a cone. Imagine listening to the sound from such a jet 
flying directly over your location on the ground. Before front edge of the cone arrived, you 
would hear no sound at all. When the cone passed over, a sudden surge of sound would arrive, 
the famous ‘sonic boom’. Once you are inside the cone, you would hear the sound of the plane in 
a more-or-less familiar form, though the sound you hear would be coming from where the plane 
used to be, rather than where it is at this moment. 

28.6: An application of sound propagation: biosonar 
 

At the start of this chapter, we noted that waves provide the only opportunity for living 
things to learn about the world beyond their skins. Most of the time, these waves are used in a 
passive way. You only hear those things which produce sound and send it to you. Most of what 
you see is visible only because objects reflect the light from another source; especially the sun. 
In both cases, you are the passive recipient of external signals. When a source of light is absent, 
things which want to remain hidden need only remain quiet. If there is no light to reflect, and 
they send you no sounds, you are unable to discover they are present.  
 

Because of this, the dark provides an opportunity – not only for those who would remain 
hidden, but also for those adapted to hunt in an unilluminated world. Most animals which hunt in 
the dark simply enhance their senses, growing larger eyes and more sensitive ears; trying to 
make the most of the paltry clues which are available. Adaptations for enhancing passive vision 
and hearing are found throughout the animal world, including the large and hypersensitive eyes 
and ears of owls, bush-babies, and the Fennec Fox. We tend to think of night as the primary 
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world of darkness, but for life the eternal darkness of the deep ocean is a much larger ecosystem. 
In this permanent darkness, the Colossal Squid Mesonychoteuthis hamiltoni carries sensory 
enhancement to the extreme. Its eyes, eleven inches in diameter, are larger than a dinner plate. 
 

The most remarkable hunters of the dark, even more precisely adapted for this gloomy 
life, actively illuminate their world with sounds they produce. Bats, toothed whales, shrews, and 
even a few birds obtain images of the world around them by sending out sounds and listening for 
their echoes. This active imaging is remarkably effective, enabling the pursuit and capture of 
targets as tiny and silent as moths, and allowing bats to fly flawlessly through caves and forests 
in pitch darkness. The subtlety of the methods these ‘echolocators’ use have only recently been 
exposed, and it is quite likely that important aspects of this remarkable ability remain to be 
discovered. As we learn more about the physics of waves, we will return to this rich biosonar 
phenomenon. We will use bats as our prime example, but include some discussion of toothed 
whales to illustrate how different this problem can be in water. 
 

The ‘first order’ way to use sound to understand a distant object is to bounce waves off it. If 
you do this, and measure how long it takes the waves to go out and back, you can measure how 
far away something is. 

 
1

echo2 sd v t=  
 
Echolocating animals use this fact as a core element in their efforts to ‘see’ with sound. It’s also 
the central principle in our technological analogs, including radar (bouncing radio waves off 
distant objects) and sonar (bouncing sound waves off distant objects). We use it to measure many 
distances, including the distance to the moon, which is now known to a few centimeters.  
 

The Doppler effect allows echolocators to carry this method one step further. Imagine 
that I send out a short pulse of sound, consisting of 100 oscillations of a single frequency sound 
wave. If I wait a bit, this pulse will bounce back off my target. The time the pulse train takes to 
return will encode the distance to the target. If I also measure the wavelength of the returning 
pulse train, any shifts in it will reveal any the relative motion between me and the target. So not 
only do I learn how far away things are, but also how fast they’re moving relative to me. This is 
what’s used in the ‘Doppler radar’ so much discussed on the Weather Channel today. It allows 
measurement not only of the locations of weather systems, but also of their velocities. As a result 
it aids in spotting extreme, and very localized, weather; like thunderstorm fronts and tornados. 
 

Shifts in wavelength or frequency relate to the relative velocity of source and recipient 
according to the relation given early in this chapter. The problem for echolocation by a bat is, 
however, a little more complex. The sound in echolocation goes through two stages. First, the 
initial sound is sent out by a possibly moving bat. This sound is then received by a target, again 
possibly moving. As a result the sound received by the target may Doppler shifted. The sound 
this target reflects emerges with no delay on reflection, so waves head back out with the same 
frequency they are received. Now, in a second stage, the reflected sound is transmitted by the 
target and is received by the moving bat. These two stages of transmission and receipt imply a 
larger total frequency shift: 

 
 

Physics 235 Winter 2011 
Copyright Timothy McKay

136



 

 

 

 

Challenges of biosonar, intensity 
 

These two elements, timing of echoes and measurement of relative motion through 
Doppler shifts, are the basic elements of this approach to sensing the world. There are also a 
number of challenges inherent in biosonar. The first is the intensity. To hear an echo from an 
object a bat must send out a sound, which typically will propagate out in every direction. This 
outgoing sound fades in intensity as  

 
 
 
When this sound arrives at the target, part of it will bounce off and return toward the source, but 
again its intensity will fade with distance. As a result: 
 
 
 
The returned intensity falls off with target distance like distance to the fourth power! A target 
twice as far away returns a sound with 16 times smaller intensity smaller than the transmitted 
signal. 
 

Bats address this fundamental problem in a large variety of ways. First, the sounds they 
produce are very loud. Some reach intensities of 110 dB. This helps, but also presents a problem. 
A bat which is busy producing such an intense sound is unlikely to be able to detect a much 
fainter echo. For this reason, bats produce their sounds in short pulses, ranging in length from 0.2 
ms to as much as 100 ms. They transmit a short, intense pulse, then wait for echoes to return. 
Since echoes from distant objects take longer to return, bats provide long gaps between pulses 
when targets are far away, and make the pulses closer and closer as they approach their targets. 
 

Pulse duration also affects the ability of the bat to tell how far away the target is. A pulse 
of length tp emitted by the bat travels through space as a band of sound with pulse length Lpulse = 
vstp. For typical conditions, such a pulse might be a few meters long when the bat is searching, 
then shrink to a few centimeters as the bat closes in. The figure below shows an example of the 
search and capture sequence of sounds produced by a hunting bat. You can see from this how the 
pulses become shorter and closer together as the bat closes in on its target. 
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Another approach to the intensity problem is to make the transmitted signal very special, 
so that its echo stands out from all possibly confusing ambient sounds. A common approach is to 
transmit sound in a narrow band of frequencies; a single tone ‘continuous frequency’ signal. Any 
incoming sounds which do not have this frequency can be safely ignored. The advantage this 
provides for filtering out all the other noise is very strong. This approach has driven adaptation in 
the hearing of many bats to be sensitive to only the same narrow band of frequencies they 
transmit. Sounds with the ‘wrong’ frequencies are simply not heard. 

Challenges of biosonar: timing, location, and  Doppler shifts 
 
How is a bat to tell where an echo came from? First, it finds a distance by measuring the 

time between transmission and return. Doing this is a serious challenge. Sound travels rapidly in 
air, so that the time delay between transmission and receipt of an echo from a target 2 meters 
away is only about 5 milliseconds. Clearly the timing sensitivity of the bat must be in the 
millisecond range, quite substantially better than your own. Bats have highly structured neural 
networks in their auditory cortex specifically tuned to particular delays between transmission and 
receipt of an echo. The bat ‘measures’ the time delay by seeing which of its many tuned neural 
circuits is fired by a particular transmission and echo pair. 

 
Once a bat measures the distance to a source, it must still determine what direction it 

comes from. Binaural hearing, with time delays between the receipt of sound at one ear and the 
other, provides good sensitivity to angle within the horizontal plane. Localization in the vertical 
plane is a greater challenge for most bats. Many ameliorate this problem by flying directly at a 
chosen target. Using these basic tools, echolocating animals like bats can image the dark world 
with remarkable precision. As we will see, there are other subtleties to consider. We will return 
to echolocation, and our more technological use of it in ultrasound medical imaging, in future 
chapters. 
 

While narrow-band hearing helps to filter noise during echolocation, it also creates a 
problem. If a bat is flying toward a target, the echo returned will experience a Doppler shift. If 
this shift is too large, it will drive the return sound out of the narrow band of the bat’s most 
sensitive hearing. Some bats, like the Mustached bats (Pteronotus parnellii), handle this by 
continuously controlling the frequency they transmit, lowering it when traveling toward a target 
so that the echo they receive back is kept right in their most sensitive range of hearing. An 
example of this frequency compensation in living bats is shown below. This bat seems to 
understand Doppler shifts well. For a relative velocity of -4 m/s and a desired receipt frequency 

From Schnitzler & Kalko, 2001, Bioscience, 
57, 557. 
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of 61.92 kHz, we would predict an increase a shift in transmission frequency of 1440 Hz, just 
about what the bat actually does. This is shown in the figure below, which illustrates how a bat 
changes the frequency it transmits as its velocity relative to the target (in this case a wall) 
increases.  

 
 

   

Looking ahead 

Waves are extremely important for life, and we will continue to explore them through all 
of the next five chapters. In the next chapter, we will consider some important, even defining, 
features of what happens when multiple waves travel in the same region. This will allow us to 
understand what makes the sounds produced by musical instruments special. After this, we need 
to see what happens when traveling in some medium (air, water…) encounter boundaries. We 
will learn how they may reflect off boundaries and refract around corners. We’ll see how, 
remarkably, these phenomena enable us to measure the structures of important biological 
molecules like proteins and DNA. A fourth wave chapter will expand on what happens when 
waves reach boundaries, exploring not only reflection, but also transmission and refraction. In it 
we will learn how the complex structures in your ears ease the way for sound to enter your body.  
 

From Keating et al., 1993, J. Exp. Biology, 188, 115 
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With all the essentials in place, we will finally be ready to explore the ways living things 
image the world using their eyes. While most eyes share some basic features, we will see that 
evolution has attacked this important problem in a wild diversity of ways. By exploring the 
extreme variety of eyes, we will see physics and life in intimate connection. As a final topic, we 
will see how humans have applied an understanding of waves to generate a wide array of new, 
extrasensory imaging tools: magnifiers, microscopes, telescopes, and a wide array of modern 
medical imaging technologies. These tools, which allow us to see the invisible, are the lynchpins 
of modern science. They are in some real sense the ultimate reward for learning about waves. 
Once we know how waves work, we can put them to use. 
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A Quick Summary of Some Important Relations 
 
Waves as traveling disturbances: 

This chapter explored some of the basic properties of waves. In it, we stressed that waves are 
traveling disturbances, explained how a wave function provides a description of a wave at all 
locations and times, and mentioned the often useful distinction between longitudinal and 
transverse waves. Sound is longitudinal while light is transverse. 
 

Periodic waves: 

Many waves are approximately periodic. For these, there are simple relations among frequency, 
wavelength, period, and propagation speed. Light is a wave like others. It is distinguished by a 
very broad range of wavelengths and frequencies and a very large propagation speed. 
 
  
 
Predicting wave speeds: 

For mechanical waves, the speed of propagation is dependent on both the resistance of the 
medium to distortion and its inertia. We considered some particular cases of wave speed for 
sound, finding that it travels more rapidly in liquids and solids than in the air.  
  
 
 
 
We also encountered cases where wave speeds are not so simple. Speeds for water waves are 
very complicated, depending on wavelength, amplitude, and water depth. Light waves have 
speeds set by the connections between electricity and magnetism, and by the interactions 
between electric fields and the matter through which it travels. 
  
 
 
 
One model wave, the traveling sine wave: 

A particularly useful example wave function is the travelling sine wave, characterized by four 
parameters: a wavelengthλ , frequency f , a phase angleφ , and an amplitude A. This wave 
function can be written in general as: 

 
( ) ( ) 2, sin     with     and  2y x t A kx t k fπω φ ω π

λ
= − + = =

 
Such a wave travels at a speed 
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Wave propagation and intensity: 

The intensity of a sound wave measures the energy it delivers per unit area per unit time. It is 
given by: 

 
2 21

sound acoustic2     with      I v A Z vρ ω ρ= =  
Waves which spread out in two and three dimensions fade in amplitude even when no absorption 
is present. Their falling intensity can be predicted when the initial power emitted by the source is 
known: 
  
 
 
Waves may also be absorbed when they propagate through a material, where their energy may be 
converted into other forms in the material. 
 
The intensity of sound is often reported on a logarithmic scale which approximately reflects the 
perceptual response of human hearing. This scale is defined as: 
  
 

 

Source and receiver motion, the Doppler effect: 

Relative motion between sources and recipients of waves causes shifts between emitted and 
observed frequencies and wavelengths which are collectively called Doppler shifts. These are 
governed by the general relation: 
 
  
 
 
In both numerator and denominator the top sign is chosen with the motion brings source and 
receiver closer together. This effect can be used to determine relative motion of source and 
observer. Sources which travel through a medium more rapidly than the waves they produce in it 
create ‘wakes’ which trail behind them. 
 
Echolocation and the challenges it poses: 
 
Organisms which hunt in lightless conditions have repeatedly developed the ability to image the 
world around them using echolocation. This application of wave motion relies on the timing of 
echoes and the measurement of Doppler frequency shifts. Successful echolocation requires 
overcoming several challenges, including the intensity problem and the need to identify the 
direction to the source of an echo. 
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POLS Waves Chapter 29: 
 

29.0: When Waves Collide 
 
Waves of sound and light fill the air around us. We use them to sense the world beyond our skin. 
Starting from many sources, these waves rain down upon us from every direction. What happens 
when waves from all these independent sources arrive at one location? How do they affect one 
another? You can get some idea from everyday experience.  
 
When one person talks to you, you hear clearly what they say. When two people speak at once, 
you hear both together. The sound from one doesn’t alter the sound from the other; they simply 
combine. In a crowd this combination gets louder and more difficult to understand, but even now 
the sound from every speaker is present; each unaffected by the others. This experience suggests 
that when two waves come together in a material, each is unaltered; the new wave they create is 
just the sum of them all. 
 
Stated more precisely, this rule is a “principle of superposition”. If two waves traveling in a 
region are defined by wave functions y1(x,t) and y2(x,t), their combined effect will be just the 
linear sum of the two: 
  
 ytotal(x,t) = y1(x,t) + y2(x,t) 
 
This simple rule is very often an accurate reflection of reality, especially for the sound and light 
waves we use to sense the world.  
 
The principal of superposition does fail sometimes, usually when the combined amplitude of the 
waves becomes so large that the physics of the situation changes. A familiar example occurs with 
water waves. Near the shore, the amplitude of a wave may become so large that the wave breaks; 
it tumbles over. When this happens, the water 
moves in a manner very different from the 
rolling swells you might see in deeper water. To 
make superposition fail with sound and light 
we’d have to make the amplitude of the waves 
large enough to rip apart the material the waves 
are traveling through. This can happen (as when 
a singer shatters a wineglass) but it isn’t 
encountered often. So we will use the principle 
of superposition very freely and without fear! 
 
In this chapter we will explore how the simple principle of superposition gives rise to interesting, 
often surprising phenomena. We will see that two waves, each delivering energy, can come 
together in one place and completely cancel one another out; almost as if 1 + 1 = 0. This 
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possibility is unique to waves; a phenomenon called ‘interference’. When it happens, we know 
for sure that waves are involved.  
 
Sound has been understood to be a wave for at least 2000 years; it is extensively discussed by the 
Roman architect Vitruvius. Around 1800, British polymath Thomas Young showed that light 
also exhibits interference, demonstrating that it too is a wave. In the early 20th century it was 
recognized that tiny bits of matter, things like electrons and protons, also exhibit interference. 
These tiny building blocks of matter, the icons of particles, in fact possess a previously 
unsuspected but undeniable wave nature. Waves are not, as they might seem at first, a fringe 
topic. Understanding them is essential for appreciating reality. 

Superposition and interference in one dimension 
 
One of the best ways to appreciate the nature of the principle of superposition is to examine 
some simple examples. In the picture on this page, you see two pulses traveling through a 
material, perhaps ripples on a rope, captured in a series of snapshots labeled 1-5. In the top 
snapshots the two pulses enter the picture, one from the right and one from the left. Each pulse is 
a wave described by a wave function like the Gaussian wave packet first discussed in Section 
1.1.2: 
 
 
 
 
The first pulse, y1, begins at time t = 0 as a little Gaussian centered at x = 0, with a width σ. This 
pulse moves to the right with speed v. We can tell it moves to the right because the position and 
time terms in the wave function have opposite signs. The second pulse, y2, starts out at location 
x0, and also has width σ . Unlike y1 it is traveling to the left; position and time here have the 
same sign. Eventually, at time t = x0/2v (see if you can figure out why), they will arrive at the 
same location. 
 
As time goes on, we see the pulses coming together. When they arrive at the same point their 
amplitudes just add together. In snapshot 3, where they completely overlap, their combined 
amplitude is twice as large as the individual pulses which originally entered. After they come 
together, they move apart again. Each just continues on its way, unaffected, as if they had never 
encountered one another. With waves that aren’t too large, this kind of simple superposition is 
just what happens. 
 
Let's consider a second example. Imagine that one pulse is in the upward direction, while the 
other is downward. What will happen now? When the pulses are far apart, they travel along 
undisturbed, just as they did before. But now when they come together, just at the moment when 
their centers perfectly align, they completely cancel one another. If you took a snapshot of this 
rope at just this instant, it would show no deviation from equilibrium at all! This is shown in the 
second 5 snapshot illustration. The ability of two waves to add together and cancel one 
another out is unique to waves. It is diagnostic of the presence of waves. When you see this 
happening, you know for sure that waves are involved. 
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29.1: One-D superposition or nearly identical waves, phase matters 
 
Now let’s consider a little more complicated case: 2 nearly identical harmonic waves traveling in 
the same direction in a single medium. You might think of these as two waves traveling on an 
infinite rope. To understand how this might come about, imagine the following situation. Waves 
with the same frequency are generated by two different sources located at different points along 
a line. For now, we’re going to ask what this combined wave will look like to the right of source 
2, where things are fairly simple. We will go back in a bit and examine the waves between the 
sources. 
 
 
 
 
 
Source 1 produces a wave which travels out, eventually passing by source 2. If source 2 is 
producing a peak each time a peak from source 1 arrives, the waves produced by the two are 
synchronized and are said to be "in phase". Peaks line up with peaks, valleys with valleys, and 
the combined wave is twice the size of each original wave. This is called "constructive 
interference". This result is illustrated in the figure on the left. 
 
A more surprising case occurs when the waves are exactly out of step with one another, what we 
would call "out of phase". In this case, source 2 is producing a valley each time a peak from 
source 1 arrives. The result is illustrated in the figure on the right. In this case two waves, each of 
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which has a positive amplitude, add together to produce a zero amplitude disturbance. Two 
waves can add together and completely cancel one another out. This phenomenon is called 
“destructive interference”. It's a key feature of waves. 
 
 

 
 
The possibility of destructive interference has striking implications. If I project a sound into the 
room it will be heard everywhere. Imagine that I now want to get rid of it somewhere, to cancel 
it out. I can do this by a means other than just shutting off the original source. I can also get rid 
of this sound by adding another sound! Two waves with nonzero amplitudes can be added 
together to completely cancel one another. There are now a wide variety of ‘noise canceling’ 
headphones which work in exactly this way; eliminating one sound by actively creating another.  
 
Destructive interference is a surprising, defining feature of waves. To illustrate the importance of 
this interference phenomenon, consider the following dilemma.  
 
How could we prove that sounds travel as waves, and not as little particles of noise which fly 
through the air from their source to your ears? To separate these two possibilities, we should 
imagine how sound would behave in each case; we should make predictions based on each of 
these two models for sound. If I take two sources and add them together, the predictions of the 
wave and particle theories of sound differ substantially: 
 

• In the particle theory: we will always get twice the amplitude. Particles of sound 
can never cancel one another out; they can only add together  

• Wave theory: we will sometimes get twice the amplitude (when in phase), but 
sometimes we will get nothing (when out of phase). 
 

The stark difference between these predictions, purely a consequence of the fact that wave can 
interfere destructively, is how we discriminate between phenomena best described as waves and 
particles. When we see destructive interference happen, we know for sure that the entity we’re 
examining travels as a wave, and not as a particle. So to show that sound or light (or anything 
else) has a wave nature, we have only to demonstrate that it exhibits destructive interference. 
Anything that does is a wave. 

Wave 1 

Wave 2 

The sum 
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1D superposition of nearly identical waves, the details 
 
Imagine that we have two waves with the same wavelength λ traveling in a one-dimensional 
medium. Since they have the same wavelength and travel in the same medium, they will also 
have the same angular frequency ω. The first will be a simple traveling wave of the kind we 
discussed in the last chapter.  
 
 ( ) ( )1 , siny x t A kx tω= −  
 
The second will be very similar, but with an offset expressed by an additional parameter φ. 
 
 ( ) ( )2 , siny x t A kx tω φ= − +  
 
The constant φ in this second wave function is the relative “phase shift” between the two waves. 
It represents an offset in position 
of the peaks of the wave y2. 
Increasing φ amounts to sliding 
the sine wave which makes up y2 
to the right.  
 
This is illustrated in the figure, 
which shows a snapshot of the 
wave y2 for different values of 
the phase shift φ. This shift 
moves y2 relative to y1, so that 
the peaks of the two waves may 
not be at the same place. 
 
What happens when these two waves travel in the same medium? As the principle of 
superposition tells us, their combined effect is simply their sum: 
 

( ) ( ) ( ) ( ) ( )1 2, , , sin sintotaly x t y x t y x t A kx t A kx tω ω ϕ= + = − + − +  
 
When φ = 0 (or 2π, 4π, etc.), the two waves are perfectly in step, with peaks from y1 located 
exactly in line with peaks from y2. If φ = π (or 3π, 5π, etc.), the waves are perfectly out of step, 
with peaks from y1 arriving with valleys from y2.The nature of the interference between the two 
waves in this case depends entirely on this offset φ: 
 
 φ=0, the sum has twice the amplitude  ( ) ( )1 2, 2 sintotaly x t y y A kx tω= + = −  

 φ=π, the amplitude of the sum is zero  ( ) 1 2, 0totaly x t y y= + =  

 φ=2π, the sum has twice the amplitude ( ) ( )1 2, 2 sintotaly x t y y A kx tω= + = −  
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Because nature of the combined wave depends so dramatically on this phase angle, we will often 
talk about whether two waves are completely “in phase” (with a relative phase of zero) or 
completely “out of phase” (with a relative phase of π ). Of course it’s perfectly possible for the 
phase to be somewhere between these two extremes, in which case the resulting totaly  will be 
intermediate in amplitude. 
 
How should we understand what this phase angle represents physically? Imagine that we shift 
wave y2 in time, perhaps by starting the oscillations which produce it later by a delay Δt.This is 
like replacing the time t with (t + Δt). If this time shift obeys the relation 
 

  
2 2

t ϕ ϕ ϕ
ω π π

Δ = = = Γ
υ

  

 
it would be perfectly equivalent to adding a phase angle ϕ . Notice what this offset is. When φ 
between 0 and 2π, this delay time Δt is a fraction between 0 and 1 multiplied by the period of the 
wave Γ. So you can think of a phase shift as delaying the wave by some fraction of a period.  
 
Alternatively, we could imagine shifting the wave in position without delaying it. We could do 
this by substituting ( )x x+ Δ  for x . So long as we choose the position shift Δx to be: 
 

2
x

k
ϕ ϕ

π
Δ = = λ  

 
this position shift would also be the same as having a phase angle ϕ . This would amount to 
shifting the wave right or left by some fraction of a wavelength. We can also think of a phase 
shift as an offset in position. 
 
So you see, we can interpret a phase angle ϕ  as a shift of one wave relative to the other, with the 
offset either in time or in space. 
 
 φ=0 or time shift = 0   or spatial offset = 0 
 φ=π or time shift = 1/2 period  or spatial offset = 1/2 wavelength 
 φ=2π or time shift = period  or spatial offset = wavelength 
 

1D superposition: harmonic waves differing in frequency 
 
Another simple case in which waves interfere interestingly occurs when their frequencies and 
wavelengths are different. In this case they may start out in phase, but one is oscillating faster 
than the other. As a time goes on, this more frequent wave gets ahead of the other, and they 
gradually slip from being in phase, to being out of phase, to in phase, to out of phase... This will 
cause the amplitude of the resulting total wave to change with time. The overall amplitude will 
oscillate from large, to small, to large. In effect, it will generate a new wave. The pictures below 
illustrate this effect. 
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The frequency of changes in the overall amplitude of this summed wave is called the ‘beat 
frequency’. It is equal to the difference between the frequencies of the two component waves:

1 2beatf f f= − . The beat frequency will be relatively low compared to the frequency of each 
component. It is the rate with which the overall wave oscillates at large amplitude, shrinks down 
to zero amplitude, then rises to large amplitude again. Sometimes this is referred to as the 
‘envelope’ of the wave amplitude. 
 
There is a second frequency apparent in this kind of interference; the high frequency oscillations 
inside the larger, more slowly varying, amplitude envelope. This ‘carrier’ frequency is much 
closer to the original frequency of the two input waves; in fact it is their average: 

( )1
12carrierf f f= + . 

 
We can derive these relations using a little trigonometry. We begin with two sinusoidal, 
harmonic waves with different angular frequencies ω1 and ω2. Note that these differing 
frequencies imply different wavelengths, and hence different wave numbers k1 and k2. The 
principle of superposition tells us how to combine these two waves: 
  
  ( ) ( ) ( ) ( )1 2 1 1 2 2, , sin sintotaly y x t y x t A k x t A k x tω ω= + = + + +  
  
There is a trigonometric identity we can apply to this. It states that, for any arguments A and B: 
 
  
 
 
Applying this to the equation above, we find: 
 

 ( ) 1 2 1 2 1 2 1 2, 2 sin cos
2 2 2 2total

k k k ky x t A x t x tω ω ω ω+ + − −⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

( ) ( )sin sin 2sin cos
2 2

A B A BA B + −⎛ ⎞ ⎛ ⎞+ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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In examining this sum you can imagine it possessing two parts. The first is an amplitude wave. It 
describes how the overall envelope of the wave changes with time. The second part is a more 
rapidly oscillating wave, very like the two original waves. We might call this the carrier wave. 
Decomposing the total wave in this way give us: 
 

   

( )
1 2 1 2

1 2 1 2

,

2 sin
2 2

cos
2 2

totaly x t amplitude carrier

k kamplitude A x t

k kcarrier x t

ω ω

ω ω

= ×

− −⎛ ⎞= −⎜ ⎟
⎝ ⎠
+ +⎛ ⎞= −⎜ ⎟

⎝ ⎠

 

 
Notice that in the “amplitude wave” the angular frequency is: 
 

 1 2 1 2      or       
2 2amplitude amplitude

f ffω ωω − −
= =  

 
Since the two wave frequencies are close, the frequency for this oscillation of amplitude is low. 
This is related to the “beat frequency”, but there is a subtlety to be careful of. What you hear in 
the beat frequency is the amplitude of the wave going to zero regularly, let’s say once each 
second. But since the sine function in the “amplitude wave” passes through zero twice in each 
cycle, the zeros occur with twice the frequency of the amplitude wave. This is why we say the 
beat frequency is: 
 
 1 22beat amplitudef f f f= = −  
 
and not 
 

 1 2

2beat
f ff −

≠  

 
In the “carrier wave”, the new angular frequency is: 
 

 1 2 1 2     and     
2 2carrier carrier

f ffω ωω + +
= =  

 
As long as the two original frequencies 1ω  and 2ω  are close, this is essentially 1 2carrierω ω ω≅ ≅ , 
and 1 2carrierf f f≅ ≅ . 
 
When might you encounter this funny kind of interference? Musicians who play ‘in tune’ 
generate very nearly the same frequency when they play the same notes. The note which is the A 
above middle C on the piano, for example, has a frequency of 440 Hz. Imagine that two 
musicians attempt to play this, but one actually plays at 439.5 Hz, while the other plays at 440.5 
Hz. When this happens, their sounds will interfere with one another in just the manner described 
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in this section. If you listened to the sound they produce, you would probably first notice a 440 
Hz tone, the average of their two frequencies. This is the carrier frequency. But in addition, the 
amplitude of this tone would oscillate up and down with a frequency given by the beat 
frequency, or 1 Hz. This throbbing ‘beat’ in the amplitude is the principal reason ‘out of tune’ 
music sound so unattractive. As the musicians tune their instruments, the frequencies they play 
become closer, and the beat frequency decreases. Ultimately, when they’re perfectly in tune and 
their frequencies are equal, the beat frequency goes to zero, and beautiful concord emerges. 

1D superposition: harmonic waves traveling in opposite directions 
 
Let’s consider another case, seemingly obscure, but actually very important: two identical waves 
traveling in opposite directions. The interference effects which emerge here are quite surprising. 
We can work this out in the usual way, by simply adding together two waves traveling opposite 
directions, but otherwise identical: 
 
 ( ) ( ) ( ), sin sintotaly x t A kx t A kx tω ω= − + +  
 
If we apply the same trigonometric identity we used to derive the beat frequency in the last 
section, we see that the sum of these two identical waves traveling in opposite directions can be 
written: 
 
 ( ) ( ) ( ) ( ) ( ), 2 sin cos 2 sin costotaly x t A kx t A kx tω ω= − =  
 
What is this function? Amazingly, it is NOT a traveling wave! To make the wave travel, you 
have to have an argument like kx tω−  in the trig function. Without it there is no connection 
between position x and time t. This combined wave function totaly  is just an oscillation, 
something which varies like ( )cos tω , with a position dependent amplitude ( )2 sinA kx . The 
oscillations sit still, with large amplitudes in some places and small amplitudes in others. This 
stable, unmoving pattern of oscillation is called a "standing wave". It is produced by having two 
nearly identical waves traveling along in opposite directions. 
 
The standing wave seems kind of arcane. After all, how often do carefully similar waves travel 
through a material in opposite directions? As it turns out, standing waves are very important and 
happen very often. This is so because of another important wave phenomenon we will introduce 
now. What happens when a disturbance traveling in a medium encounters a boundary, when the 
disturbance tries to travel from one medium to another? 

29.2 Material mismatches and reflection 

Step back a moment and remember what these waves are; they are disturbances traveling through 
a material because of the coupling between its various parts. Many materials are more or less 
homogeneous; they are the same everywhere. When the density and stiffness of the material 
remains the same, the wave travels freely through it. But eventually all materials end. What 
happens when a wave comes to the end of the material in which it’s traveling?  
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We will probe what happens at such boundaries by considering two extreme cases. These will 
illustrate the range of what’s possible. 
 

1. At one extreme, we imagine that beyond the end of the material there is nothing. When 
the wave reaches the surface it finds the material there completely free to move, 
unattached to any exterior material. 

2. At the other extreme, we picture the edge of the material firmly attached to something 
much "stiffer" than the material itself. Now the wave reaches the end and finds the 
material there completely fixed in place and unable to move at all.  

 
It is useful in considering these to keep a mental picture of wave pulse 
approaching the end of a rope. In the first case we might picture the 
rope attached to a rod with a little loose ring allowing the end to slip 
up and down very freely. In the second case we picture the rope tied 
firmly to the rod so that the end of the rope can't move up or down at 
all. Both cases are illustrated as a series of snapshots in the figure to 
the right. 
 
In the first case, as the wave reaches the end, a peak rises up. But 
unlike what happens when a peak arrives at a location in the material, 
the end isn't "held down" by any material beyond it, so it flies up 
farther than a normal bit of rope would. At some instant (the point 
illustrated in the middle snapshot of the picture) the end of the rope is 
quite far from equilibrium; it is disturbed. This is just what would 
happen if we had grabbed the end of the rope and jerked it upward. 
This disturbance which now starts here at the end travels back into the 
material. A wave which arrived traveling left-to-right is "reflected" 
from the end and heads back out traveling right-to-left. This reflected 
wave is just like the wave which was sent out, upright if the incoming 
pulse is upright. In a somewhat loose mixing of terminology, we 
describe such a reflected pulse "in phase" with the input wave. If the 
incoming wave were a harmonic wave, it would simply turn around and head back in the 
opposite direction. 
 
The second case is a little trickier. Now the wave comes to the end where the material is 
completely pinned in place by the stiffer material beyond. The very end of the rope can't oscillate 
at all. So the wave comes towards the end, pulling up on the firmly fixed point on the end. When 
the rope pulls up on the rod, the rod must pull down on the rope. So when a peak comes in, 
pulling up on the rod, the rod will push the rope down and a valley will be reflected. This means 
the reflected wave will be inverted relative to the incoming wave. We would describe this as 
being "out of phase" with the input wave. For a harmonic wave, this would imply a shift in the 
phase angle of the wave of 180°; the reflected wave would be inverted relative to the incoming 
wave. While these two cases are a little different, they are the same in one crucially important 
way. In either case, a wave is reflected back through the material which (other than a possible 
phase shift) is identical to the wave coming in.  

Free end

Fixed end
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As a result, reflections at material boundaries provide an easy way to generate identical waves 
traveling in opposite directions. This is the reason the standing waves discussed above are so 
important. It is quite common for a wave to travel inside a material which is limited in extent. 
When this happens, the wave may rattle back and forth through the material, traveling in both 
directions simultaneously. We will look at several specific examples of this in the next sections. 
 
We have considered what happens when waves encounter material boundaries where oscillations 
are either much easier than usual (the free boundary) or much more difficult than usual (the fixed 
boundary). At most real boundaries between one material and the next, the transition is more 
subtle than either of these extremes. In these intermediate cases, something intermediate will 
happen. Unless the match between materials is perfect, at least some of the wave will still be 
reflected. 
 
 The nature of the reflected wave will still depend on the relative stiffness of the two materials. If 
the first is generally stiffer than the second, there will be an upright (in phase) reflection. If the 
first is less stiff than the second, there will be an inverted (out of phase) reflection. In all these 
intermediate cases, part of the wave also continues on from one material to the next, it is 
“transmitted”. What happens when the old and new materials are perfectly matched in their 
properties? In this case the wave is not reflected at all, but instead passes freely into the new 
material, it is completely transmitted. 
 
This point should sound familiar. It is closely related to the idea of resonance in oscillators. A 
wave traveling through a material is energy begin transferred from one bit of the material to the 
next. The rate at which this energy travels is determined by a balance of the inertia of the 
material (its density) and its stiffness (the strength of the connection of one bit of the material to 
another). When this energy arrives at a material boundary it must go somewhere. If the new 
material has wave properties well matched to the original material, it can receive this energy and 
pass it on as freely as it arrives. If they are not matched, the arriving energy can only be reflected 
back into the original material. 
 
Reflections at boundaries play an essential role in our ability to sense the world using waves. If it 
did not occur, we would see only those objects which actually emit light. In fact, we see most 
objects because light which strikes them reflects from their surfaces, sending waves from the 
objects to our eyes. Those materials which don’t reflect light, like good window glass, or the air 
itself, don’t send light to our eyes. They are invisible to us; we can’t sense them with light 
waves. 
 
Those organisms which use biosonar to image the world around them need reflections in the 
same way. For bats the problem is relatively simple. Sound waves traveling in air reflect very 
well off most solids, which are in general much stiffer than air. The problem is much more 
serious for the toothed whales. Imagine sound traveling in water encountering a fish, for 
example. The fish is a new material, but it’s mostly water, and waves travel through it almost as 
they do through the water nearby. As a result, little of the sound which strikes the fish reflects; 
most of it passes straight through. We will return to this interesting challenge and its impact on 
the use of biosonar underwater at the end of this chapter. This problem also plays an important 
role in the ultrasound imaging we use in medical imaging. 
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Standing waves, reflections, and the sound from a guitar string 
 
Now that we have learned about standing waves and reflections from boundaries, we have all the 
pieces we need to understand the lovely sound produced by a guitar string. Imagine we have a 
string with some length L, a mass M, and a mass per unit length M Lμ = . It is stretched with 
some tension T, so that the speed with which waves travel on it is given by v T μ= . The string 
is fixed at both ends; attached firmly to a structure much stiffer than the string itself. A wave sent 
down this string will encounter the end where much of it will be reflected; sent back along the 
way it came. 
 
If we pluck this string, we might stretch it upward into an inverted “v”, then release it. When we 
do this oscillations with all kinds of frequencies will be produced. You will have to take that 
statement a little on faith until we learn about Fourier analysis a bit later in this chapter. Each of 
the many frequencies in this wave corresponds to a particular wavelength. They are related to the 
speed of the wave on the string according to the relation v f= λ . Waves race out in both 
directions, reflect off the ends and generally bounce back and forth between the ends interfering 
with one another. Most of these waves will die off quickly, expending their energy trying to pull 
the fixed ends of the string up and down. But a few special frequencies (with corresponding 
wavelengths) are immune to this and will last much longer. These are the frequencies will make 
up the sound you hear from the guitar. 
 
We know that the string is fixed at the end. Waves which try to make this end move, tugging it 
up and down, will dissipate energy into the support and rapidly die off. But any wave which has 
"nodes" (points of zero oscillation) located at the ends of the string won’t tug the supports up and 
down. Waves like this can continue to oscillate, bouncing back and forth along the string, for a 
long time. All the other wavelengths and frequencies rapidly lose their energy to the supports and 
quickly disappear. 
 
This a key point. A guitar string like this can be "excited" with a wide range of frequencies, and 
ONLY those for which these conditions are met will remain with large amplitude. The string 
"selects" particular frequencies. This is essential for a musician. It means we don't have to pluck 
a guitar string at a particular frequency to make it oscillate at the right pitch. We just get it started 
with a big mix of frequencies, and the structure of the guitar itself picks out the pitch we want to 
hear. 

Selected frequencies for standing waves on a string 
 
In the last section, we saw some special waves which rattle back and forth on a guitar string. 
These waves, which don’t try to tug the supports up and down, can oscillate back and forth on 
the string for a long time. What kinds of waves will have “nodes” at the two ends of the string? 
What will be the frequencies and wavelengths of these waves? As it turns out, there are many. 
For a string with length L, we show here the first three. The first wave, which is kind of the 
‘jump-rope’ mode, has only half a wavelength on the string, so it’s full wavelength is 2L. The 
second fits one full wave on the string, the third one and a half. 
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 Lowest mode: / 2 Lλ =  2Lλ =  
  
 
 
 2nd harmonic: Lλ =  
 
 
 
 3rd harmonic: 3 / 2 Lλ =  2 / 3Lλ =  
 
 
You might discern a pattern in this, and in general we can write a relationship which describes 
the whole pattern as:  
  

  2L
n

λ =  

 
where ‘n’ here is any integer; one or higher. Notice that there are, in principle at least, infinitely 
many of these different waves, each with a wavelength shorter than the last. 
 
Consider this lowest mode: 
 2Lλ =  
We know the string has some wave speed v T μ= , so the frequency of the oscillations in this 
string, and hence of the sound it will produce, is: 

 
2

T
vf

L
μ

λ
= =  

  
In general, since we can write the wavelength condition as: 
 
 2L

nλ =   with n = 1,2,3… 

 
we can write a general frequency relation: 
 

         with      
2 2fundamental fundamental

T T
vf n nf f

L L
μ μ

λ
= = = =  

 
What’s the central point here? The string will vibrate with a whole set of different frequencies, 
each of which is an integer multiple of some lowest, fundamental frequency. This fundamental 
frequency is analogous to the natural frequency of an oscillator. It is determined by the properties 
of the string; its tension, mass per unit length, and length. To change the frequencies of the sound 
the string will produce, we might change any of these three parameters. When the guitar is tuned, 
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we change the tension of the string. When the guitarist ‘fingers’ the string, she changes its 
length. And when the guitar is produced, heavier strings, with larger mass-per-unit-length μ , are 
used to produce lower notes. 
 
Your voice works in a fashion closely related to this. Inside your throat there is a set of flaps, 
your vocal cords, which can be made to oscillate when air passes over them. They oscillate with 
certain specific frequencies, very much along the lines we have just described. You then alter 
their frequency by adjusting the tension of these cords. This alters the velocity of the waves on 
the cords, and hence changes the frequency. Tightening up your vocal cords increases the 
tension, increasing the wave velocity on them, and increasing the frequency you hear. 

Standing waves in pipes and rods 
 
There is another common standing wave example, relevant for both wind instruments and for the 
production of sound by many animals. Imagine a sound wave traveling in the air contained in a 
pipe which closed at one end and open at the other. In this case, sound reflects from the closed 
end because it is stiffer than the air, and from the open end because the unrestricted air outside 
the pipe is poorly matched to the restricted air inside. The reflection at this open end is less 
complete than at the closed end, and some of the sound escapes. If it didn’t no sound would ever 
leave the pipe, and you wouldn’t be able to hear it. 
 
The air cannot move at the closed end, so just like the end of a guitar string that spot must be a 
node. The air moves freely at the open end. There's nothing to prevent it from moving there, so 
that should be a maximum in the oscillation, an “antinode”. As a result, the frequencies of waves 
which can oscillate with large amplitude in such a pipe have a pattern like that of the guitar: 
 
 
 
 / 4 Lλ =   or 4Lλ =  
 
 
 3 / 4 Lλ =   or 4 / 3Lλ =  
 
 
 5 / 4 Lλ =   or 4 / 5Lλ =  
 
 
 
This pattern can be summarized in general as: 
 

 ( )2 1
4

L n λ
= +   with n=0,1,2…. 

Which makes the pattern of wavelengths: 

 4
2 1

L
n

λ =
+

  with      n=0,1,2…. 

And of frequencies: 
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 ( )2 1
4

sound soundv vf n
Lλ

= = +  with n=0,1,2… 

 
So just like a fixed string, a pipe like this will produce a set of discrete frequencies which are 
well separated from one another. In this case, they are only the odd multiples of a fundamental 
frequency 0 / 4soundf v L= . If we want to change the fundamental frequency for sound in this 
pipe, we must change either its length (which is easy) or the speed of sound in the air in the pipe 
(which is harder…). So “tuning” a pipe like this usually amounts to altering its length. 
 
There are many simple variants on this. Imagine a pipe open on both ends. With both ends free to 
oscillate, and we would expect to have amplitude maxima at both ends. The first few modes of 
oscillation for this are shown in the figure below. The oscillation frequencies for this open pipe 
would be (be sure you can work this out yourself!): 
 

   with n=1,2,3...
2
soundvf n

L
=  

 
Another example is the ‘singing rod’. This is a solid metal rod, held fixed in the center. Sound 
waves produced in the rod itself bounce back and forth off the ends, producing standing waves 
inside the metal. Since the ends are free, while the center is fixed, this rod will have a node at the 
center, and antinodes at the ends. This system would allow a set of oscillations like those shown 
in the figure below. These would have frequencies: 

( ) sound in metal2 1    with n=0,1,2...
2

vf n
L

= +  

 

 
These examples provide models for musical wind instruments, like flutes, clarinets, and organ 
pipes. These specific cases all differ in detail, especially because oscillations in them are excited 
in different ways. Nevertheless, these simple models give a clear sense of why each picks out 
and produces a set of discrete frequencies, well separated from one another.  
 
Notice that all of these standing wave examples involve waves bouncing back and forth in 
‘cavities’. The waves are confined to some region, inside which they travel in both directions, 

Tube open on both ends Rod fixed in the middle 
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producing the standing wave. The fundamental frequencies of oscillation allowed in each cavity 
are determined by the speed of the wave in the relevant material (string, air, or metal) and the 
size of the cavity. In a string instrument, the wave speed can be easily controlled; either by 
changing the tension or the mass-per-unit-length of the string. As a result, these instruments can 
be tuned by keeping the length of the strings constant and altering their tension. Wind 
instruments are different. The waves in them are traveling in air, and the wave speed can’t be 
easily altered. So they are tuned by altering their length.  
 
This implies a characteristic scale for the sounds produced by air filled cavities. A wind 
instrument 1 meter long would have a typical fundamental frequency on the order of / 2soundv L , 
or around 175 Hz. Halving the length doubles the frequency. Doubling the length halves the 
frequency. Humans hear sounds from around 20 Hz to around 20,000 Hz. Such sounds would be 
produced in cavities ranging in length from around 10 m for the lowest frequencies to 1 mm for 
the highest. The singing rod is similar, but now the sound travels in metal, and much more 
rapidly. For an aluminum rod 1 meter long and clamped in the middle, we might expect a 
fundamental frequency of vsound in metal/2L ~ 4900 m/s / 2 m = 2500 Hz. 
 
The physics of musical instruments is a very rich, beautiful topic, all built around the essentials 
presented in this chapter. Here are just a few of the many additional points we might make about 
this topic. 
 
• Musicians will know that you need to "warm up" an instrument before you can tune it. Why 

is this? If you tune the instrument, then its temperature changes significantly, both its length, 
and more important, the speed of sound in the air inside, will change, changing the 
frequencies, and throwing it out of tune. So first you warm it up, then you tune it. 
 

• We have stressed that in order to make a standing wave we have to have the wave reflect 
back and forth between the ends of the system. But what would happen if the entire wave 
bounced back at the opening? You wouldn't hear such an instrument at all, because no sound 
would come out. So a compromise has to be reached, with some sound reflecting back and 
some coming out. Often the escape of the sound from an instrument is aided by a creating a 
more gradual transition from inside to outside. This is why there are "bells" at the ends of 
most wind instruments. 

 
• For string instruments the problem is similar. An oscillating string doesn't create a lot of 

sound. To make it more audible, the string has to be "coupled" to something large which can 
oscillate back and forth. Hence the large body of a violin, cello, or guitar. The string makes 
the sound, the body then couples the string more smoothly to the room to release the sound. 

 
• To produce the sound we don't have to excite the system with a particular frequency. If we 

excite it with a broad range of frequencies only those for which the system is resonant in this 
way will remain with large amplitude. If you play a wind instrument you probably know that 
the bit which creates the sound (the mouthpiece) produces a broad range of frequencies, a 
kind of buzzy sound. It is the standing waves, caused by interference of two waves traveling 
in opposite directions, that are responsible for the functioning of musical instruments, and 
with just a bit of knowledge of how waves work, we can predict just what notes they will 
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play. Only those waves which are resonant in the cavity of the instrument will build up to 
large amplitude. They will be selected from the broad mix of frequencies put into the 
instrument by the mouthpiece. Other frequencies will be rapidly damped away. 

 

2D and 3D cavities with standing waves 
 
We have seen how waves confined to a one dimensional ‘cavity’ will rattle back and forth in it, 
producing standing waves. The same kinds of phenomena occur in more complex, multi-
dimensional objects. While the details are all well understood, they involve relatively complex 
mathematics. We will focus on a few key features of 2D and 3D cavities, especially as they 
relate to musical instruments and the sounds produced by living things. 
 
Let’s consider first one simple case, a circular membrane free to oscillate but fixed at the edge; 
like a drum head. We aren’t going to derive the details of this system here, but just discuss some 
of the principal features. Like a guitar string or a flute, this structure has a fundamental frequency 
of oscillation which depends on its size and the speed with which waves propagate through it. 
For a perfect, uniform sheet stretched with tension T, with mass per unit area σ , and radius r, 
this fundamental frequency 0f  is approximately: 

0
2.405 2.405

2 2
sv Tf

r rπ π σ
= =  

Notice how similar this is to what we found for the one dimensional case of a guitar string, 
where the fundamental frequency depended on the speed of sound in the string and its length. 
Here we find it depends on the speed of sound and the size of the drum heard. For a circularly 
symmetric drum head like this, the fundamental oscillation is very simple and symmetric, with 
the center of the drum head oscillating up and down while the edges remain fixed. 
 
Not surprisingly, 2D cavities like this also have a 
series of higher frequency oscillations which can 
appear on them with high amplitude. There are 
important differences between 1D and 2D 
cavities however. We have seen that 1D cavities 
have higher harmonics which are integer multiples of the fundamental. For most 2D systems, the 
higher harmonics are not integer multiples of the fundamental. For example, this circular 
membrane has higher harmonics at approximately these frequencies: 
 
 fharmonic = f0, 1.584f0, 2.136f0, 2.296f0, 2.653f0, 2.918f0…. 
 
You can see that these are still well separated, even though they are not integer multiples of the 
fundamental. As a result, the sound produced by a drum like a timpano (yes, that’s the singular 
of timpani) has a very distinct pitch, and sounds quite musical. But since its mix of higher 
harmonics is quite different from that of essentially 1D instruments like violins or trumpets, the 
timbre of its sound is quite different. 
 
While 2D and 3D structures may have complicated frequency spectra, their fundamental 
frequencies of oscillation will always depend on a combination of their size and the speed with 
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which waves propagate through them. Imagine a thin, rectangular plate with side lengths L1 and 
L2, through which sound travels at a speed vs. If the plate is clamped at the edges like a guitar 
string, we would expect this plate to have two fundamental frequencies with: 
 
 01 1/sf v L∝  and 02 2/sf v L∝  
 
If one of these lengths becomes very short, its fundamental frequency becomes very large, and 
the system begins to act like a 1D oscillator; a simple bar. 
 
When a system lacks the symmetry of a circular drum head or a rectangular plate, we might still 
estimate its fundamental frequency of oscillation by noting its rough size L and speed of sound: 
 
 ( )/ 2est sf v L∼  
 
Imagine an air filled cavity, roughly spherical, 1 cm in size. We might expect such a cavity to 
have resonant frequencies around f ~ (343 m/s /2*0.01 m) ~ 17,000 Hz. What does this tell us 
about bats and their biosonar? If they use air filled cavities to amplify their sound, we might 
expect their size to be less than about 1 cm. 

29.3: Sound and musical sound 
 
We have all the pieces in place now to discuss a very old mystery. There are a lot of different 
kinds of sounds in the world, and yet only a very restricted set of these are what we would call 
musical. What is the difference between musical and non-musical sounds, and how could we 
quantify it? 
 
To understand the difference, we might begin with a "pure" tone, a pure harmonic wave, made of 
just one frequency. The wave function for such a pure, single frequency, wave is simple: it is just 
the harmonic sine wave we've been using as an example. Such a pure, single frequency sound is 
not what we would call musical though; it lacks the warmth and timbre of a musical instrument. 
You are most likely to have heard this sound emanating from a computer; the electronic 
‘beeeeep’ of the modern world. No one would go to a concert to listen to this kind of sound, even 
if it was used to play the loveliest melody you know. 
 
At the other extreme, with no particular frequency at all, is the nasty sound we would call 
"noise". The wave function for noise doesn't look at all like our smooth, regular, sinusoidal 
wave. Instead it bounces up and down seemingly at random. It is still a wave; a traveling 
disturbance, but it is definitely not a harmonic wave with a single frequency, and it is definitely 
not musical. 
 
A musical sound lies somewhere in between. The figure below shows examples of wave 
functions for all three kinds of sounds, including the sound from a violin string. The pure tone is 
a perfect harmonic wave, already familiar to us. The wave function for the noise is jagged and 
random. The violin wave is intermediate. Here we see a wave that has a very periodic looking 
pattern; certainly it's not random like the noise. It's also certainly not a sine wave.  
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But we know what it is! We have just calculated what frequencies a violin string like this can 
oscillate at. The sound you hear from a violin (or see in its wave function) is the sum of a bunch 
of sine waves, each of which is a multiple of some lowest, fundamental frequency. Sounds from 
a wind instrument, like a flute or bassoon, also look very periodic. But like this violin, they are 
always more than just a pure sine wave. 
 
 

 
 
 
Musical sounds are constructed from a sum of harmonic sine waves, each of which is a multiple 
of some fundamental frequency. This is the key to musical sound. A sound has the lovely nature 
of music sound if it is made up of a set of pure harmonic waves which have frequencies well 
separated from one another. In one dimensional wind and string instruments, these sounds are 
integer multiples of a fundamental frequency.  
 
A large frequency separation is essential to the attractiveness of musical sound. Without it, we 
might have two tones of almost the same frequency. Two waves separated by just a little in 
frequency produce “beats”; the interference in time we discussed earlier in this chapter. This beat 
phenomenon sounds nasty rather than nice. So for sounds to be musical they have to have more 
than one frequency, this is what gives them complexity and warmth, but the various frequencies 
cannot be too close together.  
 
The "resonant cavities" which make up musical instruments produce these mixes of harmonic 
waves in a completely natural way. They can be excited by oscillators which produce a broad 
array of different frequencies. Think for example of the buzzy, noisy sounds produced by a bare 
oboe reed or a trumpet mouthpiece. The instruments then select a set of specific, well separated 
frequencies, allowing only these to oscillate with large amplitude. Because they generate a mix 
of different frequencies, none of which are too close together, musical instruments produce 
sounds which are rich without becoming noisy. Truly musical sound requires both elements. 

Wave function for noise 

Wave function for a violin playing a G 

Wave function for a pure tone 
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Frequency analysis 
 
Looking at wave functions can give us an idea of their nature, but there is a more quantitative 
way to examine the nature of a sound, or indeed of any wave; by frequency analysis. To better 
understand a sound, we might see what set of perfect harmonic sine waves could be added 
together to produce it. Remarkably, every sound can be accurately expressed as some sum of 
sine waves. The difference between different sounds is then just a matter of how much of each 
pure frequency the sounds contain. 
 
The results of frequency analysis are often displayed in ‘spectrograms’, 2 dimensional plots 
which allow us to visualize the changing mix of frequencies present in a sound. A typical 
spectrogram has time on the x-axis and frequency on the y axis. The intensity of each frequency 
at each moment in time is typically displayed as a gray-scale intensity. Sometimes another color 
scheme, or even a projected third dimension is used. Spectrograms are used extensively in the 
analysis of the natural sounds made by humans and other organisms. They also play an essential 
role in many forms of image analysis. A few examples are provided below. 
 

 
 

Wave functions and spectrograms: On the left we see a pure tone, containing 
just one frequency. This kind of sound is called ‘narrow-band’, because it 
involves a narrow band of frequencies. On the right we see the wave function 
and spectrogram for ‘noise’, containing nearly equal amounts of every 
frequency. This kind of sound is called ‘broad-band’ because it contains a broad 
range of different frequencies. 

Physics 235 Winter 2011 
Copyright Timothy McKay

162



 
Can every sound be constructed as a sum of sine waves?  
 
Most sounds are not simple harmonic waves, but something more complex. Is it really possible 
to construct every imaginable sound as a sum of sine waves with particular frequencies? Let’s 
look a little at how this might be done. 
 
The ability to construct any sound from a sum of sine waves is expressed clearly in a very 
powerful theorem first proven by Jean-Baptiste Fourier, a man whose life neatly spanned the 
French Revolution (1768-1830). It states that any arbitrary function which is periodic with 
angular frequency ω  can be accurately represented by a "Fourier Series": 
 

 ( ) ( ) ( )0

1 1
cos sin

2 n n
aF t a n t b n tω ω

∞ ∞

= + +∑ ∑  

 
In this equation, the variables an and bn are coefficients which express how much of each 
frequency needs to be included. We’re not going to prove this theorem here, but we’ll see what it 
means for the frequency analysis of our waves. 
 
Since every wave function is written as some continuous F(x,t), we can represent any wave 
function as a sum of differing amounts of sines and cosines. Every sound can be accurately 
thought of as being “made up of” a set of pure tones, each appearing with different strength. If a 
sound is a pure tone, only one frequency will contribute. If a sound is musical, a set of well 

This is the wave function 
for a bassoon playing a b 
flat. The wave is periodic, 
with a period of 0.002 
seconds. This implies a 
fundamental frequency of 
about 500 Hz. 

This is the ‘spectrogram’ of 
the bassoon sound. It 
shows, in gray scale, the 
amount of the sound made 
of each frequency, as a 
function of time. Note the 
strong fundamental at about 
500 Hz, and the strong 
integer multiples of this 
fundamental. 
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separated frequencies will all appear. If a sound is “noise” many closely spaced frequencies will 
contribute in nearly equal amounts. 
 
Before going further, we should look more closely at the conditions we set. Fourier’s theorem 
requires that the function we’re trying to express should be periodic with angular frequency ω . 
Does this mean that some sound, like random noise, cannot be expressed as a sum of sines and 
cosines? Imagine that a sound is nearly aperiodic, and essentially never repeats. The frequency of 
such a sound, as always, would be the inverse of its period. Since the period approaches infinity, 
the fundamental frequency approaches zero. We can still use Fourier’s theorem to describe such 
a sound, we just need to note that its fundamental frequency is close to zero. For such a wave, the 
higher harmonics, multiples of the fundamental frequency, will be very close together. Such a 
sound will be made of almost every frequency; it will be noisy. So in practice, this method of 
frequency analysis works for all waves, whether obviously periodic or not. 
 

How much of each sine wave is in a sound? Frequency analysis 
 
How do we determine the coefficients needed to construct a particular sound F(t)? To do this, we 
take advantage of what are called the “orthogonality conditions” for the trigonometric functions. 
Each of these relations is an integral which sums the product of two sine or cosine functions with 
frequencies which are integer multiples of some fundamental ω across one fundamental period of 
oscillationτ . If the two functions are the same, both sines with the same frequency, or both 
cosines with the same frequency, this integral has the value / 2τ . If they are different, the 
integral is zero. We can write out these relations formally as follows. 
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What is this new symbol mnδ ? This is called the “Kronecker delta”. This symbol stands for 
something which has a value of 1 when m n= , and 0 when m n≠  . The symbol is just a 
shorthand notation for this.  
 
These mathematical facts are known in general as ‘orthogonality conditions’, as they express the 
fact that each function is in some sense independent of (kind of perpendicular to) all the others. 
Using these, we can find the coefficients in the Fourier expansion: 
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So it is not only possible, but pretty easy, to figure out what coefficients are required to expand 
any periodic function in terms of a set of sinusoidal functions. Each of the "Fourier components" 
of such a function is called a "harmonic". Understanding a wave function for a periodic wave can 
then be reduced to listing the amplitudes (the coefficients ai and bi) of its harmonics.  
 
The process of figuring out what set of frequencies make up a sound, how much of each 
harmonic is present, is called ‘analyzing’ the sound. Reversing this process, assembling the 
sound from its individual harmonic components, is called ‘synthesizing’ the sound. Indeed, the 
synthesizer used in modern electronic music is just a device able to approximate any sound by 
adding appropriate mixes of pure tones. The sines and cosines in the Fourier series all have 
frequencies which are integer multiples of the fundamental angular frequency ω  of the function 
F(t). This angular frequency is 2 fπ , where f is the fundamental frequency of F(t), one over its 
period of repetition.  
 
So far, we have discussed how you can construct any periodic sound from a sum of sines and 
cosines. But no real sound is perfectly periodic. To be so, it would have to have always been 
happening, and to continue forever into the future. Real sounds start and stop, and hence aren’t 
perfectly periodic. How can they possibly be represented in this form, as a sum of sinusoids? To 
represent such real, temporary sounds, we must add sines and cosines in a more flexible way. To 
begin with, they need to have different frequencies, the already familiar spectrogram. But now 
they must also have a mix of different phases. To top it off, we need to use both real and 
imaginary sinusoids (imaginary in the 1−  mathematical sense, not in the unicorn sense). 
Adding this additional freedom allows us to express any sound at all in terms of a mix of 
frequencies which changes in time. The mathematics required to do this is more complex than 
would be fruitful to discuss here. But it is important for you to understand that any sound really 
can be assembled from a sum of sines and cosines. In some real sense, every sound is a sum of 
sines and cosines. 
 
There are (at least!) two ways to analyze a sound. The first is mathematically. Each of the 
coefficients can be calculated, sometimes analytically, but always at least numerically. If we 
measure the wave function of a sound and express it digitally, we can use this approach to give 
us a good idea of what harmonics make up various sounds. An example of this is shown in the 
figure below, which illustrates how you can construct a good approximation for a square wave 
by adding up a series of sine waves. 
 
The second way to analyze a sound is physically. To do this, we return to the idea of resonance. 
If we drive a system with a natural frequency of oscillation at the resonant frequency, it will 
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oscillate with large amplitude. If I drive it with a different frequency it will oscillate little. Now 
imagine I place a resonator, tuned to a particular frequency, where it will be excited by a 
complicated wave form. If that wave form has a reasonably powerful harmonic at the resonant 
frequency of the oscillator, it the resonator will begin to oscillate. If it does not have this 
harmonic, the resonator will not oscillate. Now imagine a whole set of tuned resonators. If I 
"excite" them all with a complex signal, they will oscillate with amplitudes which essentially 
depend on how much of each harmonic is present in the signal. This physical analysis of sound is 
the approach taken by living things, and is the basis of our ability to hear different frequencies all 
mixed together.  
 

 

Sound production by animals 
 
Many animals produce sounds, usually to communicate with one another, and they do so in a 
wide variety of ways. Their production of sound couples an oscillator which actually produces 
the sound to a resonant cavity which functions in a manner similar to a musical instrument; to 
select and amplify particular frequencies. Most animals produce sounds either by mechanical 
means or through pneumatic power. Mechanical sound production is used primarily by insects, 
and involves direct vibration of a plate or membrane. Pneumatic sound production involves 
pushing air past a valve which then makes the sound by opening and closing periodically. Most 
larger land animals use this approach. 

Insects 

In the example shown at left 
a “square wave” is built up 
of a series of harmonics, 
each added in with different 
amplitudes. The first is a 
sine wave with the same 
frequency as the square 
wave. The second is a sine 
wave with three times the 
original frequency, then one 
with five, and another with 
seven. By the time this 
fourth term is included, the 
resulting sum (shown as a 
solid line in the bottom 
figure) is becoming a good 
approximation for the 
original square wave.  
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Mechanical sound production often involves applying a steady force to push one body part over 
a series of regularly spaced notches in another. Each time the part being pushed slips over a 
notch, a very short, impulsive sound is produced; a click. If this implement is dragged at a steady 
rate over a series of notches, a very pure sound, made of almost one frequency can be produced. 
This process is known by the wonderful name ‘stridulation’.  

In male crickets, one of the most familiar summer insects, a ‘scraper’ on one wing is 
dragged over a ‘file’ on the other. The impulses associated with each slip of the scraper 
over the file drive oscillations in fibers within the wings of the cricket. These resonant 
oscillations then nicely couple the sounds being produced in the file to the surrounding 
air, in very much the same manner that a guitar body couples the vibrations of a string 
to the air. 

 Cicadas, the loudest of insect singers, produce their sounds in a different way. The 
ribs of a cicada form a ‘tymbal’, a kind of curved shell which can be made to suddenly 
buckle when a force is applied to it. This mechanism is emulated in the small metal 
‘crickets’ which you may have clicked as a child. The sound produced by this 
buckling tymbal is then amplified in the large resonant cavity which makes up most of 
the cicada’s fat abdomen. A typical cicada, just an inch or so long, produces a very intense 
sound. It can be well over 100 dB a few feet away. 

Vertebrates: people, birds, and bats 

Pneumatic sound production, used by most vertebrates, involves three principle parts;  

1. Lungs provide a reservoir of air that can be forced through the respiratory tract at a 
pressure higher than atmospheric 

2. A valve within the respiratory tract that oscillates open and closed as air passes through 
3. A chamber in which the sound may resonate and build up to large amplitude 

Your own voice provides an instructive example. When you speak, you compress the air in your 
lungs using you diaphragm, forcing it slowly outward through your trachea. Just at the point 
where your trachea joins your esophagus, in your 
larynx, a pair of matched vocal ‘folds’ extend 
across the opening. These folds, sometimes called 
vocal cords, are muscular, and can be held across 
the trachea to prevent air from leaving. This is 
called a glottal stop. If you loosen the folds a little, 
air will push through. As soon as a little air goes 
through, the pressure behind the folds drops, and 
they close. Then pressure builds again, forcing them 
open, and a vibration ensues. The frequency of the 
resulting vibration depends both on how vigorously 
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you force air through, and especially how tightly the folds are stretched. If you loosen the folds 
still further, air can exit without causing vibrations, as it usually does when you breathe. 

The vibrations produced by the vocal folds feed a resonating chamber formed from your throat 
and mouth, interacting with them just as a musical instrument interacts with its mouthpiece. This 
resonating chamber selects and amplifies particular frequencies in a way which depends on its 
size and shape. All the elements of this system are remarkably flexible and dynamically 
controlled: lungs, vocal folds, throat and mouth. The enormous freedom provided by this highly 
adaptable system is what enables the full virtuosity of language and singing. Every time you 
speak a sentence, tell a story, or sing a song, you play your vocal instrument with a level of 
expression and variety which instrumental musicians, with their much less flexible apparatus, 
struggle for years to emulate. The ability to speak in such rich and complex ways is one of the 
defining features of humans, we’re really good at this, and a substantial fraction of your brain is 
dedicated to making the whole system work precisely and reliably. 

Many other animals have remarkable voices. Birds, for example, are perhaps nature’s most 
remarkable singers. Like us, their vocal systems have three parts; lungs, a ‘syrinx’, in which 
oscillations make sounds, and resonant cavities. The syrinx of a bird lies lower in the respiratory 
tract than the larynx, at the bottom of the trachea rather than the top. It has two channels, one 
extending to each lung. Parts of these tubes are lined with flexible membranes, and the whole 
syrinx is embedded in an external air sack, independent of the lungs. In this case the membranes 
which oscillate lack muscle, and instead have their tension adjusted by changing the pressure in 
the external air sack. Pitch is controlled by varying both this membrane pressure and the flow of 
air through the bronchial tubes. Since there are two sides to the syrinx, it is possible for birds to 
sing two different fundamental frequencies at once; something we cannot do with our single set 
of vocal folds. 

Birds, more than most other kinds of animals, make many sounds for 
communication. They use sound to mark their territories, find mates, 
maintain social connections, and train their young. The details of bird song 
are often learned, rather than instinctual, making them a kind of culture. 
Quite a few bird species are also mimics; with vocal and neural systems 
capable of imitating nearly any sound they hear. In this sense they surely 
surpass people. In a songbird like the Northern Cardinal, the entire system 
of sound production is about the size of a kernel of corn. This small size, of 
course, accounts for the relatively high frequency of most bird song.  

Echolocating animals take sound production one step further. Not only do they use sound to 
communicate in complex ways, they use the sound they produce to image the silent world around 
them. This places intense new demands on their ability to produce sounds. Bats must produce 
very high frequency sounds (we will see why in the next chapter). While their small size is part 
of what allows this, they must also stretch their vocal folds to very high tension, and for this 
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purpose echolocating bats have relatively enormous muscles enveloping their larynx. They also 
have vocal folds which are as light as possible to allow maximum oscillation frequencies. 
Because they are so diaphonous, bat vocal folds are referred to as vocal membranes. We have 
already seen that the demands of echolocation lead many bats to produce extremely loud, 
narrow-band sounds, carefully tuned their equally narrow-band hearing they, and that their sound 
production must continually adapt to maintain a constant reflected frequency.   

The many powerful, flexible mechanisms for sound production seen in different organisms 
provide another rich example of convergent evolution. Many organisms find reproductive 
advantages when they produce a wide variety of sounds with controllable and very specific 
frequency content. Because of this, many have evolved mechanisms for doing so. Once again, 
solutions to a fundamental physical problem have been arrived at multiple times. All of these 
mechanisms operate on the same basic principles of physics, as all things must. But because of 
their independent origins, the details of these approaches are quite different. 

29.4: Interference in more than one dimension 
 
We have made a point of the fact that when waves like sound are produced, they travel out in 
every direction from their source. This implies that our simple one dimensional picture will not 
be sufficient. What happens when wave sources in interfere in two or three dimensions? To 
begin exploring this, we will assume that we have two sources of waves, each emitting waves in 
step with the other. At each instant that source 1 produces a peak, source 2 does as well. These 
peaks travel away from each source in every direction with whatever speed the material allows. 
Waves from the two sources then interfere with one another in the usual, linear superposition 
way. 
 
Waves from both sources will eventually arrive at any location we care to examine. If they arrive 
in step, so that a peak from source 1 arrives with a peak from source 2 (or a valley from source 1 
arrives with a valley from source 2) they will interfere constructively. If, on the other hand, a 
peak from source 1 arrives with a valley from source 2, and then a valley from source 1 with a 
peak from source 2, they will interfere destructively. How can we tell which will happen at each 
location? 
 
Recall that we specified sources which emit waves in step with one another. In this case, we can 
determine whether the two waves arrive in phase by simply examining the distance each wave 
must travel from its source. This distance is often called the ‘path length’ from the source. 
Imagine that you chose a location which is a distance PL1 from source 1, and a distance PL2 from 
source two. If these two distances are the same, it’s clear the waves will arrive in synch with one 
another, and that the interference between the two wave sources will be constructive. For this 
reason, there will always be a line of constructive interference along the perpendicular bisector 
of the line which connects the sources. What if the two distances PL1 and PL2 are different? 
 
Imagine that PL1 is greater than PL2. Waves from source 1 have to travel farther than waves from 
source 2 to arrive here. In general, this means they will arrive at least partly out of synch with 
waves from source 2. But there is an exception. Any time the waves from source 1 travel an 
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integer number of wavelengths more (or less) than the waves from source 2, the two waves will 
still arrive at this location perfectly in synch, and will interfere constructively. If the waves from 
source 1 travel a half-integer number of wavelengths more (or less) than the waves from source 
2, the two waves will arrive perfectly out of synch, and will interfere destructively.  
 
This basic argument emphasizes the importance of the path length difference for determining 
the interference of sources in two and three dimensions. When this quantity is an integer multiple 
of the wavelength, the two sources will interfere constructively. When it is a half-integer 
multiple of the wavelength, the two sources will interfere destructively. 
 

1 2

1 2

               Constructive interference
2 1    Destructive interference

2

PL PL PL n
nPL PL PL

λ

λ
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This rule allows you to easily test whether interference from the two sources will be constructive, 
destructive, or (usually) somewhere in between at any given point in space. The basic idea is 
illustrated in the following snapshots. 

 
In these snapshots, two sources of waves lie near the center. They are located at points just to the 
left and right of the center of the rectangle. Waves travel out from both sources, interfering with 
one another. Regions where you see strong bright and dark variations are places where the 
interference is constructive. Regions where you see no peaks and valleys are regions where the 
interference is destructive. In the pattern on the left, the two sources are separated by 10λ , in the 
center by 5λ , and on the right by 2λ . 
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The details can be better appreciated by considering a 
snapshot of a small region in more detail. In the figure on the 
right, the two sources of waves lie at the bottom. Solid lines 
lead from the two sources to a location of destructive 
interference. At this place the path length difference is a half 
integer multiple of the wavelength. Dashed lines lead from 
the two sources to a location of constructive interference. 
Here the path length difference is an integer multiple of the 
wavelength. If we could watch this interference as a movie, 
we would see waves moving out along the constructive bands 
with strong light and dark regions, while no waves travel 
along the canceled out lanes of destructive interference. 
 
There are two more details to consider here. First, we should extend these 2D pictures to three 
dimensions. To do this, we need only to measure the path lengths in 3D instead of 2D. The 
nature of the interference (constructive of destructive) will still be determined by path length 
difference.  
 
Second, we so far ignored here the fact that wave intensity falls off with distance from the source 
in 2D (as 1 / r ) and in 3D (as 21/ r ). The way this changes the resulting pattern is illustrated in 
the following figure. It shows the same patterns of interference visible in the earlier figure, but 
now includes the general 1 / r  decline in intensity from each source. The decline in intensity has 
two effects. First, the overall pattern becomes less prominent as you move away from the 
sources. Second, when the path lengths differ, one wave arrives with smaller amplitude than the 
other, even though they may have begun the same. As a result, they no longer fully cancel at 
locations of destructive interference, reducing the contrast in the picture. These illustrations are 
more realistic than those shown above. They look much more like what you really see when, for 
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example, you throw two stones onto the surface of a puddle. The patterns observed are similar to 
those shown above, but the interference effects are somewhat less obvious. 
 
Interestingly, the effects of intensity falloff are most obvious near the sources, where the 
difference in path length between the two can be a substantial fraction of the total path length. In 
this ‘near field’ region, the nature of the interference between two sources is significantly 
complicated by intensity changes.  
 
Imagine instead that you examine the wave far from the sources. This is the so-called ‘far field’ 
region, at distances much greater than the source separation. In this region, the path length 
differences from the two sources are always a small fraction of the total path length from the 
sources to any point. When this is the case, the intensity of the waves from the two sources will 
be almost the same. So although both will have faded, their intensities will be nearly matched. 
The resulting pattern of interference will be almost as complete as it was when we ignored 
intensity changes. This fact will be very important in the next chapter, when learn about X-ray 
diffraction and its use in the determination of the structure of biomolecules. 

Why have you never noticed interference before? 
 
We use sound and light constantly. Why is this defining phenomenon of interference not more 
readily apparent? Of course one aspect of interference is familiar; the way waves from multiple 
sources add together in linear superposition. We use this to pick out a friends voice within the 
cacophony of a party. But destructive interference, the cancellation of one wave by another, is 
much less familiar. The explanation lies in several details. 
 
First, most sources of sound and light do not emit pure, single frequency waves. Instead, they 
emit broad-band sounds, made up of a mix of many frequencies. Go back and imagine the two 
source interference we considered in the last section, but now allow the two sources to emit 
waves of many frequencies. At some particular location, the path length difference from the two 
sources may be a half integer multiple of one of the wavelengths emitted by the sources, so that 
waves of that frequency will interfere destructively. But these waves now contain many 
frequencies, each with a corresponding wavelength. These other frequencies will not experience 
completely destructive interference at this point. Indeed, some will experience completely 
constructuctive interference at this point. As a result, there will be no particular location where 
all the waves from the two sources completely cancel.  
 
This is one reason why destructive interference, the defining feature of waves, is usually not 
obvious. It’s there, but is being washed out. When we wish to demonstrate interference of either 
sound or light, we will use waves with basically a single frequency; either a pure tone or the light 
from a narrow-band laser. 
 
Second, the sound and light arriving at any point usually comes from many different sources, 
rather than just two as we have discussed. If interference from many sources is to be completely 
destructive, all of the waves arriving there must be very precisely coordinated, so that each peak 
from one source is carefully cancelled by a valley from another. The variation in intensity with 
distance which we noted in the previous section plays a role in this as well. Not only must there 
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be a valley for every peak, they must also have the same amplitudes. While this careful 
coordination can occur (we will see very important examples in the next chapter) it is rare. 
 
Third, interference maxima and minima will typically be separated by about a wavelength of the 
wave in question. For sound, with wavelengths from millimeters to meters, this is not too big an 
impediment. But for light, with wavelengths from 350 – 700 billionths of a meter, this makes 
maxima and minima very close together indeed.  
 
All of these confusing factors make testing the fundamental wave nature of things a challenge. 
The required observations for light were difficult enough to elude even Newton, who remained 
convinced that light was particulate. After Newton, 130 years would elapse before Thomas 
Young would convince the physics community, through convincing demonstrations of 
interference, that light was, like sound, a wave phenomenon.  

29.5: Conclusions 
 
Wave motion is a method of moving energy and momentum, and more generally, information 
rapidly without moving any matter. Because of its speed, it is one of the major ways energy 
flows in the universe. The speed of waves in materials is governed by a balance between 
restoring force and inertia in the medium. The most important feature of waves to remember is 
that they so often combine in linear superposition. This gives rise to somewhat surprising 
'interference effects', such as cancellation, beating, and standing waves. 
 
There is a very important piece of history connected with this chapter as well. We have seen how 
a particular kind of sound, with a number of well separated frequencies added together, produces 
a pleasant sensation for people, a musical sound. The discovery of perfect ratios in the 
frequencies which make up musical sounds was the great triumph of the Pythagoreans in ancient 
Greece. That something beautiful and real was connected to simple mathematical fornulae 
fostered the initial connection between mathematics and science. It led them to think that perhaps 
mathematical relationships might model other phenomena of nature, and in this sense gave rise 
to quantitative science.  
 
For many years, until well into the 20th century, the use of mathematical models was largely 
limited to the physical sciences, where it was wildly successful. Physics and chemistry often 
provide systems simple enough to conform to analytic models, described with great precision by 
very simple equations. Over the last 100 years, some of the fundamental mechanisms of life have 
been discovered, things like the cell, the gene, evolution, and biochemistryi. Unlike complete 
organisms, these mechanisms often admit detailed mathematical models. In response, biology 
has grown increasingly quantitative and mathematical, joining the physical sciences in the use of 
mathematics as a meaningful language for expressing how the world works. 
 
The deep connection between mathematics, an abstract system of postulates and theorems, and 
the real phenomena of the world, remains unexplained. Why should the world be so well 
described by equations? As Eugene Wigner, one of the 20th centuries leading physicists once put 
it: 
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The miracle of the appropriateness of the language of mathematics for the formulation of 
the laws of physics is a wonderful gift which we neither understand nor deserveii. 

 
Whatever its origin, this connection, played out in the minds of millions of people over three 
thousand years, is ultimately responsible for the technological lives you lead today. And it all 
began with the mysterious beauty of music and the strings of a lute. 
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A Quick Summary of Some Important Relations 
 
When waves combine, superposition: 
 
So long as wave amplitudes are not large, two waves passing through the same region simply 
add together in superposition: 
 
 ( ) ( ) ( )total 1 2, , ,y x t y x t y x t= +  
 
In this superposition the two waves may reinforce one another or cancel one another out. These 
cases are called constructive and destructive interference. 
 
1D Superposition of two sine waves going the same direction: 
 
For the special case of adding two 1D sine waves with the same amplitude and frequency, the 
nature of the interference depends on the relative phase of the two waves: 
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1D Superposition of two sine waves going the opposite direction: 

This produces a ‘standing wave’, with all points oscillating up and down with the frequency of 
the original wave. The amplitudes of oscillation vary, with peaks in amplitude separated by the 
original wavelength of the combined waves. 
 
Interference in time – beats: 

For the special case of two waves beginning in phase, but with different frequencies, new wave 
is produced with a carrier frequency which is the average of the input frequencies and a ‘beating’ 
amplitude oscillation with a frequency equal to the difference of the two frequencies. 

Wave reflections at boundaries: 

When waves reach a boundary with a new material, they may reflect. If the boundary is ‘stiff’ 
they will reflect out of phase. If it is ‘free’, they will reflect in phase. For sound stiffness is 
expressed by the acoustic impedance, for light by the index of refraction. Waves reflecting back 
and forth in confined cavities are the primary example of standing waves. 

Cavity standing waves and musical instruments:  

Constraints placed on waves by the cavities in which they oscillate permit only certain 
frequencies to oscillate with large amplitudes. Two examples: 
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Sound and musical sound: 

The nature of a sound, its timbre, is determined by the mix of frequencies (and hence 
wavelengths) which it is made of. When a sound is made of multiple, well separated frequencies, 
all multiples of a single fundamental frequency, it will be a musical sound. Light can also be 
separated into a mix of frequencies – these determine its color. Sounds are produced by animals 
in cavities, roughly like what musical instruments do. 

Interference in two and three dimensions: 

 Waves from two sources interfere in a way which is governed by the path length from each 
source to the location of interest.  
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Whether they can fully cancel one another at a particular point depends also on the intensity 
decline with distance for two and three dimensional waves discussed above. 

 
                                                 
i Paul Nurse, 2003, “The great ideas of biology”, Clinical Medicine, 3, 560. 

ii Eugene Wigner, 1960, "The Unreasonable Effectiveness of Mathematics in the Natural 
Sciences," Communications on Pure and Applied Mathematics 13(1): 1–14.  

 

Physics 235 Winter 2011 
Copyright Timothy McKay

176



POLS Waves Chapter 30 

30.0: How waves really travel: the Huygen’s construct 
 
To understand in detail how waves travel, it is helpful to think about the surface water waves 
you’re used to seeing. You’re probably used to two forms of these waves. The first are the 
ripples which spread in circles when you toss a pebble in a pond. Waves travel out in circles 
from this ‘point source’ disturbance in every direction. But there is a second kind of wave you 
have probably seen; the straight lines of ‘plane waves’ which roll into shore in a long set of 
parallel lines. In each case, we see that the wavefronts themselves are perpendicular to the 
direction of motion of the waves. 
 

 
 
How are these two kinds of waves related? There is a first, relatively obvious connection. As the 
waves travel out from a point source, their circular nature becomes less and less apparent. When 
the distance from a source is many times the wavelength of the wave, you might begin to think 
they were, in fact, plane waves. For large scale surface water waves, with wavelengths like 10 m, 
you have to be pretty far away (like 100 meters or more) before they start to look like plane 
waves. For visible light waves, however, wavelengths are very short, like 5x10-7 m. For these, 
you have only to be a few millimeters from a source before they really start to seem like parallel 
plane waves. 
 
So in a sense, plane waves are naturally produced by point sources. But there is a deeper, more 
surprising connection; plane waves can themselves become point sources. 
 
This less obvious connection was first expressed around 1690 by Christian Huygens, a very 
versatile Dutch contemporary of Newton. Huygens recognized each point along a plane wave 
acts just like the single point above, sending out disturbances in every direction. The waves from 
all of these separate points spread over one another, and their net effect is the superposition of 
the disturbances spreading out from each of these points.  
 
 
 
 

Ripples spreading in a circle 
from a point disturbance 

Parallel plane waves coming 
in to shore at a beach 
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What happens when we add up the waves produced by all of these little spots? As usual, there 
are places where they add constructively, and places where they add destructively, canceling one 
another out. If you look closely, you will see that there are straight lines integer numbers of 
wavelengths above and below the centerline. At these points all of the waves from the points 
along the original wave front come together to add constructively.  
 
 
 
 
So the net result of this line of sources, each sending out waves 
independently in every direction, is a plane wave, a series of 
peaks and troughs where the peaks stretch out perpendicular to 
the direction of motion. 
 
The figure shows how a set of 20 sources, each independently 
sending out waves in all directions, come together to make a 
plane wave. This is compared in the picture on the right to 
some plane waves coming in at the beach. 

Slits, obstacles, and diffraction 
 
Huygens’s recognition that each point on a plane wave is itself a point source of new waves 
opens the door to another set of important wave phenomena: the effects of diffraction. 
Diffraction is really just another interference phenomenon, just the adding up of several waves to 
make a new one. This different name is typically used for a particular set of interference 
phenomena which occur when a plane wave encounters an obstacle, something like a barrier 
with a hole in it, or conversely an obstacle of limited size. We will think about these cases first 
using qualitatively, using Huygens principle. Later we will work out the details mathematically, 
from the basic principle of superposition. 
 
Imagine first a barrier with a hole. There are two limiting cases, when the hole is small compared 
to the wavelength, and when it is large compared to the wavelength. On the left is an illustration 
of a small hole. In this case, the hole is small enough to contain just one ‘oscillating spot’. From 
this one source, the waves on the right of the barrier spread out nearly uniformly in every 
direction. To the area on the right, it looks like this hole is just a point source of waves.  
 
Notice what this means. A plane wave coming from the left arrives at the barrier. This plane 
wave seems to travel only straight to the right. Then, after the hole, the wave spreads out not just 
to the right, but also up, down, and in every direction in between. On passing through the hole, 
the wave seems to ‘bend’ around the corners and go in every direction. This effect, this spreading 
out in every direction, is called diffraction. It is another phenomenon unique to waves. If a row 
of particles arrived at this slit instead of a wave, they wouldn’t bend around the corner at all. 
Some would pass straight through, traveling purely to the right in a straight line, while all the 
others were blocked. Like the interference phenomena we discussed before, diffraction is 
diagnostic of the presence of waves. When you see it, you know you’re dealing with a wave. 
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On the right is an illustration of what happens with a larger hole. In this case, there are a lot of 
points acting like individual sources which fit in the hole. Most of the wave within that whole 
region marches along as if nothing had happened. Now there’s a plane wave which continues 
forward, just about as wide as the hole, marching off in a straight line toward the right. Such a 
large hole, struck by a plane wave, produces a beam of wave, about the width of the hole. 
 
Notice that just at the edge there are points that do send a bit of wave off to the side; there is a 
some diffraction. How much there is, compared to the wave which travels forward unimpeded, 
depends on the ratio of the hole size to the wavelength of the wave. When this ratio is large, 
almost all the wave just keeps going to the right as if nothing happened; only a tiny bit diffracts 
around the corner. When this ratio is small, little of the wave proceeds unimpeded, and much of 
what passes through is diffracted. 
 
What if, instead of little holes, we have obstacles of different sizes? The situation is remarkably 
similar, as these illustrations in this figure suggest. When you have a really small barrier, as on 
the left, only a bit of the wave front is blocked, and the diffraction of waves from both sides of 
the obstacle essentially replaces the little that was lost. This wave ‘washes around’ the obstacle, 
passing on almost as if it weren’t there. This is what happens if you stand in Lake Michigan. The 
waves coming in, with wavelengths much larger than your size, pass by almost as if you weren’t 
there. 
 
When a barrier is large compared to the wavelength, as on the right, the situation is different. In 
this case, a lot of the wave will be blocked. A little bit, from the edges of the barrier, diffracts 
around it and tries to fill in what was blocked, but it has little effect. Above and below the barrier 
the wave continues unabated, but in the region behind the barrier the wave is gone. It has been 
blocked. This large barrier has produced a shadow, a region from which the incoming plane 
wave is excluded. 

Be sure to notice the parallel structure in these two cases. A plane wave arriving at a hole small 
compared to its wavelength diffracts dramatically on passing through the hole, spreading out 
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almost equally in every direction. A plane wave arriving at an obstacle small compared to its 
wavelength washes right around it, continuing on almost as if the obstacle were not there. 
 
A plane wave arriving at a hole large compared to its wavelength will send forward from the 
hole a beam, a plane wave of fixed width, which continues on in the original direction of the 
plane wave. A plane wave arriving at an obstacle large compared to its wavelength will produce 
a shadow, going straight past the edges of the obstacle and leaving an almost completely blank 
space behind it. 
 

Diffraction and the propagation of sound and light 
 
In the previous section we saw that when waves encounter barriers diffraction can allow them to 
pass around them. When waves encounter a hole in a barrier or an obstacle which is small 
compared to their wavelength, diffraction will be a dramatic and obvious. When they encounter a 
hole or an obstacle which is large compared to their wavelength, they will mostly continue on in 
straight lines, forming a beam through a large slit and marching on smoothly while being 
effectively shadowed by a large obstacle. 
 
How do these phenomena affect the propagation of sound and light? The sounds humans can 
hear have frequencies ranging from 20-20,000 Hz. Traveling in air, these waves have 
wavelengths from 1.7 m to 1.7 cm; they are comparable in size to us. Waves like this, 
encountering holes like doorways, diffract beyond them very effectively. This is why you can 
hear your roommate approaching down the hall. When sound waves like this encounter tree 
trunks in a forest, they wash smoothly around them, almost is if they weren’t there. The ability of 
sound to travel around corners and past obstacles makes it an especially useful tool for 
communication among animals. 
 
Visible light, by contrast, has wavelengths that range from 4x10-7 m and 7x10-7 m. These are 
very tiny, meaning that almost any aperture through which light passes or obstacle which it 
encounters will be much larger than the wavelength. As a result, light will pass straight through 
most holes it encounters, continuing to travel in straight lines in a beam, rather than diffracting 
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around corners. Likewise when light encounters obstacles they are almost always much larger 
than the wavelength. As a result, light passes the edges of the obstacles in straight lines, leaving 
an empty, nearly light free shadow beyond. 
 
There’s no surprise here. You’ve known all your lives that light “travels in straight lines” and 
that sound travels bends around corners. You can often hear something that you can’t see. Now 
that you know about diffraction (and the very different wavelengths of sound and light) you 
know why. 

30.1: Diffraction from a single hole: where are the minima? 
 
The discussion above gives a good general idea of the physics of diffraction through holes and 
around obstacles. In what follows we will work out some details for a few cases. Let’s look at 
diffraction of a 2D wave, like a surface water wave, through a single hole in a barrier. The 
diagram below describes the variables we will use.  
 
We start with the Huygens’ construct, which tells us that each point in the opening acts like a 
source of waves. We’re going to consider each of the points in the opening, add up the 
contributions from them all just as the principle of superposition suggests, and see what we get.  
 
In doing this, we will make an approximation: that the distance D from the hole to the point 
where we measure the wave is very large compared to the size of the hole d. When this is true, 
the two lines marked r and R in the figure are approximately parallel, both going off at the same 
angle θ . This may not seem at all obvious, because in this picture, the distance D is not much 
larger than the hole size d. To see how this can be true, try imagining how things change when 
you make D much larger, keeping ymin the same. 

 
 
We start by considering just two points in the opening: one at the center, and one a distance y 
above it. Notice that the waves from the lower of these points travels farther to reach point P on 
the screen at distance D. The extra distance the waves from the lower point travel, the path 

Distant screen 

D

ymin 

d 
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length difference is ( )sinPL y θΔ = . This is the path length difference for waves from the two 
sources. Since there is a path length difference, there can be either constructive or destructive 
interference. If the path length difference is a half integer multiple of the wavelength, waves 
from these two points will interfere destructively. If the path length difference is an integer 
multiple of the wavelength, they will interfere constructively. 
 
To take the next step, let’s apply a little logic. If we consider a separation 2y d= , every point 
on the bottom half of the hole will be matched by another from the top. For a separation 4y d=  
each point in the second quarter is matched by a point in the first, while each in the fourth is 
matched by one in the third. The same is true for 8, 16y d d= etc. Now, if waves from the two 
points in each of these matched pairs interfere destructively at point P, no waves at all will arrive 
there! Waves from every point in the hole will be canceled by waves from some other point. If 
this happens, the wave intensity at point P will fall to zero. 
 
What conditions are required if this is to happen? The basic requirement is that the path length 
difference should be a half integer multiple of the wavelength. Here are the conditions for the 
first two of our sets of matched point pairs: 
 

 

( ) ( )

( ) ( )

min min min

min min min

sin sin 2 1      or     sin 2 1
2 2

sin sin 2 1      or     sin 2 2 1
4 2

...

dy n n
d

dy n n
d

etc

λ λθ θ θ

λ λθ θ θ

⎛ ⎞= = + = + ⎜ ⎟
⎝ ⎠
⎛ ⎞= = + = + ⎜ ⎟
⎝ ⎠

 

  
where the ‘n’ in these equations can be 0, 1, 2, 3± ± ±  and so on. What does this mean? Each case 
gives us a condition on the angle θ. The first says that minsinθ  should be an odd multiple of the 

ratio dλ . The second says that minsinθ  should be an even integer multiple of the ratio dλ . 

Since we can always pair up points separated by 2d or 4d , both these conditions apply, and we 
should get fully destructive interference anytime: 
 

 minsin m
d
λθ =  

 
Where now the ‘m’ is any integer except zero. This is a remarkably simple condition, which tells 
us at what angles we expect to see no waves at all emerge. Let’s see what it implies. 
 
First, if d λ< : then the ratio dλ  is always bigger than one, and there is no angle θ for which 
this condition is met. That’s just what we expected from our Huygens construct arguments 
above; when the hole is smaller than the wavelength, the wave washes out in every direction. In 
this case, there is no direction in which the wave amplitude is exactly zero. Yes, the intensity of 
the wave falls as you move farther from the slit, but it never drops to zero. Some of the wave 
fans out in every direction.  
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Second, when d λ> : now it is possible to meet the criterion above, and there will be one or 
more angles for which waves from different parts of the hole completely cancel one another. If 
we consider the case where d λ� , we will find such minima when minsinθ  is small. When 

that’s true, we can sensibly use the estimate min minsinθ θ� , and min
min

y
D

θ � . Within these limits 

the first minimum will be located where: 
 

 min
min min minsin      and we can write     y m m Dy

D d d
λ λθ θ≈ ≈ = =  

  
When will this condition ( minsinθ is really small) apply? This is applicable when the hole size is 
much bigger than the wavelength, d λ� , a condition which will often be met for light. For 
example, a very narrow single slit 10-5 m wide will still have 0.05dλ ∼ . For a case like this the 
angle to the first minimum in the diffraction pattern will be min 0.05θ ∼ , or around 2.9°. In this 
case, the approximations used above are quite precise. 
 
What does this diffraction pattern from a single hole look like? There will always be a central 
peak. The wave amplitude directly in front of the hole will always be large. This central peak 
will then be surrounded by a series of minima and maxima. You can see this in the picture on the 
left (which has a slit just a bit bigger than the wavelength, d λ≥ ) and in the figure on the right 
(which must come from a slit quite a bit bigger than the wavelength; it shows many minima).  
 

 
 

Picture of water wave diffraction from 
a single slit. The slit width here is 
perhaps twice the wavelength, so the 
minima occur when sinθ = ½, or at 
angles θ = ±30°. 

The figure above shows an example of the 
single slit diffraction pattern of intensity seen 
on a distant screen for a case where d λ� . 
Note the central maximum surrounded by a 
sequence of minima and weaker maxima. 
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The intensity pattern for a single hole 
  
In the preceding section we worked out some features of the diffraction of plane waves through a 
single hole. In particular, we identified the angles at which we expect to find no waves at all. It is 
important to remember that the conditions we derived are true only in a limiting case, when 
plane waves of one wavelength arrive perpendicular to the hole, and when we examine them a 
distance D from the hole which is large compared to the hole size d. 
 
If we extend our analysis further, it is possible to derive the full intensity pattern, and not just the 
location of the minima. All that is required is the principle of superposition and some clever 
arguments, originally due to an 18th century German optician named Joseph von Frauenhofer. 
We will skip the details, and simply present the result: 
 

 ( )

( )

( )

2

0 2

sin
sin

sin

d

I I
d

π θ
λ

θ
π θ

λ

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
You should check that this relation agrees with what we found above for the locations of the 

minima. Does it indeed go to zero intensity when sin m
d
λθ = ? 

It is useful to see what these patterns look like. The figure below shows the patterns for four 
different conditions; when , 2 ,4 ,  and 8d d d dλ = . 
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When the hole becomes very wide compared to the wavelength, the wave travels essentially 
straight through in a beam, hardly spreading out through diffraction at all.  

Holes for 2D water waves are ‘slits’ for 3D sound and light   
 
Before we go on, a note about terminology. It is common to refer in the physics literature to the 
‘hole’ we’ve been talking about as a ‘slit’, and to call this diffraction through a single hole 
‘single-slit’ diffraction. There is a reason for this. In experiments with sound and light, waves 
travel in 3D. In this case, a plane wave really is a plane (the water waves we’ve been thinking 
about should probably be called ‘line waves’). To make the 3D wave look like the 2D case we’re 
talking about, you can have the wave strike a ‘slit’, a rectangle which is very thin on one side, 
and much longer on the other. The 3D wave, encountering this slit, sees a narrow opening in one 
direction, and diffracts out strongly along that direction. It also sees a wide opening in the other 
direction, and passes through it as a beam. When you look at the result along the direction in 
which the slit is narrow, it behaves just like the 1D hole encountered by a 2D wave we discussed 
above.  
 

dλ =

2dλ =  

4dλ =  

8dλ =  

Physics 235 Winter 2011 
Copyright Timothy McKay

185



To get a better sense of what this means, let’s consider a few examples. Imagine a light wave 
with wavelength λ landing on a rectangular slit with a short edge of length Lshort along the x-axis 
and a long edge Llong along the y-axis. After this wave reaches the opening, it will pass through, 
diffracting out from all the edges. The first diffraction minimum along the x and y-axes will 
occur at these angles: 

 min minsin       and     sinx y

short longL L
λ λθ θ= =  

  
The light passing through such a slit will spread to larger angles in the x-direction than it does in 
the y-direction. The narrower the slit, the wider the wave will spread. This reciprocal relation is a 
very basic and fundamental feature of diffraction. When we discuss X-ray diffraction later in this 
chapter we will use this idea extensively. 
 
It is useful to consider a one special kind of two-dimensional hole: a circular aperture with 
diameter D. For such a circular aperture, the calculation we did above to find the angle to the 
first minimum does not precisely apply. The basic approach is the same: treat every point in the 
hole as a point source of waves, add the contributions from all points in superposition, then find 
the angle from the center of the hole at which the contribution from each point is cancelled by 
another. When we do this, we find: 

 min
1.22sin circle

D
λθ �  

 
The figure below shows the diffraction patterns produced by a rectangular slit with 

1 1
4 20short longL Lλ = = , a square hole with 1

4 Lλ = , and a circular hole with 1
4 Dλ = . 

 
MAKE THIS FIGURE 

30.2: Interference from two point sources or very narrow slits: the details 
 
Imagine that you have a barrier with two narrow slits, each with width  less than the wavelength, 
separated by a distance d. As we have seen, narrow slits like this act as point sources of waves, 
spreading them out in every direction. So the situation here is just like what happens when you 
have two point sources of waves. You get an interference pattern.  
 
 
 
 
 
 
 
 
 
 
  
 

d 
D 

y 
Maximum 

Maximum 

Maximum 

Minimum 

Minimum 

Minimum 

Minimum 
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If you place a screen out at some distance D from the plane of the slits (like the vertical line 
above) you will see an interference pattern of bright and dark lines on the screen. Where are the 
maxima and minima? This problem is very similar to the above diffraction problem, except 
simpler.  
 
We will start by again assuming that the screen is very distant from the two sources, at least in 
comparison to their separation: we assume D d� . When we do this, the path length difference 
between waves from the two holes to a point on the screen is well approximation by: 
 sinPL d θΔ =  
The condition for maxima is then when this path length difference is an integer multiple of the 
wavelength: 
 
 ( )sin      where   0, 1, 2, 3sepd n nθ λ= = ± ± ± …  
 
and the condition for mimina is when the path length difference is a half integer multiple of the 
wavelength: 
 
 ( )1

2sin ( )      with    0, 1, 2, 3,sepd n nθ λ= + = ± ± ± …  
 
When the angles are small ( D y� ) then, you can rewrite these conditions in a simple form: 
 

 ( ) ( ) ( )

max
max max

1 1 1
2 2 2max

min max

sin      or         or     

sin      or         or     

sep sep sep

sep sep sep

yn n n Dy
d D d d

n n n Dy y
d D d d

λ λ λθ

λ λ λ
θ

= = =

+ + +
= = =

 

 
Notice what this means. Two narrow slits of this kind will act like point sources of waves. The 
interference between them, observed on a distant screen, will produce a regularly spaced seris of 
maxima and minima. The spacing between these maxima depends on the ratio sepdλ . If the 
spacing between the two slits is reduced, the maxima move farther apart. If the spacing between 
the two slits is increased, the maxima move closer together. 
 
You should note the similarity between this reciprocal relation and that we found for the single-
slit diffraction above. In both cases, smaller holes and holes closer together produce interference 
features which are farther apart. Larger holes and holes farther apart produce interference 
features which are closer together. 
 
The figure below shows the interference patterns produced by a pair of very narrow slits with 
wavelength much greater than the slit size; 20slitd λ= . In the first case, the two slits are 
separated by a large distance, 40sepd λ= , in the second by a smaller distance 20sepd λ= . Once 
again, as the slits move closer together, the maxima move farther apart. 
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Combined interference and diffraction 
 
As if this weren’t already complicated enough, it is often the case that the diffraction from a 
single slit is seen in combination with the interference from more than one slit. This is especially 
true when observing interference effects from light, for which slits are often larger than the 
wavelength. What happens in this combined case is best understood by yet another reference to 
the principle of superposition.  
 
Start with a single slit that has a width slitd . It produces a diffraction pattern with a central 
maximum, surrounded by a series of minima, each located at angles given by the relation we 
derived above: 

 minsin diffraction

slit

m
d
λθ =  

The pattern looks like that shown in the figures above, with a nice central maximum extending 
out to angle slitdθ λ= ± . 
 
Now add a second slit, also with width slitd , separated from the first by a larger separation sepd . 
What does this do? Now waves from the two sources, each of which is producing a very similar 
diffraction pattern, interfere with one another in the manner described in the previous section. 
Where waves from the two sources arrive in phase, they interfere constructively. Where they 
arrive out of phase, they interfere destructively. Maxima and minima of the interference are 
found at these angles: 
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 ( )1
2interference interference

max minsin        and        sin
sep sep

nn
d d

λλθ θ
+

= =  

 
There is something to notice here. The separation between the slits sepd  must always be larger 

than the width of the slits slitd . If it were not, the slits would overlap. This implies that the angle 
to the first maximum of the interference pattern interference

maxθ  is smaller than the angle for the first 
minimum in the diffraction pattern diffraction

minθ . The combined pattern which emerges has regularly 

spaced interference maxima (at angles where interference
maxsin

sep

n
d

λθ = ) superimposed on the overall 

intensity pattern of the diffraction, which has minima (at angles where diffraction
minsin

slit

m
d

λθ = ).  A 

picture of this overall pattern, for a case where 1 1
4 20slit sepd dλ = = , is shown in the figure. 

 

 
In this figure you see interference from the two slits leaving maxima at the angles 

interference
maxsin

20sep

n n
d
λθ = =  and diffraction minima at the larger angles diffraction

minsin
4slit

m m
d
λθ = = . The 

first diffraction minimum occurs exactly where the 5th interference maximum would occur. We 
don’t see this 5th interference maximum because neither of the two slits actually sends any light 
there at all: diffraction effects within each slit cause complete cancellation.  
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Often this pattern is described as a regularly spaced interference pattern superimposed on an 
intensity “envelope” determined by the single slit diffraction pattern. It is useful to consider how 
this pattern changes as you alter each of the parameters, and slit sepd d .  
Start by imagining what happens if you hold the slit separation fixed and change only the slit 
width. If the slits are very narrow, with slitd λ� , then there will be no diffraction minima, and 
the waves from each slit will spread in every direction. The interference from the two slits will 
still occur, leading to a set of regular maxima and minima, but there will be no diffraction 
‘envelope’ enclosing the interference pattern. As the slits are made larger, the diffraction 
envelope becomes more obvious. A first diffraction minimum enters the picture when slitd λ= , 
and as the slits become larger, this first minimum moves in toward the center and new minima 
appear. This progression is illustrated in the following picture, which shows the combined 
interference and diffraction pattern with 20  and 0.5 ,  1.0 ,  and 2.0sep slitd dλ λ λ λ= = . 

 
 
Now imagine instead that we hold the slit width fixed and vary only the slit separation. Imagine 
that the slit width is fixed at 4slitd λ= , and the slit separation is gradually increased from 

4sepd λ=  to 8sepd λ=  and then to 16sepd λ= . These three cases are shown in the figure below. 
Notice that the diffraction envelope now remains fixed, while the locations of the interference 
maxima shift closer together each time the slit separation becomes larger. This reciprocal 
relation is the most fundamental thing to remember. When sources are far apart, features in the 
interference/diffraction pattern are close together, and when the sources are close together, 
features in the interference/diffraction pattern are far apart. 
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Multiple slits: the diffraction grating 
 
There is a device often used in laboratories called a ‘diffraction grating’, a device made from a 
large number of very regularly spaced slits. In a way it is odd that this name is used, as the 
important effect seen from a diffraction grating is interference from the large number of slits. 
When there are a large number of slits instead of just two, the pattern of interference seen in 
double slit diffraction is strongly sharpened. The interference maxima, however, remain 
unchanged; they are still found at the same locations. The condition for these maxima is given by 
the same relation: 

 interference
maxsin

sep

n
d
λθ =  

with the index n taking on values of 0, ± 1, 2± , etc. As the number of slits increases, the 
separation of the maxima stays the same, but the width of the interference maxima decreases: the 
pattern sharpens. This is illustrated in the picture below, where the first shows combined 
diffraction and interference from two slits with 4slitd λ=  and 20sepd λ= d. The second pattern 
has the same slit width and separation, but now includes three slits instead of two. If we were to 
increase the number of slits further, the maxima would continue to narrow, eventually becoming 
very sharp lines, separated by regions almost completely devoid of waves. 
 
This ability to send all of the incident waves to a few well separated places makes the diffraction 
grating an extremely useful tool for laboratory analysis of waves, as the next section will 
describe in some detail. 
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Such diffraction gratings can be made using almost any regularly spaced pattern of things which 
either transmit (through slits) or reflect light. Here are pictures of so-called transmission and 
reflection gratings: 

 
 

Using diffraction to analyze waves 
 
Imagine that you have a source of light and you would like to know what wavelengths it 
contains. One way to find out would be to use a diffraction grating made of many very narrow 
slits, each separated from the next by a fixed distance sepd . As long as each slit is sufficiently 
narrow (less than any of the wavelengths in the light) diffraction will spread the light from each 
slit in every direction; the diffraction envelope will be wide and approximately flat.  

Transmission grating 

Reflection grating 
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We could use as an example a transmission grating like that shown in the picture above. Let’s 
assume that this grating has a slit width 40 nmslitd = , and a slit separation 100 times as large, 
about 4000 nmsepd = . Imagine that plane waves of blue light, with a mix of wavelengths from 

400 450 nmλ = − , shine on this grating. Since the slit width is 1/10th the wavelength, there will 
be no minima in the diffraction envelope; light from each slit will diffract out in every direction. 
Light passing through each of the slits will, however, interfere with light from the others. This 
interference will cause a series of maxima at the angles where: 
 

 interference
max

400sin
4000 10sep

n nm nn
d nm
λθ = = =  

 
The first maximum is at interference

max 0θ = ° , the second at interference
max 5.74θ = ° , and so on. Because there 

are many slits here, all the 400 nm light in the original source will be very tightly confined to a 
narrow region at this angle.  
 
Light with a slightly different wavelength, like 410 nm light, will have interference maxima at 
slightly different locations. For this light, 
 

 interference
max

410sin 0.1025
4000sep

n nmn n
d nm
λθ = = =  

 
This has a first maximum is at interference

max 0θ = ° , the second at interference
max 5.88θ = ° , and so on.  

 
Notice first that all wavelengths of light which hit the diffraction grating have an interference 
minimum at interference

max 0θ = ° . At this location there is no distinction made among the different 
wavelengths of light. The location of the next interference maximum however (where 1n = ), is 
different for the two wavelengths of light. The 400 and 410 nm light, which started mixed 
together, are now separated, with the longer wavelength light appearing at a different angle from 
the shorter. The separation produced by the diffraction grating allows us to take a light source 
with a mix of wavelengths and ‘analyze’ it, to measure how much light of each wavelength is 
present in the original light source. Here is an example of a spectrum created by a diffraction 
grating. 
 
This ability to determine the wavelength composition of light, to analyze it, makes diffraction 
gratings an extremely important tool in the laboratory. They often lie at the core of instruments 
called ‘spectrographs’, for their ability to draw the spectrum of some light. 
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Using diffraction to determine structure 
 
In the last section, we saw how a diffraction grating with a known microstructure (slit separation) 
can be used to analyze light; to determine its wavelength content. In the modern life sciences, 
diffraction is often used in just the opposite way as well; light with a known wavelength is used 
to determine the microstructure of something it diffracts from. To see how this works, we will 
begin with a very simple case; determining the unknown slit separation in a diffraction grating. 
 
 
 
Imagine that we are given a diffraction grating, but don’t know the slit separation. If we also 
have a light source with known wavelength (like a laser), we can determine the line spacing. We 
shine the light through the grating, measure the angles at which diffraction maxima occur, and  
rearrange the relations described above to get: 
 

 interference
maxsinsep
nd λ

θ
=  

 
Notice again the reciprocal relation. If the angles are large, the separation of the slits is small; 
they are close together. If the angles are small, the separation of the slits is large; they are far 
apart. 
 

Spectrum of the Sun as observed with a diffraction grating. Light of each wavelength 
(and hence color) diffracts at a different angle, landing on the film at a different place. 
Notice the dark lines at many locations. Each represents a particular wavelength which is 
absent from the spectrum of the Sun. These dark ‘Frauenhofer lines’ are caused by ions 
in the very hot atmosphere of the sun which absorb the light at these particular 
wavelengths. Each ion absorbs a particular set of wavelengths. These patterns allow us to 
determine the chemical composition of the Sun’s atmosphere.  

Physics 235 Winter 2011 
Copyright Timothy McKay

194



 
 
What if the object is not intended to be a diffraction grating, but instead just has very regularly 
spaced features on it? The same phenomena will occur. A good example would be a music CD. 
Shine a red Helium-Neon laser pointer (with a wavelength of 633 nm) straight down on a CD 
and you will find diffraction maxima at angles of about 23° . This implies a track spacing on the 
CD of about 61.6 10x −  m. 
 
So just as an object with known structure can be used to analyze light, light with known 
wavelengths can be used to determine the structure of unknown objects. For objects with 
structures larger than the size of visible light, direct imaging with microscopes is often a more 
effective approach. But when the objects become small compared to the wavelength of visible 
light, imaging microscopy will no longer work, and diffraction techniques become increasingly 
important. 
 

Examples of diffraction in organisms and (almost) everyday life 
 
Add in this section a description of diffraction from regularly spaced structures on organisms 
(morpho wings and beyond) and in atmospheric phenomena. 
 

This picture illustrates the use of light with known wavelength to determine the 
microstructure of a diffraction grating. In this case, the light is a red HeNe laser, 
with a wavelength of 633 nm. In the picture, you see light diffracting after it 
passes through the grating, emerging straight through (the n = 0 case), and 
diffracting up and down at an angle of about 21°. This implies a line spacing in 
the grating of about 1.75x10-6 m. 
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30.3 X-ray diffraction and structure determination 

One of the great discoveries of biochemistry is the close connection between protein structure 
and function. Much of the business of life within the cell is carried out using large 
macromolecules. The “primary structure” of these molecules is a simple map of connectivity, a 
network showing which other atoms each atom in the molecule is attached to. While information 
about primary structure is central to the identity and nature of a molecule, it tells us remarkably 
little about how it will function. Function is often determined by the so-called “tertiary 
structure”, the full three dimensional distribution of atoms in the equilibrium state of the 
molecule.  
 
Since this 3D shape plays such a central role in the function of biomolecules, determining 
structure is an essential task for the life sciences. There are several different ways to do this, all 
of which depend on fundamental physics principles. The most important of these, both 
historically and today, is X-ray diffraction. Since it is so important, we will spend a little time 
going over the basic principles of this method, using as our central example the most famous 
determination of the structure of a biomolecule: the discovery of the DNA double helix by 
Francis Crick and James Watson in 1953. 
 
We saw in the last section that light with a known wavelength could be used to determine the 
microstructure of a diffraction grating with unknown slit spacing. In this section we will see how 
the same essential approach allows us to determine the microstructural arrangement of atoms in 
molecules. 
 
If you want to see diffraction from individual atoms, you need to use light waves with 
wavelengths about the size of the spacing between atoms. This is typically a few times 10-10 m. 
These wavelengths are much smaller than those of visible light, and even smaller than the 
wavelengths of  ultraviolet light; they are X-rays. Bouncing X-rays off of atoms and looking at 
the diffraction patterns they produce can tell us how the atoms are arranged. Examining the X-
ray diffraction pattern produced by DNA allowed Watson and Crick to determine its double-
helical structure. In what follows we will see, in some detail, how they did this. 

X-ray scattering from atoms 
 
X-rays are electromagnetic radiation with wavelengths in the range from 0.01-10 nanometers. 
The longest wavelength X-rays are about 40 times shorter than the shortest visible light, so X-
rays cannot be detected by your eyes. But waves they are, and they exhibit all the usual wave 
phenomena of interference and diffraction. 
 
X-rays also interact with matter, sometimes being scattered from it and sometimes being 
absorbed. Because their wavelengths are so short, about the size of atoms, they tend to bounce 
off individual atoms, emerging from this interaction as spherical waves. When this happens, each 
atom in a material appears as a new source of waves. This idea is illustrated in the figure  
below: 
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To understand how this kind of X-ray scattering can reveal the arrangement of atoms in a 
material, consider what happens if you shine X-rays on a simple crystal, a material which has all 
its atoms arranged in an extremely regular array. 
 

 
In this case, the array of atoms becomes an array of sources for scattered waves. This should 
look familiar. It’s very much the same situation created by a regular grid of very narrow slits, a 
diffraction grating. Each atom here (like a slit in the plate) is the source of spherical waves which 
travel out in every direction. Waves scattered from each of the many atoms then interfere with 
one another. If we then examine intensity of waves far from this scattering we will find 
something like what is shown in the next picture. In this picture, the entire scattering region 
shown above is very tiny, hidden down in the box on the left. 
 

Incoming 
plane waves 

Outgong 
plane waves 

Scattered 
waves 

Incoming 
plane waves 

Outgong 
plane waves 

Scattered 
waves 

d 

d 

d 

d 
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The key idea is that the angle θ to the bright spots on a distant screen, combined with knowledge 
of the X-ray wavelength λ, allows us to find the distance “d” between the atoms in the crystal. 
This is the essence of how we use X-ray diffraction to learn about the distribution of atoms in a 
material.  

The basics: diffraction from a line of evenly spaced atoms 
 
The simplest case is the one illustrated above. A regularly spaced set of atoms will produce a 
diffraction pattern on a screen at a distance D which has points at these angles and positions: 
  

 interference
max

ysin      or           or     
D

n n n Dy
d d d
λ λ λθ = = =   

 
Notice again that the spacing of maxima on the distant screen depends on the inverse of the 
spacing between the atoms in the crystal “d”. For this reason, the distribution of the bright points 
on the screen is sometimes called the “reciprocal” of the actual distribution of the atoms in the 
material.  
 
When the atoms in the material are close together, the bright points on the screen are far apart. 
When the atoms in the material are far apart, the bright points on the screen are close together. 
This point will be essential in understanding what follows! 
 
There is another key point here. We have assumed a perfectly regular array of atoms; a crystal in 
which the spacings between atoms are quite precisely repeated over and over. A nice feature of 
crystals is that they contain many, many atoms, many scattering centers. As we saw for 
diffraction gratings earlier in this chapter, many sources of waves create very narrow, sharply 
defined diffraction peaks.  
 
What happens if you don’t have a crystal in which all the atoms are lined up, but instead have 
something with no regular order, like a liquid? In this case, there are no favored interatomic 

Scattering 
region 
(everything 
from above) 

Direct, unscattered waves (very bright) 

1st max at 
sinθ = λ/d 

2nd  max at 
sinθ = 2λ/d 

2nd  max at 
sinθ = 2λ/d 

1st max at 
sinθ = λ/d 
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spacings (many different spacings occur), and the “diffraction pattern” disappears. This is a big 
problem for determining the structures of biological macromolecules. If you want to use X-ray 
diffraction to determine all the spacings between the atoms, you have to make a bunch of the 
protein molecules all line up in a very regular way. Ideally, they all would be lined up in the 
same direction and spaced in a regular grid.  
 
Unfortunately, this is very difficult to arrange. Typically, crystals of proteins are “grown” from 
solution. A quantity of the protein of interest is prepared chemically, then placed in solution. As 
the solvent is slowly removed, often by evaporation, the proteins gradually settle into some 
arrangement. When the process is handled carefully, conditions may be right for each protein 
molecule to settle into a regular, crystalline, packing of molecules, one alongside the other. If 
things don’t go right, the proteins may be piled up in a random, disordered jumble; an 
arrangement which (like a liquid) will produce no useful diffraction pattern. Growing regular 
protein crystals is something of a black art, and remains the limiting factor in the measurement of 
structure for new proteins.  
 
Because of the importance of protein structure for so many topics in the life sciences, knowledge 
about them is shared online in “protein data banks”. If you look here, you can see one current 
count: 
 
 http://www.rcsb.org/pdb/statistics/holdings.do 
 
At this point, about 60,000 proteins have known structures, most determined through X-ray 
diffraction methods. 

30.4: Uncovering the structure of DNA 
 
To do X-ray crystallography of DNA, a regular oriented array of the molecules was required. In 
the early 1950’s, it was not known how to create this with 
DNA. Rosalind Franklin, an early expert at structure 
studies, discovered around 1951 that DNA took on two 
forms, then called “A” and “B”. The A form, which is 
produced when the DNA is at low humidity, is not the 
form found in the cell. The B form, fully hydrated, is 
what we now know to be a double helix. Preparation of 
long, ordered, fibers of this B form required great care, 
but they enabled Franklin to obtain the crucial X-ray diffraction pictures which revealed the 
famous double-helix structure.   
 
Franklin’s original X-ray diffraction pattern for B-DNA is shown at below. It was obtained by 
shining X-rays with a wavelength of 0.15 nm perpendicular to a long thin fiber containing many 
DNA molecules all lined up in the vertical direction. This crude arrangement is shown 
schematically in the picture above. Franklin’s blurry image contains all the features which were 
needed to infer the structure of DNA. As such, it is one of the most important images in biology.  
 

Picture from Lucas et al., 
1999, JCE, 76, 378

Incident X-rays 
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Our discussion of the Franklin image and its interpretation relies heavily on an article by Lucas, 
Lambin, Mairesse, and Mathot in the Journal of Chemical Education, 1999, 76, 378. There are 
four aspects of this image that I want you to notice, and which we will try to explain. To 
recognize these features, compare the schematic diagram in the center to the actual X-ray 
diffraction pattern on the left. The four key features are: 
 

1. The “layer lines”: Starting from the center, there are a series of dots along regularly 
spaced horizontal lines.  

2. The “cross” in the middle: The bright spots which define the horizontal layer lines are 
found at increasing distances from a vertical centerline as you move away from the center 
of the image. 

3. The outer “diamond”: the bright points at the top and bottom and the sides of the image 
are connected by a diamond shaped continuous structure 

4. The “missing 4th layer line”: When you look at the layer lines you can see that the fourth 
line from the center is missing. 

 
Every one of these features provides important information about the structure of DNA, so the 
following sections go through each in turn and explain its origin.  
 
It will help in understanding this to refer to the model shown in the picture on the right, which 
emphasizes several key spacings in the structure of the DNA double helix. All are expressed in 
terms to the spiral spacing “P”, which is the distance along the strand you have to go before one 
of the two helices returns back around to where it started. The other two distances are 3/8P, the 
distance between the two intertwined helices, P/10, the distance between base pairs along the 
chains, and 0.3P, the radius from the center to the outer edge of the helix. Given this background, 
let’s examine each of the features in the Franklin image.  

The closely spaced layer lines 
 

Picture from Lucas et al., 1999, JCE, 76, 378 
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To understand the layer lines, remember that as the helix of DNA spirals around it goes through 
repeated cycles, once for each time it spirals around. This makes a repeated pattern of X-ray 
scattering centers lined up along the vertical direction, spaced by a distance P. These act like a 
regularly spaced set of sources of X-rays, lined up vertically. Such a line of sources will produce 
an array of diffraction spots on a screen at a distance D located at positions y n D Pλ= . This is 
the spacing of the layer lines. 
 
Remember how the diffraction spots are “reciprocal” to the actual array of atoms? In this case, 
we have a set of separations in DNA molecules which are large, with size P. An arrangement 
with large separations will produce diffraction spots close together. Since this is the largest 
repetition scale in the DNA structure, it produces the diffraction features which are closest 
together.  

The central cross 
 
The cross pattern was key to Watson and Crick recognizing that DNA had a helical 
structure. Remember that a simple vertical stack of sources separated by the spacing P 
would produce a vertical set of diffraction peaks separated by distances 

layer linesy D PλΔ = . Now imagine that, instead of a set of horizontal slits separated by a 
distance P, you have a set of long tilted slits, still separated by the same vertical 
distance P. This is illustrated in the picture at right. Such a set of tilted slits will still 
make a pattern of diffraction features separated along the vertical direction by a 
distance layer linesy D PλΔ = , but now instead of lining up vertically, the diffraction peaks 
would line up perpendicular to the orientation of the slits themselves. 
 
Why is this? Each line in this pattern acts like a single slit which is wider than the wavelength of 
the X-rays scattering it. For DNA, the length of each tilted segment is about 2 nm, while the 
wavelength of Franklin’s X-rays was only 0.15 nm. For such an individual wide slit, light can be 
seen with large amplitude only along the direction perpendicular to the slit; it doesn’t diffract out 
to the side. This was discussed in some detail in section 3.1.0. 
 
A single long slit  produces a beam of light perpendicular to the slit with an angular width 

diffraction
minsin slitdθ λ= . For the case of a “slit” 2 nm wide and λ = 0.15 nm, this is an angle θ = 0.07 

in radians, which is about 4°. Light from each slit will appear only within about 4° of a line 
perpendicular to the slit. 
 
What’s the effect of this? The set of tilted lines, spaced by a separation P, will produce a set of 
points split by layer linesy D PλΔ = , but they will not appear along a vertical line. Instead, you will 
find them only along a line tilted so that it is perpendicular to the slits. If we had lines tilted the 
other way, we’d get the same pattern, only tilted the other direction. 
 

P 
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Now perhaps you can get an idea of where the cross comes from. Imagine you put these two sets 
of tilted lines together in a zig-zag pattern. That would give you both of the above patterns on top 
of one another, and would create the combined cross shape. What could make a zig-zag pattern 
like this? If you picture a helix, a spiral, seen from the side, you get something very like this zig-
zag pattern. And in fact it was well known by the time Franklin took her DNA diffraction picture 
that helical structures produced crosses in diffraction patterns. 
 
So there you have it. The cross in the middle, made up of a set of features positioned along the 
so-called “layer lines”, is caused by the helical structure of the DNA. The angle of the cross tells 
us the “pitch” of the helix. If it was more stretched out the cross would be wider. But this cross 
by itself wasn’t enough to tell Watson and Crick that it was a double helix. For that, we have to 
go a little further along and consider the remaining two key features.  
 

The outer diamond and the spacing between base pairs 
 
Perhaps the most obvious feature in Franklin’s picture is the pair of bright blobs at the top and 
bottom, which are connected by the rather fainter outer diamond. These features, which are far 

Pictures from Lucas et 
al., 1999, JCE, 76, 378 

P 

Δy = λD/P 

Δy = λD/P 

P 
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apart on the diffraction pattern, must correspond to some repeated features in the molecule 
which are close together. 
 
The two big splashes at the top and bottom of Franklin’s image, as well as the diamond framing 
it all, are due to the small spacing of base pairs along the sequence which has a typical spacing of 

10P . Since the spacing is ten times smaller than the spacing of cycles of the helix, the distance 
between points in the diffraction pattern is given by the equation: 
 

 base pairs
10

10
D Dy

P P
λ λ

Δ = =  

 
Note that this is just 10 times as large as the spacing between the layer lines. The two points at 
the top and bottom come from all the pairs aligned above one another, while the rest of the 
diamond is filled in by pairs aligned along the zigs and zags of the helix.  

The missing 4th layer line 
 
Nothing so far has told us that DNA is a double helix, or said anything about the relation 
between the two helices. That’s where the missing spots along the 4th layer line play the key role. 
In the figure on the left, with a single set of sources separated by the distance P, you get 
constructive interference every time you find interference

maxsinP mθ λ= . Now consider something very 
similar on the right. Now you have two separate sequences of slits. Each sequence is spaced by 

distant P, and the two are offset from one another by a distance3 8P . Because each sequence by 
itself is spaced by P, they would is happy to give you peaks wherever sinP mθ λ= . This gives 
you peaks at angles where sin m Pθ λ= . 

P 

Produces spots when 
Psinθ = mλ 

Psinθ 

θ 

P 

(3P/8)sinθ θ 3P/8 
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But now the two sequences can also interfere with one another. If the path length difference 
shown on the right, ( )3 8 sinPL P θΔ = , is a half integer multiple of the wavelength, then the 
bottom holes will always interfere destructively with the top holes.  
 
Notice that when m=4, the condition above for constructive interference from each individual 
sequence will give us: 

 4sin
P
λθ =  

Putting this into the equation for the path length difference between the two offset sequences, we 
find: 

 3 3 4 3sin
8 8 2
P PPL

P
λ λθΔ = = =  

This means the path length difference between the two sequences of holes is a half integer 
multiple of the wavelength and the two sequences of holes will cancel one another out 
completely!  
 
In the DNA double helix, we have a situation exactly mirroring this set of slits. Each of the two 
helices acts as one of the sets of slits spaced by distance P. The two helices are offset from one 
another by a distance 3 8P . These two helices will experience destructive interference which 
will perfectly wipe out the 4th layer line. This missing 4th layer line was the final key clue which 
Watson and Crick needed to discover that the structure of DNA was a double helix. The paired 
double helix plays an essential role in the replication of DNA, and hence in its function as the 
mechanism of inheritance. That this essential double helical structure is revealed by a subtle 
feature missing in the diffraction pattern has a delightful irony. 

Some reminders and a quick summary 
 
What’s the crucial lesson here? Most important, diffraction of X-rays from a regular, repeated 
structure can provide the clues which allow us to determine the 3D structure of complex 
biological macromolecules. The basic physics behind this is just the simplest feature of waves; 
that two waves arriving in phase add constructively, while those arriving out of phase add 
destructively. This simple fact, applied in some details to understand how arrays of sources (like 
diffraction gratings) interfere, allows us to determine the structure of DNA. 
 
To make this work, the DNA had to be arranged in a more or less regular, ordered form. For 
Franklin, this was done by lining them all up in a thin fiber, so that at least all the DNA helices 
were pointed the same way.  
 
There are four key features of the Franklin DNA image, each of which contains key clues to the 
structure of DNA: 
 

1. The layer lines, which show the repetition length of the DNA helix P. For DNA this 
distance is about 3.4 nm. 

2. The cross pattern, which shows that DNA is a helical structure, with each of the sloping 
sides tilted from the horizontal by about 26° 
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3. The outer diamond: which shows the smallest spacing in the molecule, the interbase 
spacing, which for DNA is about 10P , or 0.34 nm. 

4. The missing 4th layer line, which shows that there we in fact two intertwined helices, 
offset from one another by a distance 3P/8, or about 1.3 nm for DNA. 

 

Layer lines, 
spaced by 
distances given 
by Δy = λD/P 

Missing 4th layer 
line! 

Missing 4th layer 
line! 

This larger figure points out each of the features used in determining the structure of 
DNA from X-ray diffraction: the layer lines, the central cross, the external diamond, 
and the missing 4th layer line. 

Outer diamond with 
spacing Δy = 10λD/P 

Central cross, showing 
pitch of the DNA helix 
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Diffraction of X-rays from regular arrays of atoms, as you might see in a crystal of regularly 
arranged proteins, allows us to determine their structures. This example of DNA shows how, 
even with relatively simple data, we can use our understanding of waves to determine structures 
that we can never directly see. 
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A Quick Summary of Some Important Relations 
 
Huygen’s construct – waves passing through holes and around obstacles: 
 
When waves encounter holes in barriers or obstacles the outcome depends on the size of the 
hole/obstacle compared to the wavelength λ of the wave. If the hole/obstacle is small compared 
to λ, the wave will ‘diffract’ through or around it. If the hole/obstacle is large compared to λ, the 
wave will continue in straight rays, leaving sharp shadows around the boundaries of the hole and 
edges of the obstacle. 
 
Minima from a wave with wavelength λ passing through a single slit of width d: 

 ( )minimumsin m
d
λθ =  

 
First minimum for a wave with wavelength λ passing through a circular hole of diameter d: 

 ( )minimum
1.22sin

d
λθ =  

Interference from two point sources: 
 
Examining interference patterns from two narrow slits (width < λ) separated by dsep on a screen a 
distant D away: 

 
( )
( ) ( )

max

1
min 2

sin

sin
sep

sep

d n

d n

θ λ

θ λ

=

= +
 

Or in terms of distance y on the screen: 

 
( )

max

1
2

min

sep

sep

n Dy
d

n D
y

d

λ

λ

=

+
=

 

 
Combined interference and diffraction: 
 
When two slits not smaller than the wavelength interfere, you get both interference and 
diffraction effects. 
 
Multiple slits and diffraction gratings: 
 
When more than two slits, still separated by the same dsep, all act. The interference maxima 
remain in the same places, but the peaks are made narrower. With many slits, they become tiny, 
well separated dots with locations determined by wavelength and slip spacing. 
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Diffraction gratings can be used to analyze light waves, measuring the wavelengths that make 
them up. The reverse is also possible. Waves of known wavelength can be used to determine ths 
structure of a small regular object. 
 
X-ray diffraction and protein structure:  
 
Diffraction of x-rays from regular arrays of atoms in crystals produce diffraction patterns which 
can be used to determine the distribution of atoms in the crystal. This method plays an essential 
role in modern biology, a development that really took off with the discovery of the structure of 
DNA. 
 
Four features in the original X-ray diffraction image revealed the double helix structure of DNA 

1. The layer lines 
2. The central cross 
3. The outer diamond 
4. The missing 4th layer line 

You should understand what each revealed and how they indicate a double helix. 
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POLS Waves Chapter 31 
 

31.1 Waves at boundaries: material mismatch 
 
When we introduced waves, we imagined them traveling in a uniform material. Their amplitudes 
might fade as they spread in two or three dimensions, but otherwise they would propagate freely, 
spreading directly away from their sources forever. In the last chapter we considered a first 
variation on this; what happens when propagating waves encounter obstacles. We talked about 
walls with slits through which the wave may pass, and about small objects from which a wave 
may scatter.  
 
In this chapter we will examine how waves travel in more realistically complicated 
circumstances. First, waves in media don’t actually continue forever.  Instead they interact with 
the material through which they travel, gradually giving up their energy and shrinking in 
amplitude. Second, very interesting things happen when waves traveling in one material reach 
the boundary with another. To illuminate these two ideas, let’s start with a familiar example, 
light waves traveling through the air. 
 
Light travels pretty freely through air. Most days it 
propagates from the top of the atmosphere to the 
bottom without much loss, a distance of roughly 30 
kilometers. But the losses are there. Think about 
how bright the sun is when directly overhead. 
Compare this to a sunset, when the light travels 
through much more air to reach you. At this lovely 
crepuscular moment, much of the sun’s light is either absorbed or scattered away by the 
atmosphere. With so little of the sun’s light getting through, you can look directly at it without 
pain. This is an example of the losses incurred by a wave even when it travels in an essentially 
uniform medium. 
 
 The air through which light waves travel ends when the light encounters an object; a table, the 
wall, or a piece of window glass. When this happens, there are two possible outcomes. The light 
may bounce off, reflecting back into the air from which it came. If it doesn’t reflect, it must 
continue on into the new material. In this new material, it may either be quickly absorbed, as it is 
in many solids, or continue on as a wave, as it does in window glass or water.  
 
We should guess that the arriving waves must either reflect or continue on because of the 
conservation of energy. These waves carry energy. That energy, upon arriving, must go 
somewhere. In reflection it bounces off in a new direction. If it does not reflect, it must pass into 
the new material, for it cannot simply disappear.  
 
Light reflected from objects enables most of our view of the world. Most things are visible only 
because they reflect ambient light which then passes into our eyes. Turn off the lights and there’s 
nothing to reflect: everything disappears. Of course there are objects which actually emit visible 
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light produced within them: things like the sun, light 
bulbs, wildfires, lightning, and fireflies. Light emitting 
objects we see directly. But most of our view of the world 
depends on reflected light. If light does not reflect off 
something, we cannot see it; such an object is literally 
invisible. A remarkable group of cold-water adapted ‘ice-
fish’ are very nearly transparent. 
 
In this chapter we will consider first how waves traveling 
through a material are gradually absorbed, paying special 
attention to light and sound in life’s media, air and water. Then we’ll learn about what happens 
when waves reach a boundary where they may either reflect or continue on. The outcome 
depends only on how waves propagate in the two materials. When the wave travels in similar 
ways through the two materials (when they are well matched), waves slip across the boundary 
from one material to the next as if nothing had happened. When the wave travels very differently 
through the two materials, at least some of the wave will be reflected, and that which passes on 
will change direction, a phenomenon called refraction. All of these phenomena, basic features of 
waves, have important implications for life. 

Absorption and scattering of light 
 
To understand the absorption of waves in a material, we will consider a concrete example, the 
propagation of a parallel beam of light waves. To start, recall that the intensity of a wave, the 
amount of energy it delivers per unit area per unit time, is proportional to the square of the 
amplitude of the wave:  
 ( ) ( )2I Aλ λ∝  
A beam of light is a set of parallel light waves, all propagating in the same direction. Two 
examples help to illustrate the case. One is the light from the sun. Because the Earth is so far 
from the sun, waves of light from it arrive as very nearly parallel plane waves. Another example 
familiar from classrooms today is the laser pointer. Because the waves all travel in the same 
direction, their intensity does not appreciably decrease with distance, as it would for waves 
spreading from a point source in two or three dimensions (where intensity would fall off as 1 r
or 21 r ).  
 
Even though such a beam of light does not spread, its intensity decreases when travelling through 
a material. This decrease is due to a combination of absorption and scattering. Absorption 
converts part of the energy the light carries to other forms; typically thermal energy in the 
material. Scattering sends some of the wave off in new directions, also removing it from the 
original beam. Scattering is essentially reflection from small objects (like dust) in the beam. The 
decay of intensity with distance caused by these combined affects can often be accurately 
described as an exponential for each wavelength: 
 
 ( ) ( ) ( ), , 0 xI x I e α λλ λ −=  
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In this relation, ( ),I xλ  it the intensity of the wave as a function of wavelength and distance in 

the medium, ( ),0I λ  is the initial intensity as a function of wavelength, the parameter α(λ) is a 
property of the material through which the light passes, called the “attenuation coefficient”. 
From the form of this equation we can see that if α is large, the intensity will fall off very 
suddenly, and light won’t travel far. If, by contrast, α is small, the light will travel a long way 
before being absorbed.  
 
How far will the light go? As with all exponentials, this is a question of degree: while the beam 
immediately starts to fade, it never completely disappears. To sensibly characterize how far light 
goes in a material, we might determine how far it travels before it is reduced by some fixed 
amount. By convention, we select a reduction factor of 1e− , and define the “absorption length” 

( )absL λ to be the distance the light must travel before its intensity is reduced by this factor. From 

the relation above, we see that this happens when ( ) ( ) 1absLα λ λ = . This suggests a clear 

interpretation of the parameter α: ( )α λ is the inverse of the absorption length. Where the 
absorption length is small, alpha is large. Where the absorption length is large, alpha is small. 
 
For the purposes of life on Earth, we need first to understand the propagation of light through air 
and water. The figures below show the wavelength dependence of the attenuation coefficient for 
air and water, as well as the comparing how the intensity of light falls off with distance in air and 
water, for different wavelengths of light.  
 

 
 
Look first at the attenuation coefficient of air as a function of wavelength. The attenuation 
coefficient for red light ( ) 6 1600 nm 9 10  mxα − −≅ , which implies an absorption length of about 
110 kilometers. Red light like this must pass through about 110 kilometers of atmosphere before 
its intensity falls by a factor of 1e− . Passing through a more typical distance of 30 km, we might 
expect; 

From Denny, Air and Water, Princeton Press 
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 ( ) ( ) ( )6 49 10 *3 10600 nm,30 km 600 nm, 0 km 0.76 600 nm, 0 kmx xI I e xI

−−= =  
 
The intensity after traveling through 30 km of air is reduced by about 25%. The energy lost from 
the beam is either absorbed by the atmosphere or scattered off in new directions. 
 
You can see from the figure that 600 nm red light has an 
attenuation coefficient α which is about seven times less than 
that for 400 nm blue light. This means that red light penetrates 
air about seven times as effectively as blue light. When light 
from the sun passes through 30 km of the Earth’s atmosphere, 
about 25% of the red light is lost from the beam. Meanwhile, 
about 88% of the blue light is absorbed or scattered in the 
same distance. This difference is responsible for two familiar 
phenomena. The first is the daytime blue sky.  
 
When you look at the sky in directions away from the sun, you 
see a nice, smooth distribution of blue light coming to you. 
This blue light was originally headed from the sun toward the 
ground far away from you, but instead has been scattered from 
that beam toward your eye. The red light, which scatters less, 
mostly continues on toward its original destination. Since 
short wavelength light scatters more than long wavelength light, what you see looks “blue” 
compared to the white light of the sun. 
 
The wavelength dependence of absorption and scattering also explains the typical redness of a 
sunset. When you look at a sunset, you’re looking in the direction of the sun, but through a much 
longer path of atmosphere than usual. Along this very 
long path, almost all of the blue light is absorbed or 
scattered out of the beam from the sun. What’s left is the 
red light, and hence the sunset looks red. The same thing 
happens to a full moon low in the sky.  
 
Looking back at figures showing the attenuation 
coefficients for air and water, you can see that light 
penetrates air much more freely than it does water: it will 
travel 100 to 1000 times farther in air than water. Also, 
the wavelength dependence of absorption is reversed for 
water, red light is absorbed much more strongly than blue. This means that underwater, the 
primary light arriving from the sun will be blue; the red light will be largely absorbed. 
 
The short absorption length for light in water has huge consequences for life. Life directly 
dependent on light from the sun is restricted by this absorption to a layer about 100 m thick at the 
surface of the ocean. This region makes up less than 3% of the ocean’s volume. To live in the 
remaining 97% of the ocean, life must adapt to survive without the sun. In this immense dark 
zone, many organisms produce their own light through a wide variety of bioluminescent 
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processes. Others learn to sense their surroundings in other ways. Marine mammals rely on 
echolocation, while sharks and some other fish sense the electric fields produced by their prey 
using special sense organs romantically named the “Ampullae of Lorenzini”.  
 
Much deep ocean life lives off nutrients ultimately derived from the sun, drifting down from 
above. But this is not the whole story. In 1977, marine geologists discovered ‘chemosynthetic’ 
communities of organisms living off the energy provided by hydrothermal vents in the deep 
ocean. The food chains in these complex communities are based on bacteria which extract 
chemical energy from the emissions of the vents. All of which is interesting if you’re thinking 
about what sorts of places might host life on other planets. Perhaps direct support from starlight 
is not as essential to life as we once thought. 
 
Sound, like light, is absorbed while traveling through materials. This absorption was introduced 
in Section 1.4.3, where we quantified absorption by listing the number of decibels lost per 
kilometer. This quantity, reported in dB/km, is related to absorption length in a simple way. If 
( )k λ  is the loss rate in dB/km, then we can write the loss as 
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From this you can see that the attenuation coefficient is related to the loss rate in dB/km we 
discussed before in the following simple way: 
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In this language, typical absorption lengths for sound in seawater range from about 55 km for 1 
kHz sound to 40,000 km for a low frequency, 100 Hz sound. Since this is just about the 
circumference of the Earth, you can see that low frequency sounds travel very freely through the 
ocean. Even at the high frequencies used for sonar (around 30 kHz), the absorption length is 0.6 
km. In the air, sound does not travel so freely. The absorption length at 1 kHz is about 1 km, fifty 
times less than it is in water. 
 
This is a good general rule to remember: light travels freely through the air, sound travels freely 
through water. 
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Waves at boundaries: reflection or transmission? 
 
The fate of a wave arriving at a boundary between two materials depends on the nature of the 
transition. We introduced this idea earlier in our discussion of waves, back in Section 2.2.0. We 
saw there that what happens at a boundary depends on the physical properties of the two media. 
If they are very different, the wave will almost completely reflect. If they are very similar, the 
wave will almost completely pass through. What are the material properties that matter for light 
and sound? What is it we need to compare? 
 
For light, the material property which governs reflection and transmission is called the “index of 
refraction” of the material. This parameter, usually written with the symbol n, can be expressed 
in a simple way which relates the speed of light in the material to the speed of light in a vacuum 
(usually expressed with the symbol c): 

 medium medium
light

cn
v

=  

Notice that this quantity is unitless; the ratio of two velocities. It is a pure number. Light 
traveling in a medium always propagates more slowly than in empty space. So this index will 
always be a number larger than one. 
 
Why is light slowed when it travels through a material? When light travels through a medium it 
is actually undergoing a continuous and very complex process of absorption and remission. 
These processes take a little time, and this delay between absorption and re-emission slows the 
rate at which it moves through the material. Air is not very dense, and does relatively little to 
impede the progress of light. It’s index of refraction is very close to one, 1.0003airn ≅ . Water, by 
contrast, is dense, and slows light more substantially. As a result, the index of refraction of pure 
water is larger, 1.33watern ≅ . 
 
To determine whether light will be reflected at or will cross a boundary, we compare the index of 
refraction of the two materials. 
 
For sound, the material property to consider is called the “characteristic acoustic impedance”. 
This parameter, usually denoted with the symbol Z, is given by the product of the density of the 
medium ρ multiplied by the velocity of sound in the medium medium

soundv : 
 
 medium

medium medium soundZ vρ=  
 
The SI units for acoustic impedance are ‘rayls’, with  
 

 21 rayl 1 kg
m s

=  

 
Acoustic impedance, depending both on density and speed of sound, varies quite substantially 
among the media of life. The acoustic impedance of air is small, about 415 rayls, while that of 
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water is very large, about 1.5x106 rayls. As we will see, this enormous difference has major 
implications for hearing and the propagation of sound in life. 
 
We turn now to the question of how much wave intensity reflects at a boundary between two 
media, A and B. If the important material property (index of refraction or acoustic impedance) 
changes very little across a boundary, most of the wave will propagate from one medium to the 
next. If the important property changes a lot, most of the wave will be reflected.  
 
While the detailed behavior is complex, we can get a basic quantification of this in one limiting 
case. When the wave traveling in medium A arrives perpendicular to the boundary with medium 
B, the reflected intensity can be calculated by:  
 

 
2 2

 and  A B A B
light sound

A B A B

n n Z ZR R
n n Z Z
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What are the implications of this?  
 
When light propagates straight down from air into water in this way, we calculate a reflection 
amplitude 0.02lightR = . Most, but not quite all, of the light passes on into the water. The same is 
true (as you can see from the equation) for light passing from water into air. 
 
The situation for sound is very different. When sound propagates straight down from air into 
water, we find a reflection coefficient 0.9999soundR⊥ = . Almost every bit of the sound arriving at 
the boundary between air and water is reflected, virtually none passes across the boundary. 
Likewise, sound does not travel freely from water into air. The implications of this are many, as 
we will see when we discuss hearing in air and water. 

Changing the direction of waves: reflection 
 
There are two ways in which the direction of wave travel can be changed at boundaries between 
materials; by reflection or by refraction. Each can be understood in terms of the Huygens’ 
construct we used to discuss diffraction. 
 
Consider first what happens when wave fronts bounce off a surface. Imagine first that the surface 
is flat on the scale of the wavelength. 

θi θr 

Incoming wave 

Outgoing wave 
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In this case you can picture each spot on the incoming wave (shown as solid lines) hitting the 
surface at different moments, sending out from the place of impact the usual circular Huygen’s 
construct waves. These then add together to send the wave back out (shown as dashed lines) such 
that the angle at which the rays arrive is equal to the angle at which they depart. This is often 
described by saying that the angle of incidence is equal to the angle of reflection: θi = θr. This 
law of reflection is always true; waves reflect off the surface at an angle equal to the angle of 
incidence. 
 
When the surface remains flat over distances many times the wavelength, we call the reflection 
“specular” (from the latin specula; to observe).  In this case, if you send in waves from just one 
direction, they all bounce off in the same new direction, preserving coherence in their direction. 
 
If the surface is not flat on the scale of the wavelength (and most surfaces are not) you will get 
instead some degree of “diffuse reflection”. In diffuse reflection the waves encounter a surface 
which is rough; with parts of the surface tilted in many directions. While waves striking each 
little piece of surface reflect according to the law of reflection (with θi = θr), there are now many 
different θi values, and the waves bounce off in many different directions. Often the incoming 
wave bounces off, at least partly, in every different direction. Waves which suffer diffuse 
reflection from a surface lose any coherence in direction they might have arrived with. Even if 
they arrive moving in the same direction, they go out in every direction. Once they have reflected 
in this diffuse way, you can no longer tell what direction they originally came from. 
 

 
The surfaces of most things you see in the world are in fact very rough when examined on scales 
comparable to the wavelength of visible light (~5x10-7 m). As a result, reflection of light is 
almost always diffuse. When light hits, for example, a spot on your skin, it bounces off in every 
direction. As a result, an observer standing anywhere with a clear line of sight to that spot can 
see it. They cannot, however, tell where the light that struck your skin came from originally. 
Light travels from a spot of diffuse reflection in every direction, and not just along one single 
direction of specular reflection. If this diffuse reflection did not so often occur, life would be like 

Specular reflection from a smooth surface (on the left) compared with diffuse reflection 
from a rough surface (on the right). In both cases, incoming rays all start with the same 
direction and are shown as dashed lines. Outgoing rays (solid lines) all share the same 
direction in the specular case, but go off in every direction in the diffuse case. 
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living in a continuous hall of mirrors. Nothing would be where it seemed to be and it would be 
impossible to use the direction from which light comes as a reliable indicator of where things 
are. 
 
There are some natural surfaces smooth enough to create specular 
reflection. Perhaps the most familiar is water. The combined effects of 
gravity and surface tension conspire to make undisturbed water surfaces 
very flat indeed. Light coming from these smooth surfaces is all 
reflected specularly. What you see is not the surface itself, but images of 
more distant points. If you don’t understand this, you could end up like 
Narcissus, the character from Greek mythology who fell in love with his 
own reflection; just one more terrible fate from which knowledge of 
physics can save you.  

Changing the direction of waves through refraction 
 
Waves which cross the boundary between one material and another may also have their direction 
changed. We call this phenomenon refraction. Imagine waves arriving at the boundary of two 

materials, one in which they travel rapidly and another in which they travel more slowly. As each 
wave front hits the interface, it produces new waves which travel out from the points of impact in 
every direction. Above the interface the waves produced travel out at the old speed vout, below 
the interface they travel at a new speed vmedium. 
 
You can see from the picture that the net effect of slowing the wave in the new medium is to 
bend the direction of wave travel. If the waves arrive at the interface with an angle of incidence 
θi, they will propagate through into the new region at a different angle of refraction θr. The two 
angles are related to the speed of the wave in each of the two media through some simple 
trigonometry, as shown in the figure below. 

θi 

θr 
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It may help to rewrite this in a simpler form: 

 ( ) ( )sin sinr
r i

i

v
v

θ θ=  

If r iv v< , the angle of refraction will be smaller than the angle of incidence. So when the wave 
moves into a region where it travels more slowly, its path bends toward a line which is 
perpendicular to the interface between the two media; it bends toward the normal. When, on the 
other hand, r iv v> , the path of the wave will bend away from the normal. 
 
This law for refraction is true for any wave, including light and sound. For light, this general rule 
is usually written in another, equivalent form, taking advantage of the index of refraction we 
already defined for light: n c v= : 
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This relation describing how light changes direction when crossing an interface is called Snell’s 
law, for Dutch mathematician Willebord Snellius (1580-1623).  
 
Let’s look at what this means: 
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When the light passes from material one to material two the direction it travels changes. When ni 
> nr, then the new angle θr will be larger than θi; the light will bend away from the line normal to 
the surface of the two materials. This is what happens when, for example, light goes from water 
into air. If, on the other hand ni < nr, then the new angle θr is smaller than θi; the light will bend 
towards the line normal to the surface. This is what happens when light travels from air into 
water. 
 
Notice that refraction, like reflection, changes the direction of travel for waves. It makes them 
seem to come from somewhere other than where their original source. In refraction, just as in 
reflection, the interface between two materials must be smooth on the scale of the wavelength to 
preserve coherence in the direction of the resulting wave motion. If the surface between two 
materials is rough, a wave passing through will refract in many different directions, destroying 
information about where it came from. This is ‘diffuse refraction’, very like the diffuse reflection 
we already discussed. 
 
You can see things below the surface of a pond when the water is smooth, but lose this ability 
when it is covered with ripples. Likewise, a smooth window allows you to see what it past it, 
while a rough ‘ground glass’ window prevents you from seeing precisely where the light passing 
through it is coming from. Light passes through such a window, but it’s not possible to see 
images through it. 

31.2: Hearing in air and water  
 
In the preceding sections we have seen that waves traveling from one material to another may be 
reflected at the interface. If they are transmitted, their direction may be altered through 
refraction. We also saw that the very different acoustic impedances (Z) of air and water imply 
that sound traveling in air will be very substantially reflected when arriving at an air-water 
interface. This fact has very important implications for life. 

Life evolved in water, and indeed is largely made of it. For an organism living in water (a fish 
say) hearing is a relatively simple matter. Sounds which travel through the water around it and 
arrive at its surface encounter little change in acoustic impedance, and hence travel straight in. 
Once inside the fish, sensory organs translate the incoming sound into nerve signals and pass 
them on to fish’s brain. Hearing in the water is straightforward, and requires no remarkably 
specialized equipment. 

After a time however, life invaded the land; plants first, and arthropods. But eventually larger 
organisms like lobe-finned fish hauled themselves up on shore. Life on shore was probably good 
in many ways, but it surely began in silence. Sounds traveling in the air no doubt got to these 
watery invaders, but when it did, it promptly bounced off.  

This is a pretty fundamental problem. All animals are made largely of water. At such a sudden 
transition ( 415airZ ∼  rayls, while 61.5 10waterZ x∼ rayls) sounds reflect nearly completely. If an 
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animal wishes to hear, it must somehow smooth the transition in acoustic impedance from 
outside to in. How does this smoothing work? 

Imagine a sudden transition across which the impedance changes by a factor of ten; from 1Z  to 

2 110Z Z= . This would result in a reflected intensity given by: 
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If, instead, the sound went through two transitions, from 1Z  to 15Z  and then from 15Z  to 110Z , the 
reflected intensity would be: 
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When the same total change in impedance is accomplished in two steps instead of one, the 
amount of sound reflected is reduced! If we make the same factor of ten impedance change in 10 
equal steps, only 17% of the sound is reflected; in 100 steps, only 2%.  

This idea, that the transmission of a wave across a boundary is eased when the impedance 
change is gradual rather than sudden is an important one. It is the solution to the problem of 
hearing when you’re made of water. To get sounds in to where the appropriate sensory organs 
lay, animals living in air had to smooth the transition from air to water: they had to evolve 
middle ears.  

 Impedance transitions in mammalian ears 

The ears of mammals that live primarily in air have three functional units. This division is 
present to deal with the challenge of smoothly coupling sounds in air to the watery interior of the 
body. The three principal parts are: 

1. The outer ear: including the pinna (the cartilaginous stuff you usually call “the ear”), the 
ear canal, and the outer layer of the ear drum (the tympanic membrane). 

2. The middle ear: an air filled cavity in which an articulated set of three tiny bones (the 
malleus, incus and stapes) connect the ear drum on one side to the so-called oval window 
on the other 

3. The inner ear: a water filled coil made of bone, called the cochlea, down the center of 
which runs the basilar membrane. 
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The middle ear is what couples free air sounds outside the body to the water filled cochlea, 
where the sounds are sensed. This is where the all-important impedance transition takes place. It 
takes the tiny pressures associated with sounds in air and amplifies them by two means.  

The first is hydraulic. The ear drum on one side of the middle ear is large, while the oval window 
on the other is small. If the force associated with a small pressure on the large ear drum is 
transmitted to the smaller oval window, it produces a correspondingly larger pressure there. The 
second method of amplification is through mechanical leverage. When the ear drum moves, it 
moves the relatively large malleus, which in turn moves the incus, which then moves the tiny 
stapes. The arrangement of these bones, the smallest in the human body, transmits smoothly 
exterior sound in air into the fluid which fills the cochlea. 

All other animals that live in the air face the same problem, and must solve it in analogous ways. 
The central importance of this problem is emphasized in marine mammals like toothed whales 
and dolphins. These animals have ancestors well adapted to life on land, with hearing capable of 
smoothing the transition from air to water. Such ears don’t work when submerged, as you may 
know from your own experience as a swimmer. To solve this problem, whale ears have evolved 
away from their airy origin. Though they still have outer ears, they serve no function. Instead, 
sound is coupled directly to the middle ear (now filled with fluid!) through their jaws and a 
specially adapted acoustic fat which fills them. Further adaptations include detaching the bone of 
the cochlea from the skull, so that vibrations of the skull are not directly transmitted to the inner 
ear. 

The whole topic of hearing and seeing for organisms which regularly cross the boundary 
between air and water is a fascinating one, and impossible to properly appreciate without a basic 
understanding of the physics of waves.  

Analysis of sound in mammalian ears 

To take full advantage of the information carried by the sound, we would like to “analyze” it; 
measure how much of each frequency the sound contains, as well as where it comes from. How 
is it analyzed? There are three big tasks: amplitude measurement, frequency analysis, and 
determination of directionality. 

Sound amplitude measurement is accomplished in mammals by specially adapted long thin ‘hair 
cells’. Each hair cell has at one end a bundle of a few hundred cilia which extend out into the 
fluid-filled cochlea. The other end of the hair cell is attached to the basilar membrane which runs 
down the center of the cochlea. The cilia on the hair cell are transducers; they convert a tiny 
mechanical motion into an ion flow, which sends glutamate neurotransmitters to auditory nerve 
cells. These nerve cells then pass the signals on to the brain. 

The frequency analysis of a sound is determined by a mix of two approaches. The first relies on 
the mechanical properties of the basilar membrane which runs down the center of the cochlea, 
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separating the fluid in the cochlea into two chambers. At the entrance to the cochlea, the basilar 
membrane is narrow in width, thick, and very stiff. At the far end of the cochlea, it is wide, thin, 
and flexible. When waves of different frequencies propagate in the fluid surrounding this 
complex, continuously varying membrane, they produce different patterns of oscillation. High 
frequency waves generally excite large oscillations in the thick, stiff part of the membrane, while 
low frequency waves typically excite large oscillations in the thin, flexible part of the membrane. 
These oscillations in turn trigger hair cells, which eventually send signals to the brain. 

By noting which hair cells are excited, the brain learns where on the membrane oscillations are 
large, which in turn reveals what frequencies were present in the original sound. This 
transformation from frequency to location on the basilar membrane provides one way for your 
brain to analyze the frequencies of sounds. This is called the ‘place principle’ in the literature of 
sensation. 

There is a second approach to frequency analysis, which relies on the ability of hair cells to fire 
in synch with the sound waves which excite them. If they respond to a 100 Hz sound by 
stimulating auditory nerves to fire at 100 Hz, they directly encode the frequency information in 
the sound for interpretation by the brain. This functionality is limited by the mechanical response 
of the cilia to frequencies lower than about 500 Hz in humans, but can be extended to somewhat 
higher frequency. This happens when different cells fire on every other, or every third, or every 
fourth cycle; producing a volley of nerve signals at the still higher incoming frequency. This is 
called the “volley principle”. 

A rich combination of the place principle and the volley principle allows for the analysis of 
frequencies in sound. In humans, frequency sensitivity is quite sophisticated. Humans can detect 
shifts in frequency of about 10 Hz in a 3000 Hz signal (a shift of 0.3%). Frequency precision is 
less at the high and low frequency ends of our hearing, but is still about 3% at 100 Hz. 

Determining the arrival direction of sound relies on having two separated ears. People are quite 
good at this, and can typically determine the direction to a sound with errors of about 3° . Once 
again, two different clues are used.  

The first is shadowing. A sound arriving from the right reaches the right ear directly. To reach 
the left ear, such a sound must diffract around the head. In doing so, its amplitude becomes 
noticeably smaller. By comparing right and left amplitudes, information about direction can be 
extracted. Naturally this shadowing is most useful at high frequencies, which have wavelengths 
smaller than your head, and hence are more effectively shadowed. A typical head is about 0.2 m 
in diameter. A wavelength of 0.2 m corresponds to a sound frequency of 1500 Hz; sounds above 
this frequency will be quite effectively shadowed. 

The second clue to directionality is time delay. Peaks in a sound arriving from the right will 
reach the right ear first, and then the left. Given the speed of sound in air and a typical head size 
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of about 0.2 m, the maximum time delay between the ears is 0.6 msears soundt d vΔ = ≈ . Since the 
time delay measurement made in your brain relies on the volley principle, it is most useful where 
the frequencies of sound are not too high, typically below around 1000 Hz. 

Since human ears are separated in only the horizontal plane, we have relatively poor ability to 
tell whether sounds come at us straight on, from above, or from below. Of course we can always 
turn our heads to find out, and you will often see someone listening intently tip their head at an 
angle. Now you have a better idea why. 

31.3: Things are not where they seem; bent paths for light 
 
We have seen that the directions of wave propagation can change when they arrive at the 
boundary between two materials. Whether a wave will reflect off of or pass through a boundary 
is determined by the properties of the two materials: their acoustic impedances for sound and 
their indices of refraction for light. For both reflection and refraction, simple relations govern 
how the direction of wave travel will change. 
 
When the boundaries between the two materials are flat on the scale of the wavelength, reflection 
and refraction will be specular, and information about the original arrival direction will be 
preserved over large areas. In this case, it will still be possible to determine where the original 
wave came from. When the boundaries are rough on the scale of the wavelength, this 
directionality information will be lost.  
 

Specular reflection and images 
 
When reflection is specular, we can see ‘images’ of real objects formed at new locations. Let’s 
explore how this works with flat mirrors to gain a sense of what we mean by an image and of 
how it forms. We’ll start with a simple case, a point source of light which we view in a mirror. 
Everything we will examine in this case is large compared to the wavelength of light. In this 
limit, we can ignore diffraction, and assume that the light travels in perfectly straight lines, 
except when it encounters a boundary between air and some other material and reflects or 
refracts. 
 
This is what normally happens in life. Light from an object travels in straight lines from it to 
your eye. You freely assume the object is out there in the direction from which light arrives, and 
most of the time you’re correct. But when reflection or refraction occur, the path of the light is 
changed. If you don’t know this has happened, you see the light coming from some other 
direction, and incorrectly assume that the object is in the direction from which light comes.  
 
What you are seeing in this case is not the original object, but an “image” of it; a location from 
which light comes as if it were coming from the actual object. You see the object there, at the 
location of the image, just as you would if the object were actually there. This situation is 
illustrated below for a simple case, with a flat mirror.  
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Light leaves the actual object traveling out in every direction, either because the object emits it in 
every direction, or because it reflects light in a diffuse way. Most of this light never reaches your 
eye, and hence you don’t see it. There are two exceptions. Some light travels straight from the 
object to your eye. This is the normal case, and because of this light you see the object where it 
really is. But there is more. Some of the light from the object reflects from the mirror in such a 
way that it also reaches your eye. When you look back along this direction, you again see the 
object, but this time it appears to be somewhere other than where it really is. This location, where 
the object appears to be, is called an image of the object. The direction you must look to see the 
image is clear from the law of reflection. The first figure below shows how this works. 
 
How far away does it appear to be? You can get a sense of this by examining the second figure 
below. If the actual object is a distance objectd  in front of the mirror, the image will be seen the 
same distance behind the mirror: image objectd d= . Place an object close in front of the mirror, its 
image appears close behind it. Place an object far from the mirror and its image will appear far 
behind it. How large does this image appear to be? Since you see it just as far behind the mirror 
as it is in front, it looks just the same size as it would if you looked at it directly provided you’re 
the same distance away. A simple example will give the idea. Imagine you stand next to your 
friend, one meter in front of a flat mirror. If you look at your friend in the mirror, she will seem 
to be two meters away; you will see her image one meter behind the mirror, which is itself one 
meter from you. She will appear to be just the size she would be if she was actually two meters 
from you.So the location and size of the images produced by a flat mirror are relatively simple. 
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Reflected view: you 
also see the source 
here. This is the 
“image” of the 
original object 

Direct view: you see 
the source here 

Your eye determines 
distance to these from 
their angular separation 

These appear to be as far 
behind the mirror as they 
are actually in front 
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Images formed by reflection from flat mirrors can be remarkably faithful reproductions of the 
real thing. Reflected images are increasingly realistic as the reflecting surfaces become more 
perfectly smooth, and as the fraction of incident light reflected becomes more complete. Good 
examples of partial cases include reflections from smooth stone surfaces like the Vietnam 
Memorial in Washington DC or from glass windows, where part of the light is transmitted and 
only a bit reflected. 
 

  
 
To better understand the images formed by flat mirrors, it is useful to consider a few examples. 
First, what happens when you look at yourself in a mirror? If you are a distance objectd  in front of 
the mirror, you will see an image of yourself which appears to be a distance image objectd d=  behind 
the mirror. Move closer to the mirror, and the image moves closer to the mirror; move farther 
away, and the image moves farther away. Everything else you see in the mirror likewise appears 
to be just as far behind the mirror as it actually is in front. Combine this idea with the law of 

Which set of 
mountains and trees 
is the real object, 
and which is the 
image? 
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reflection, and you can figure out where you will see the image of any object because of 
reflections in a mirror. 

Into the funhouse: reflections from curved mirrors 
 
Specular reflection requires that the surface of a 
mirror be smooth on the scale of the wavelength of 
light. But it need not be globally flat. The surface can 
be curved on large scales, so long as it is smooth 
locally. Whatever the large scale shape of the mirror, 
each light ray is reflected according to the law of 
reflection wherever it strikes. The angle of incidence, 
measured relative to the local surface, is equal to the 
angle of reflection. Images are formed in reflections 
from smooth but curved surfaces. Unlike those for flat 
mirrors, these images may be magnified or distorted. 
The famous Cloud Gate sculpture in the City of Chicago provides a particularly beautiful 
example. 
 
First let’s consider the general case. Any curved mirror has a radius of curvature which defines 
it, a measure of how dramatically it is curved. If the mirror is actually spherical, this radius of 
curvature is the same everywhere, and is the radius of the sphere. If the mirror is not spherical, 
the radius of curvature at any point is the radius of the sphere which best approximates the 
surface in a region close to that point. Such a mirror may be convex, bulging out toward the 
object, or concave, bent inward away from the object.  
 
Imagine light emerging from an object and heading toward the mirror. Once again, this might be 
light actually emitted by the object, or just light diffusely reflected from it. Each ray of light from 
the object reflects when it reaches the surface of the mirror according to the law of reflection: the 
angle of incidence, measured relative to the local surface, is equal to the angle of reflection. To 
find the location of the image, we examine the rays emerging from a single point on the object, 
find out how they reflect from the mirror, and see where they come together again. The place 
where these reflected rays come together again is a point on the image which corresponds to the 
point on the object from which the light emerged. 
 
This procedure is used to produce the three figures below, which show reflections from flat, 
convex, and concave mirrors. In the flat case, light from the top point of the object reflects from 
the mirror, at each point according to the law of reflection. The reflected rays all seem to come 
from a point just as far behind the mirror as the object is in front. A flat mirror produces an 
image which is upright (oriented in the same way as the object), and appears just as far behind 
the mirror as it actually is in front. The size of the object and the size of the image are the same. 
When systems form images we will often speak of magnification. For these systems, we will 
define a linear magnification which is the ratio of the image height to the object height. In the 
flat mirror case this ratio is one. 
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Now consider the convex case. It may help to imagine taking the flat mirror and simply bending 
it away from the object. This will always, no matter what the curvature, make the reflected rays 
diverge more strongly than in the flat case, as if they were all coming from a point which is 
closer to the mirror. Such a convex mirror always produces an image which is upright, and 
reduced in size. Such a convex mirror has a magnification which is positive, but less than one. It 
makes images which are smaller than the objects that produce them.  
 
The concave case is a little trickier. Imagine taking the flat mirror and now bending it toward the 
object. Initially, when the curvature is small, the rays reflected from the mirror will still diverge, 
though less dramatically than they do in the flat mirror case. When this is true, the reflected rays 
will still seem to come from somewhere behind the mirror. These rays diverge less than they 
would with a flat mirror, as if coming from a point farther behind the mirror. Such an image will 
still appear upright, but be larger than the object. For this case, the magnification is positive and 
larger than one. 
 
Things change when we bend this concave mirror toward the object still more strongly. 
Eventually, the rays reflected from the object will cease to diverge, in fact, they will begin to 
converge. When this happens, the rays reflected from the mirror come together at a point in front 
of the mirror, rather than behind. These rays appear to come from this point of convergence, just 
as they originally did from the point on the object. This point of convergence is where the image 
is formed. The image formed by such an object in a concave mirror will be inverted and reduced 
in size. The magnification in this case is negative and less than one. 
 
What determines which of the two possibilities will happen for the concave mirror? What 
matters is whether the object is close to or far from the concave mirror. In this case, ‘close to’ 
and ‘far from’ are in some way determined by comparison of the object distance to the radius of 
curvature of the mirror. A qualitative transition will occur when rays from the object reflected 
from the mirror cross over from diverging (as they do in the first case) to converging, as they do 
in the second. When this happens, rays from the object neither diverge nor converge; they 
emerge from reflection off the mirror perfectly parallel. When an object is at this special 
location, all the light which emerges from it will reflect from the mirror in a parallel beam. 
 
If we reverse the direction of the light, we gain an important insight into the meaning of this 
special distance. Send a beam of parallel light into the mirror. What happens to it? All of this 
parallel light comes together at a single point. This point toward which parallel light is all 
directed is called the focus of the mirror. Send in parallel light, and it all comes together at the 
focus. Reverse things, place an object at the focus, and light from the object will reflect off the 
mirror in a parallel beam.  
 
Where is this focal point? The answer depends on the details of the mirror shape. There are two 
simple shapes which are frequently used; spherical mirrors and parabolic mirrors. Each has an 
‘optical axis’ of symmetry. For the sphere this axis passes through the center of the sphere, for 
the parabola it is the axis of symmetry. Spherical mirrors have a focal point located at a point 
half the radius of the sphere from its surface: 1

2spheref R= . For a parabolic mirror, the focal point 
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is located at the ‘focus’ of the parabola. For a parabolic mirror defined by the equation 2y ax= , 
the focus is located along the y axis a distance ( )1 4f a=  from the origin. 
 
Neither the spherical mirror nor the parabolic mirror are perfect focusers of light coming from 
any direction however; in both cases there are limits. For the spherical mirror light will be 
focused well (concentrated to a small point) if it arrives parallel to the optical axis and if the 
beam is much smaller than the diameter of the sphere. Light rays which arrive parallel to the 
optical axis are called paraxial rays. For the parabola, the light must arrive parallel to the optical 
axis, but the beam may be as large as the mirror aperture with no degradation in the focus. This 
is shown in the figure below. These failures to perfectly focus parallel light are examples of 
optical aberrations. 
 
 

 
 

This shows imperfect focusing of parallel light 
along the optical axis from a spherical mirror. 
Light far from the axis (in terms of the radius of 
curvature of the mirror) is not brought properly 
into focus. Spherical mirrors are easy to make, 
but do not concentrate light as well as parabolas. 

This shows perfect focusing of parallel light 
along the optical axis from a parabolic mirror. 
Parabolas can tightly focus paraxial light even 
when it arrives far from the optical axis. This 
makes parabolas excellent light concentrators. 
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What about the images formed by spherical mirrors? In the limited case of light from objects 
which are close to the optical axis, and to reflections from just a small fraction of the diameter of 
the sphere, there are simple relations which relate the location of the object and the radius of 
curvature of the sphere to the location of the image. These also provide predictions for the linear 
magnification of the mirror. The form of the equations is the same for both convex and concave 
mirrors, but there are differences in the sign convention which you must be aware of. 
 

 image

object image object

1 1 2    and   
d

m
d d R d

+ = = −  

 
For a convex lens, the radius of curvature is defined to be negative, while for a concave lens, the 
radius of curvature is defined to be positive. Object distances are positive, and image distances 
are positive when the images are real (on the same side of the mirror as the object) and negative 
when they are virtual (when the images are behind the mirror). 
 
It is useful to work through this for our few special cases. We can always solve for imaged  and 
find 
 

 object
image

object object

   and    
2 2

Rd Rd m
d R d R

−
= =

− −
 

 
First consider the convex case. Since R is defined to be negative for a convex mirror, and objectd  
is positive, imaged  must always be negative. It also implies that the magnification will always be 
positive and less than one; the image is upright. When the object distance is very large, the image 
distance approaches 1

image 2d R= . When the object distance is very small, the image distance 
approaches image objectd d= −  and the magnification becomes one. When an object is very close to 
the mirror it looks flat and produces the usual upright unmagnified image of a flat mirror. 
 
What about the concave case? Here the radius of curvature is defined to be positive, so things are 
more interesting. When the object is far from the mirror, in particular when object2d R> , the 
image distance is always positive. This means the image is on the same side of the mirror as the 
object, and is real. For this case, the magnification is always negative; the image is inverted. As 
the object distance becomes very large, the light coming in is parallel, and the image forms at the 
focal point, with 1

image 2d R= .  
 
When the object is closer, with object2d R< , the object distance becomes negative. Now the 
image is virtual, on the opposite side of the mirror from the object. The magnification in this case 
is positive (the image is upright), and can become very large when the object2d R≈ . Once again, 
when the object is very close to the mirror, image objectd d= − , and the image is upright and 
unmagnified, as if the mirror were flat. 
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There are many applications of these simple 
curved mirrors. Convex mirrors are often used 
to form smaller images of a wide field of view. 
They are used in the security mirrors found in 
many stores, as well as in the rear view 
mirrors of some cars. The famous phrase 
‘objects in the mirror are closer than they 
appear’ refers to the demagnification inherent 
in convex mirror systems. 
 
Concave mirrors are often used as simple magnifiers. 
Probably the most familiar form is the little dental 
magnifier which may have helped to discover your first 
cavity. They are also used extensively in makeup and 
shaving mirrors. These magnifying mirrors provide a 
nice opportunity to explore the relations described 
above. When you are far away, your image will be 
inverted, then as you come closer the magnification becomes larger and larger, until eventually 
you pass through the focus, and now you see an upright, magnified image. If you have access to 
such a mirror in your home you should try this out yourself. 

 
Convex mirrors can be used to focus light, gathering it over a large area and bringing it together 
in a single spot. Solar ovens of various kinds are based on this notion, as are a variety of solar 
power technologies. The reverse process is used in flashlights and searchlights. In these a 
parabolic mirror is used to convert light from a point source into a parallel beam able to 
propagate over long distances with little fading.  

 Refraction and where things seem to be 
 
With mirrors, reflections change the direction light travels, and cause it to seem to come from 
somewhere other than its actual source. When this happens, images may be formed, which may 
be faithful copies of their sources (as with flat mirrors) or altered in various ways (as with curved 
mirrors). Refraction, the bending of light when traveling from one medium to the other, can have 
analogous effects. Consider, for example, a fish examining the world above the water.  
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Rather than see light from things above 
the surface coming directly from its 
source, the fish sees light from objects in 
the air only after its path has been bent in 
the transition from air to water. The fish 
might think that an object is in a certain 
direction, because that is where it seems 
to be, while in fact it is in another place 
entirely. A similar phenomenon happens 
for someone looking into the water, 
rather than out. When you see a fish 
underwater, it is not actually where it 
appears to be, but is instead somewhat 
closer to you. 
 
The fish examples all involve a single 
sudden transition in index of refraction, 
so that the light changes direction at just one point. A number of interesting phenomena occur 
when the index of refraction varies gradually and continuously. In the atmosphere, the index of 
refraction is dependent on temperature, pressure, and humidity. Since these properties vary 
through the atmosphere, the index of refraction does as well. As light travels through the 
atmosphere its path bends into regions of higher index of refraction. 
 
One interesting example of this is the familiar mirage. Originally seen in deserts, but now more 
familiar from summertime road surfaces, a mirage is caused by a temperature inversion; when 
hot air (with a lower index of refraction) is found under cool air (with a higher index). This 
typically happens when bright sunlight heats a ground surface, like the desert sands or a paved 
road, which in turn heats the air near it. Light from the sky which would have struck the ground 
instead bends away from it (toward the cooler air). An observer looking at this region from small 
angles sees light from the sky where they might have expected to see the road. 
 
Here in Michigan we often see the opposite effect when looking out over the Great Lakes. The 
water in the lakes is often (always) cold. It cools the air over the water. Once again, the light 
turns toward the cooler, higher index of refraction air. Since this time the cool air is below the 
hot air, light which was headed up above your head is turned downward, and you see it coming 
from somewhere above where it actually emerges. 
 
We will see in the next chapter that refraction, like reflection, can be used to form images which 
accurately reproduce objects. 

What the fish sees 

What the fisherman sees

Image 

Object 
Image 

Object 
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31.4 Capturing waves: Refraction and total internal reflection 
 
Refraction can also make it possible to completely capture a set of waves, to guide them along a 
channel to anywhere you would like them to go, When light moves from a medium with a large 
index of refraction (like water) into one with a small index (like air) it bends away from the 
direction normal to the interface. If we blindly apply Snell’s law to this case, we might find: 

 1
2 1

2

sin sinn
n

θ θ=  

When 1 2n n> , it is possible for this equation to predict 2sin 1θ > . Now the sine of an angle can 
never be larger than one, so something else must occur. What happens instead is that the light 
heading out of the high index material (n1 > n2) never actually leaves, but is instead completely 
reflected at the interface.  
 
For the transition between any two materials, there is a critical angle for light arriving at the 
surface for which this will be true: 

 11 2 2
c

2 1 1

sin 1     or     sin      or     sinc c
n n n
n n n

θ θ θ − ⎛ ⎞
= = = ⎜ ⎟

⎝ ⎠
 

  
If light arrives at the interface at an angle greater 
than this, it will not leave the high index material at 
all, but instead will be completely reflected, staying 
in the material it started in. This effect has 
important implications. First it has a major effect 
on what organisms see when looking into or out of 
water.  
 
If you are underwater and looking up, you see 
things straight over you essentially undistorted. As 
you look out to the side, you see the whole world above the water, right down to the horizon, 
packed within a circle significantly smaller than a hemisphere. Looking out to greater angles, 
you see only light reflected from 
things below the surface. 
 
If you are out of the water looking 
in, you can see light coming from 
an object only if it gets to you. 
This means it has to be in a place 
where light leaving the object can 
exit the water and get to you. 
Sometimes this is impossible. 
There are regions underwater 
which an observer above the 
water cannot see. When you stand 
on the edge of a pool looking in, 
for instance, you can see through 

Every beam in this region 
is totally reflected 

Every beam in this region 
is refracted out into the 
low index material 

θc 
What the 
fish can see 

What the fisherman 
can see 
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the water surface only near your feet. As you look farther out, eventually you reach a point 
where light coming from below the surface suffers total internal reflection and never reaches 
you. 

Total internal reflection and optical fibers 
 
One very important application of total internal reflection is in optical fibers. Such fibers are 
made of glasses with relatively high index of refraction (1.5-2.0). You put light more or less 
straight into the end and it will head down the fiber. Each time the light strikes the wall it reflects 
off through TIR, staying completely within the fiber. This will happen even if you bend the fiber 
through rather large angles, because the critical angle for such a fiber may be as large as 30°. 
This allows optical fibers to become “light pipes” which can guide light around corners.  
 
This is all you need to know in principal, but in practice making an effective optical fiber is 
much more challenging. The difficulty is that the surface of the fiber may not be perfectly 
smooth on the wavelength of light. Small scratches created in the production and handling of a 
fiber provide places where the conditions for total internal reflection are not met locally. This 
allows some of the light to escape each time it reaches the surface. Since the light bounces back 
and forth through the fiber many many times, even a small loss at each reflection leads to rapid 
escape. The solution to this problem is to prevent the light from ever reaching the surface. It was 
invented at the University of Michigan by undergraduate researcher Larry Curtis in 1956. 
 
Imagine an optical fiber with index of refraction inn . Curtis thought that perhaps he could keep 
the light in the fiber, and protect the surface of the fiber from damage, by hiding the interface 
where the internal reflection occurred inside the fiber. To do this, he coated the fiber with a 
‘cladding’ of another glass, with index of refraction in claddingn n> . Now the internal reflection 
happens at the boundary between the two glasses, rather than at the outer surface of the fibers.  
 
Today, fancier versions of Curtis’ idea are used. Instead of a single lower index coating placed 
around the central fiber, the fiber has a high index core surrounded by layers with continuously 
decreasing index. Rather than have any sudden reflections, such a graded index fiber smoothly 
turns the light so that it wiggles back and forth down the fiber. 
 

 

Conventional optical fiber 
with significant loss of light 
on each reflection 

Cladded optical fiber with 
very little loss of light on 
each reflection 

A graded index optical 
fiber: in this there are no 
discrete reflections at all 
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Optical fibers and endoscopes 

Once you have a pipe in which you can capture light, delivering it wherever you like, you can 
use it to see into places previously invisible to you. Endoscopes are devices designed to do this. 
To make an endoscope you can bundle together a large number of optical fibers. Light striking 
the end of each fiber becomes trapped in it, and can be sent around corners until it emerges on 
the far end. If you keep the arrangement of fibers the same on both ends, the pattern of light 
which enters the fiber bundle on one end emerges in the same pattern on the other. In such a fiber 
bundle, cladding is especially important. If you just pack the fibers next to one another without 
cladding, light might pass freely from fiber to fiber, creating ‘cross-talk’ which would ruin the 
image. 
 
Endoscopes are now used in a very wide variety of applications in medicine and industry. They 
allow the user to guide light into and out of places previously inaccessible to imaging, such as 
your intestines, a wall, or an engine block. Fiber optics, cables for trapping light and delivering it 
from one place to another, make this all possible. Often the same tube which contains the fiber 
optic bundle will contain a second bundle designed to send in light, micromanipulators to steer 
the tip, and even tiny microscopes. 
 

 
 

Capturing sound in the ocean 
 
Interestingly, something very like the transmission of light in an optical fiber happens naturally 
for sound in the ocean. The speed of sound in the ocean varies with temperature, salinity, and 
pressure in a complex way. Most of the time, a graph of the sound speed as a function of depth 
looks something like the figure below. After increasing a little very near the surface, the speed of 
sound falls by about 10 % before beginning to rise again at greater depths. This broad minimum 
in sound speed can capture and guide sound in very much the same way that a graded index fiber 
can capture and direct light.  
 
This sound pipe is called the SOFAR channel (SOund Fixing And Ranging) for historical 
reasons. It was discovered and originally explored as a way for downed World War II pilots to 
advertise their location. By dropping a small explosive into this channel, sound from it would 
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propagate out to great distances. By picking up the sound and recording its arrival time, rescue 
ships might find the downed pilot. While it was never used in this way during the war, it has 
since been put to use in a wide variety of other applications. 
 
Living things make use of the SOFAR channel as well. Some whales communicate with one 
another using an array of 
sounds, even singing what 
many would call songs. The 
sounds they produce can travel 
through the SOFAR channel 
and be heard at very great 
distances. Recall from earlier 
in this chapter the general rule 
that light travels very freely 
through air while sound travels 
relatively freely through water. 
Singing a song is a great way to advertise your presence in the ocean. 

31.5 Dispersion: refraction is often wavelength dependent 

In real material the speed of wave propagation is often wavelength dependent. Since the index of 
refraction is n = c/v, if speed is a function of wavelength, then so is the index n. So in general, 
we have something like: 

 ( ) ( )
cn

v
λ

λ
=  

  
Since the index of refraction is related to the bending of light through Snell’s law, this means that 
light of different wavelengths (different colors) will be bent by different amounts when passing 
from one material to another. This phenomenon, which tends to spread out the different colors, is 
called “dispersion”. It may be familiar to you from playing with prisms. 
 
Recalling that “white” light is 
actually made up of a mixture of 
all the different colors, you can 
see how dispersion allows a 
beam of white light to be broken 
up into all its constituent colors. 
It is usually the case that shorter 
wavelength (bluer) light is bent 
more than longer wavelength 
(redder) light when passing into 
glass, so when this white beam is 
broken up you typically get the red-to-blue spectrum illustrated in the image above. Perhaps you 
will recall the mnemonic “Roy G Biv” for keeping track of which color goes where. In this 
scheme, “indigo” is added to the red-orange-yellow, green, blue-indigo-violet accounting. 
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Like most things in life, dispersion can be good or bad. If you want to know what colors make up 
the light you’re looking at, if you want to “analyze” it, dispersion can be very useful. Dispersive 
elements like this are at the heart of every spectrograph; instruments which allows us to precisely 
measure the mixture of wavelengths we see in light we want to study. While some spectrographs 
rely on prisms, many use diffraction gratings as dispersive elements rather than prisms, as 
described in the previous chapter. Some use ‘grisms’, which combine both a grating and a prism. 
But in every case some dispersive element, something which separates light of different 
wavelengths, is present. Spectroscopy, the detailed analysis of light emitted from or absorbed by 
various things, plays a central role in the great scientific discoveries of the 20th century, including 
quantum mechanics, chemistry, biology, astrophysics, and cosmology. 
 
Dispersion is a problem if you’re trying to form an image (we’ll say more about this below). 
Forming an image requires taking all the light coming from some point on an object and 
directing it to a single spot. Dispersion, which bends light of different colors in different ways, 
often makes this difficult. The different bending of different colors can create blurry images, 
with the red light on one side and the blue on the other. This is called “chromatic aberration”. 
Clever arrangements of different materials, which bend light in different ways, can be used to 
create “achromatic” systems for focusing light. 
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A Quick Summary of Some Important Relations 
 
Fading of intensity of light and sound due to absorption: 
 
Both light and sound are subject to absorption when passing through material media. The 
importance of this absorption is characterized by a wavelength dependent attenuation coefficient
( )α λ or absorption length ( ) ( )1/absL λ α λ= : 

 ( ) ( ) ( ) ( ) ( ), ,0 ,0 abs

x
x LI x I e I eα λ λλ λ λ

−
−= =  

 
Material mismatch and reflection: 

When the medium a wave is traveling in changes, they may reflect. The material property which 
matters for light is the index of refraction, for sound it is the acoustic impedance: 

 medium acoustic medium sound in medium
light in the medium

            cn Z v
v

ρ= =  

When waves encounter a boundary between two media perpendicular to the interface, the 
fraction reflected is:   

 
2 2

    and       A B A B
light sound

A B A B

n n Z ZR R
n n Z Z

⊥ ⊥⎛ ⎞ ⎛ ⎞− −
= =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

 

Reflection and refraction: 

At the interface between two materials, reflection occurs so that the angle of incidence equals the 
angle of reflection. The part of the wave which doesn’t reflect at the boundary enters the new 
material, and changes direction in a way governed by the law of refraction: 

 ( ) ( ) ( ) ( )sin sin
sin sin       or     i r

i i r r
i r

n n
v v
θ θ

θ θ= =  

Total internal reflection: 

When light encounters a medium with lower index of refraction, there is a minimum angle below 
which it will be completely reflected: 

 ( )minsin low

high

n
n

θ =  
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Polarization of light by reflection and ‘polarizers’: 

When light reflects off a surface, it may emerge partly polarized. At one particular angle, the 
reflected light is perfectly polarized, in a plane parallel to the surface: 

 ( ) highmax polarization
Brewster

low

tan
n
n

θ =  

There are also materials, called polarizers, which polarize light on transmission. Any light which 
passes through them is fully polarized along the direction selected by the polarizer. The amount 
of light transmitted depends on the polarization of the incident light. If it is polarized, the 
transmitted fraction depends on the angle ipθ  between the polarization of the incident light and 

the polarizer angle. If the incident light is unpolarized, the fraction transmitted is 50%. 

 ( )polarized 2 unpolarized1
transmitted incident transmitted incident2cos       or       ipI I I Iθ= =  
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POLS Waves Chapter 32 

32.1 How to sense the world around you: sorting light and forming images 
 
Organisms have a desperate need to know what’s happening beyond their skins. Both sound and 
light carry information from one place to another. So many animals have evolved structures 
which allow them to see and hear their surroundings. 
 
We have seen that sound, with relatively large wavelengths, often diffracts past obstacles and 
through openings. As a result, sound may arrive at a listener from directions other than a straight 
line to its source. This makes sensing the direction from which sound comes in great detail is not 
especially useful. 
 
Visible light, which has very short wavelengths, diffracts very little around typical objects, 
traveling almost entirely in straight lines from its source. This makes sensing the direction from 
which light arrives an especially useful thing to do.  

32.2 Eyes and their components 
 
If an animal is going to get useful information about the world around it using light, its eyes 
ought to do three things: 
 

1. Detect the light 
2. Measure it’s properties (the mix of wavelengths and intensities) 
3. Find out what direction the light is coming from 

 
Different animals have visual systems which span the full range from no light sensitivity at all to 
highly developed and complex eyes.  
 
Eyes are incredibly useful, they can provide an enormous selective advantage. So perhaps it’s not 
surprising that eyes of different kinds can be shown to have evolved independently a large 
number of times. One of the clearest suggestions of this is the very wide diversity in types of 
eyes which exist; from the very simple eyes of the octopus or the nautilus, though the remarkable 
compound eyes of many insects, to the sensitive and highly precise eyes of some birds. 
Understanding the strengths and weaknesses of these various designs is much easier when the 
basic features of their function are kept in mind. 

Detecting the light 

The first step in vision is the raw detection of light. ‘Detecting’ light requires absorbing the 
energy in it and converting it into an electrical signal which can be transmitted through the 
nervous system to the brain. This process of taking a signal from one form (light) and converting 
it to another (a nerve impulse) is generically called signal transduction. This transduction 
typically takes place in specialized kinds of neurons called photoreceptors. 
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Most animals detect light using a group of related protein molecules called opsins. A light 
detecting cell will typically contain many of these opsin molecules. In each, absorption of a 
particle of light (a photon) causes a structural change, raising it from its low energy ground state 
to a different, higher energy state. In this state energy state, the opsin molecule can start a 
cascade of amplified response. Each activated opsin will generate about 100 activated 
“transducin” proteins. In turn, each of these starts an additional process in which about 1000 
additional active molecules are produced. So for each absorbed bit of light, a signal 105 times as 
large is produced. The net effect of the production of all these proteins is to close off Na+ ion 
channels into the cells. Photoreceptors usually send signals continuously to the brain. Receipt of 
light shuts this transmitted signal off.  
 
So interestingly, the photoreceptors in your eyes send signals to your brain constantly in the 
dark, and actually shut them off when they detect light. This is in contrast to most of your other 
senses (like touch) which only begin to send signals when they are stimulated. Of course your 
brain can as easily interpret the turning off of a transmission as it can the turning on of a signal. 

Measuring the properties of the light 

To measure the properties of the light (intensity and distribution of wavelengths) the receptors 
have to create different signals when the light changes intensity or color. As it happens, there are 
many ways eyes do this. To give an example, we will consider a few details of what happens in 
your primate eyes.  
 
To determine the nature of the light reaching you, there are actually four kinds of opsins in your 
eye. The first is rhodopsin, a highly sensitive form which in your eye appears in the very 
numerous ‘rod’ cells on your retina. These rods are especially important in night vision, in the 
detection of faint light. They are good for telling whether light is there when it’s faint, but 
provide no information about its color. 
 
The other three types of opsins in your eyes are found in the smaller, rarer ‘cone’ cells on your 
retina. Each of these opsins has sensitivity to different, though overlapping, ranges of light 
wavelengths. In each cell, the detection of some light completely triggers the cell; each one is 
only on or off. Each cone contains all three opsins, but in each cell one of the three dominates. 
When many of the cones dominated by blue sensitive opsin (labeled S in the figure below) are 
activated, your brain knows that the light it is sensing is blueish. When the cones firing are 
predominantly the L type, your brain can tell it is reddish. Putting all this together gives you the 
color sensitivity you experience.  
 
The rhodopsin in your rod cells has a particular wavelength response too, which not surprisingly 
is kind of in the middle of the others, allowing good sensitivity to light whether it is redder or 
bluer. The rhodopsin sensitivity is shown as the dashed “R” curve in the figure below. But since 
the rods have only this one type of opsin, they provide no color information, only intensity 
information. You can see from the picture of rods and cones below why the cones provide the 
low light level sensitivity. They cover much more of the area and they have the more sensitive 
rhodopsin in them.  
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Interestingly, most mammals have only two color vision, the S and L types shown below. Old 
world primates, though a simple mutation, evolved a third form of opsin, the M type, which 
allows them to better sense the difference between red and green. This adaptation may have been 
especially useful for selection of young, more easily digested leaves. More remarkably, the same 
tricolor vision mutation evolved independently in one new world primate; the Central American 
Howler Monkey. This story is beautifully told in Sean Carroll’s recent book “Making of the 
Fittest”i. 

Finding out which direction the light comes from 
 
Imagine an ‘eye’ built just of a light sensor; something which can tell how much light is striking 
it and pass that information on to a nervous system. Such an eye can tell whether it’s light or 
dark, but can’t ‘see’ anything. It can’t tell you what direction the light is coming from or form an 
image. To build a real eye you have to couple this kind of light sensor with a system for sorting 
out what direction each bit of life comes from. 
 
Perhaps the simplest system just uses geometry. If you block the light from 
some directions and still see something, you know what direction the light is 
coming from. There’s a simple version shown in the figure labeled (a). In 
this eye, a set of sensors represented by little rectangles is spread across the 
inside of an open pit. Sensors on the left hand side can be hit only by light 
from the right, while sensors on the right can be hit only by light from the 
left. By noticing which sensors are hit, an animal with an eye like this can 
tell, crudely, which direction light is coming from. 
 
The ‘resolution’ of this eye, its ability to distinguish light from different directions, is limited by 
the size of that hole on the front. If you make the hole really small, you get what’s called a 
“pinhole camera”, which produces very nice images indeed. The example in the figure labeled 
(b) should give the idea. As you make the hole smaller and smaller, you squeeze the light from 
each direction onto a smaller and smaller group of sensors. Eventually the pattern of light on the 
detectors is a completely reliable map of how much light comes from each direction. 
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This is a very important idea. A system which can produce a reliable map of how much light is 
coming from each direction is an “imager”, and the map of the light it produces is called an 
image. If you want to be able to see, you need to have a way of forming such an image and of 
detecting the light. 
 
What is the drawback of a pinhole camera? The main problem is that a sharp image requires a 
very small hole, and a very small hole means that very little light will be let in. So while a 
pinhole camera does make a nice sharp image, there has to be a LOT of light around for it to be 
very useful. 
 
To avoid this problem, you’d like to have a way to use all the light striking some large area from 
every direction. This eye should map all the light arriving from each direction and somehow sort 
it so that all the light from each direction hits a particular point on the field of light detectors.  
 
 
 

 
 
One way to do this is to somehow bend the path of the light, so that although the light from one 
direction comes in parallel, all of it gets pulled together to a single spot on the detectors. The idea 
is shown in the figure below.  
 

An image formed by a pinhole in a coffee can and 
detected by a flat piece of film. Since the pinhole is 
small, it produces a reliable map of how much light 
came from each direction; an image of the scene 
outside. 

An example of a pinhole eye: this kind 
of eye can form a very reliable image 
and is quite simple. 
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To do this requires a more complex, but also much more efficient structure in the eye involving a 
“lens”. The word derives from the Latin word “lentil” which refers to small beans with the same 
general shape, which is often narrow at the edge and thick in the middle. 
 

The purpose of a lens is to gather all the light coming from one direction and bring it together at 
a point. When this happens, all the incoming coming from each direction goes to a particular 
point in the image. This map is the image. An ideal lens might do this perfectly well for light of 
any kind coming from any direction at all. As we will see, making such a perfect lens is a 
challenge.  
 
There is another widespread approach to gathering the light from each direction without a tiny 
pinhole; the many variants of a compound eye. A compound eye is constructed of many very 
similar elements called ommatidia, each an eye in itself. Each of the many elements of such a 
compound eye detects light from a particular direction. Combining information from all of them 
provides the animal with the direction sensing it needs. This kind of eye can be extremely 
effective, often allowing vision in all directions at once. 
 
 
 

All the light coming from the 
bottom gathers together here 

All the light coming from 
the top gathers together 

A lens 

Lentils 
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32.3 Structures of some extraordinary eyes  
 
All the eyes found across the animal kingdom must address the same set of requirements. They 
need to detect light, measure its properties, and figure out where it is coming from. The array of 
ways in which these requirements are met is truly remarkable, and in this section we provide a 
brief introduction to a few interesting examples drawn from the multitude of eyes.ii 

Pinholes 
 
Pinhole eyes are simple and can be very effective in the 
right circumstances. They are found in a variety of 
invertebrates including a number of mollusks from 
limpets to giant clams and, perhaps most famously, the 
Chambered Nautilus. The nautiloids are a very old 
group, remaining little changed for the past 500 million 
years. They are often considered living fossils.  
 
The pupil in a Nautilus eye is just a hole, and the eye is 
filled with the same water through which it swims. The 
back of the Nautilus eye is lined with a light sensitive 
retina. To maintain reasonable resolution, the pupil of 
this eye is relatively small, about 2 mm. Of course this 
lets in very little light. How can such an eye be of much 
use? 
 
The Nautilus lives in a deep, relatively dark world. Mostly it scavenges for dead things at depths 
of  a few hundred meters. The deep ocean is a dark place. Below about 100 m depth, the scene 
available to vision slowly switches over from a reflected light scene (like we are used to) to one 
dominated by the emitted light of bioluminescent organisms. Such a scene may present a dark 
background interrupted by a few practically point sources of light. For this sort of scene, 
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dominated by just a few points of light, a pinhole can actually capture most of the available 
information.iii 

Compound eyes 
 
Compound eyes are both widespread and extremely various among the arthropods. All are 
constructed of many individual units, typically spread out over a convex surface. The individual 
lenses of these ommatidia are small, typically less than a hundred microns across. Since this is 
not too much larger than the wavelength of visible light, diffraction through this relatively small 
aperture limits the resolution of each individual element. To give a sense of scale, imagine a case 
with a 25 μm aperture. For 400 nm light, the first diffraction minimum will occur at an angle of 
about: 
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Compare this to the diffraction limit for the resolution of a human eye, with a single aperture of 
about 2.5 mm and you’ll find it is 100 times better.  
 
Many compound eyes can be sensibly placed into one of two categories. Apposition compound 
eyes are the simplest and most common. In these eyes, each long tubular ommatidium is capped 
with a lens which forms an image of a small region on a light sensitive region at the base. 
Though an image is formed here, most animals with these eyes do not sense the image, but 
instead just record a single measure of brightness for each element of 
the eye. They then assemble an image of the whole field of view one 
element at a time. This is remarkably like what is done when imaging 
with a fiber bundle in an endoscope. Each fiber contains no information 
about the distribution of light within it; it only records how much light 
there is. The resolution is then set by how many fibers you have. In the 
apposition compound eye, the resolution is set by the angle observed 
by each of the many ommatidia. Typical eyes include thousands of 
elements, providing angular resolution of a few degrees. 
 
The second main class is called superposition compound eyes. In these, the 
light sensing surface is separated from the individual ommatidia by some 
transparent material, and instead forms a continuous sheet. Light from the 
individual ommatidia is then imaged on this continuous sheet (rather than 
detected independently in each element). 
 
In many cases the focusing of light in each ommatidium is refractive, 
through a cylindrical lens. But in some cases, particularly in marine 
arthropods, the focusing is reflective. 
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Extreme vision 
 
Color vision is achieved through the varying sensitivity of mutated opsin proteins to light of 
different wavelengths. While most animals have relatively limited color vision compared to 
humans, some far surpass us. Insert a short summary about mantis shrimp polarization and 
color sensitivity. 

Vertebrate eyes 
 
Vertebrates are more conservative in their ocular design than invertebrates. Most vertebrates 
have a pair of single eyes, each with a refractive focusing element. To get a better idea of the 
features of the vertebrate eye, we will consider the human eye in some detail below. In the 
meantime, its worth noting that even among the relatively conservative vertebrates there are 
some remarkable variants. Most of these involve adaptations which handle unusual 
circumstances. 
 
One famous variant is a group of fish in the genus Anableps who live near the surface of the 
water. These fish still have two eyes, but they have divided each in 
two, with a lower half which remains below the surface (and is 
adapted to focusing underwater), and an upper half which remains 
in the air and is adapted to focus in the air. This allows them to see 
both above the water (where most of the insects they eat come 
from) and below (where many of the things which eat them live). 
 
The eyes of nocturnal vertebrates are, just to collect more light, 
very large. In some cases, like the tiny south-Asian primates called 
Tarsiers, eyes become a really substantial fraction of the size of the head.  
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Perhaps the most remarkable vertebrate optical system was discovered only in 2008iv. The 
Brownnose Spookfish is a fish which lives rather deep in the ocean, typically 1000 m below the 
surface. So like the Nautilus, it lives 
in a world illuminated very 
differently from ours. What little 
ambient light there is comes 
exclusively from above. The 
Spookfish has two eyes, but like the 
Anableps they have been divided. 
Each eye has a large, upward 
looking eye with a spherical lens, as is typical of most fish. It is thought that this eye looks 
upward to see the shadows of things swimming by above. The lower part of each eye is very 
different. In it, a curved mirror focuses light from below the fish on a completely separate retina. 
This down looking eye is probably mostly seeing bioluminescent organisms. As with the 
Nautilus the very different imaging problem presented by a few small sources in a dark field 
favors unusual solutions. The Spookfish  is the only vertebrate so far known to form images by 
reflection. But then it’s only 2010, and most of the ocean remains little explored… 
 
 

Cross-section of the Spookfish eye. The large sphere at the top is a lens which 
focuses light from above on the retina marked ‘mr’. The structure on the left 
includes the mirror ‘m’, which focuses light from below on the retina at the 
left labeled ‘dr’. 
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 32.4 Focusing light: gathering all the light from one direction to a point 

The basic goal is to take all the light coming in one direction and bring it together at a point; to 
focus the ligh. To bring together light rays which enter parallel, some must be bent substantially 
while others continue straight through. To see how this might work, consider the simple case of 
light coming straight into the lens. 
 
 
 
 
 
 
 
 
 
 
How to accomplish this? The lens in the picture gives the clue. You take a material with higher 
index than air, so that light passing into it will have its path bent. Then curve the surface of this 
material, so that light hitting it far from the center will be bent a lot, and light hitting in the 
middle will go straight through. Everywhere the light strikes, it just follows Snell’s law of 
refraction. The curvature of the surface is what allows all the light to bend differently at different 
places and come to focus at one point. 
 
 
 

Light at the outer 
edge is bent a lot 

Light at the center 
goes straight through 

Light at the outer 
edge is bent a lot 

All the light coming 
straight in gathers at this 
point; the focus
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Now this example shows what the lens will do for light coming in straight along the axis. What 
about light which comes in at an angle? What happens is illustrated in the picture below. All the 
light from this off-axis direction is still gathered together at a single point, but that point is now 
offset from the central axis. This is the goal of course, to bring the light coming from each 
direction together at a different point on the focal plane. If an organism measured how much 
light landed at each point on this focal plane, it would know how much light was coming from 
each direction; it would form an “image” of what’s out there in the world. Because the lens 
gathers light from a large area, it helps in imaging (seeing) things when light levels are low.  This 
is why an eye constructed with a lens can be more effective than a pinhole eye. 
 
 
 
 
 
 
 
 
 
 
 
 

Focal length and the lensmakers equation 
 
There are two main types of lenses; those which bring parallel rays of light together (converging 
lenses), and those which spread them out (diverging lenses). Examples of each are shown in the 
figure below.  
 
In both cases, it is useful to define a “focal length” for the lens. For converging lenses, this is 
distance from the center of the lens to the point at which rays parallel to the axis of the lens are 
brought together. In diverging lenses, rays parallel to the axis of the lens are not brought 
together, but instead are spread out. So rather than measure how far past the lens the rays come 
together, we measure how far in front of the lens the rays would come together when projected 
straight back through the lens. 
 

Bent less

Bent more

Straight through

Bent less

Bent more

Straight through

Focal point is 
now “off axis” 
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Many simple lenses are made of pieces of transparent material polished on one or both sides into 
surfaces which form parts of spheres. The focal lengths for this kind of lens can be predicted 
simply using the properties of the lens; including the index of refraction of the lens material (n), 
the radii of curvature of the two surfaces of the lens (R1 and R2), and the thickness of the lens at 
the center (d). In doing this, there are some important sign conventions. These conventions vary 
among different statements of these rules, so be careful. We will use this convention: 
 

• The radius R1 will be positive if the first surface is convex (bent outward) and negative if 
the first surface is concave (bent inward) 

• The radius R2 will be just the opposite, positive if the second surface is concave (bent 
inward) and negative if the second surface is convex (bent outward) 

• A positive focal length f implies a focal point beyond the lens (a converging lens), while 
a negative focal length implies a focal point before the lens (a diverging lens) 

 
With these sign conventions, we can describe lenses in air with the “lens maker’s equation”: 
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In the (reasonably common) case where d << R1 and d << R2, this simplifies to what is called the 
“thin lens” version of the lensmakers equation: 
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How would this differ if the lens were not in air, but were in water (the other common possibility 
for life)? Before looking at the details, think about how this changes things. Light bends when 
striking the lens because of the change in index of refraction from outside the lens to in. If you 
surround the lens with water, the change in index will be less than it was when surrounded by air. 
The light will bend less, and this will surely make the focal length longer. It is even possible that 
a lens which is converging in air will become diverging when placed in water. This will happen 
if the index of refraction of the lens material is less than that for water. So how does the thin lens 
equation change in water? 
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Lenses which work well for focusing light in air will not generally do the job in water. This 
creates special challenges for organisms which live partly in air and partly in water, as we will 
discuss a bit below. 

Lenses, imaging, and sources not infinitely far away  
 
When a source of light is “infinitely” far away, all the light coming from it arrives in parallel 
rays. Now it doesn’t have to be infinitely far away for the rays to be very nearly parallel, it just 

has to be far away in comparison to other important distances in the problem, like the focal 
length of a lens. If such a source really is far away, then the light from it will arrive very nearly 
parallel, and will all be brought together at the focal point f.  
 
What if the source is closer, so that the light arriving at the lens is not parallel? Rays farther from 
the center will still be bent more, but no longer by enough to bring them together at the focal 
point. Instead, they will meet farther away. This point where the light from a point source comes 
back together again is called the location of the image. The point the light comes from is called 
the object. 
 

 
 
Object and image locations are related for these “thin lenses” according to the so-called thin lens 
equation: 
 

 1 1 1

O ID D f
+ =  

 

Source of 
light Focal point Image 

location 

DI D0 

Nearly parallel 
rays 

Clearly 
diverging 
rays 
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Think about some limits, if DO is very large (approaching infinity), then DI = f, and the parallel 
incoming light comes together at the focal length f. If DO is equal to f, then DI becomes infinite. 
In this case light coming from the source enters the lens spreading out, and is turned into a set of 
parallel rays leaving of the lens. They never come together. 
 
What if DO is less than f, if the object is closer to the lens than the focal length f? In this case: 
 

 
0

1 1 1 0
ID f D
= − <  

 
This means the image distance DI is negative. When this happens, the image is actually in front 
of the lens rather than behind, rather like in a diverging lens. This case is illustrated in the picture 
below. 
 

 
So, for a thin converging lens, the position of an image depends on the location of the source. It 
is always described by this thin lens equation. If DO > f, then DI is positive, and an image is 
formed to the right of the lens. If DO = f, the image is at infinity. If DO < f, the image is actually 
in front of the lens. 
 
A very useful way to identify image locations and understand lenses is called ray tracing. Ray 
tracing is essentially just following the path of several rays of light, accounting for bending 
which occurs due to refraction or reflection along the way. We did this qualitatively in the last 
chapter while examining images in flat and curved mirrors.  
 
While this technique is intrinsically general, it is especially easy to apply to cases where the lens 
has a well defined focal point. In this case, a few simple rules apply. From any object location, 
you can easily draw three so-called principal rays through the lens to find the image location.  
 

1. From the object location to the lens parallel to the axis, then from that point down to the 
focal point beyond the lens 

2. From the object location, through the focal point on the near side of the lens, to the lens, 
then out of the lens parallel to the axis 

3. From the object location to the center of the lens, then straight out the other side.  
 
Here are examples of the three: 

Source of 
light Focal pointImage 

location 
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If, instead of a converging lens, you have a diverging lens, the three rays are very similar, except 
now the one going in parallel (1) comes out as if it had come from the near side focus and the 
line which comes out parallel (2) starts out heading for the focal point on the far side of the lens. 
The line through the center (3) remains the same. 
 

 
 
Ray tracing of this kind can be a very useful way of understanding simple lenses. Remember that 
ray tracing can always be extended to optical systems of arbitrary complexity, but that this 
‘principal ray’ approach so useful will not work unless applied to elements which have a well 
defined focal point. 

Images of extended objects and the nature of images 
 
Most of the time, we’re forming images of extended objects (a tree, a lion…) instead of single 
points. In fact this is not very different. Each point on the object (the top of the tree for example) 
is an object point. Light comes from each such point, spreading out in every direction. Each 
point on the object (the tree) has its own image point. When you put all the image points together 
you get the complete image of the object. An example is given in the next figure. In this picture, 
two different points, the top of the tree and the bottom of the leafy part, are traced through the 
lens. From this you can see that their image locations each form part of a complete, inverted, 
smaller image of the original tree. 
 

Source of 
light 

Focal point

Image 
location

Focal point 

1

2

3

Source of 
light 

Focal point

Image 
location

Focal point 

1

2

3
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In this way, any extended object is “mapped” through a lens to a focal plane where it is 
reproduced, with all the light from each spot on the object (the top of the tree for instance) 
redirected to a single point on the image. With each object point mapped to one image point, a 
complete, unblurred image is created. 
 
To understand the nature of an image formed by an optical system, it’s useful to think about what 
the image looks like. Imagine your eye off the right in the image above, where the smiley face is. 
What would you see? Your eye would sees light coming from each point on the image of the tree 
exactly as it would if the tree was really there! When your eye detects light coming in along this 
set of directions, your brain thinks the object really is at the image location.  
 
Notice too what your eye does not see. In the example above you wouldn’t see any light coming 
directly from the actual tree. Light rays from the actual tree don’t get to your eye traveling in 
straight lines. So you can’t tell, by looking, that the original tree is there at all. In this sense it is 
as hidden as it would be behind a wall. 
 
What would happen if you put a screen, perhaps a piece of paper, just at the location of the 
image of the tree? If you did this, light from each point on the real tree would hit the screen at a 
single point. When it did it would bounce off the screen diffusely, heading out from the point it 
hit in every direction. If you looked at this paper, you would see light coming from points on the 
paper in just the way you would if you drew a picture of the tree on the paper. You would see a 
tree, right there on the paper. 
 
So an “image” is a more-or-less faithful reproduction of an actual object, but constructed entirely 
by making light come from some location just as it would if the object were really there. When 
you look at an image, what you see looks like the object, because light comes from it just as it 
would if the object was really there. In this sense, an image is a classic sort of optical illusion. 

Magnification 
 
Images produced by optical systems are rarely perfect replicas of the objects they mimic. Instead 
they may be larger, smaller, inverted, or distorted in a wide variety of ways. Needless to say, this 
ability to change the appearance of an object is one of the main reasons we use optical systems 
like microscopes and binoculars; to change the way things look. 
 
The simplest change an optical system produces is magnification. For a simple case like the thin 
lens imaging the tree above you can see that the lens produces an image which is both somewhat 

Source 
of light 

Focal point

Image 
location

Focal point 

1

2
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smaller than the object and inverted. For a system like this, we would say that the magnification 
is negative and less than one. It flips the image over and makes it somewhat smaller. 
 
There is a simple relation which defines the magnification of an image for an optical system: 
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In this relation you have just the object and image distances, and in these you have to remember 
the sign convention. If the object is real, with the light actually coming from it or passing 
through it, then DO is positive. If the image is “real”, with light actually passing through it, then 
DI is positive.  
 
What does this equation tell us for a simple lens like the one above, with a positive focal length 
f? Look at the second version of the magnification equation to see. There are two possibilities 
here, when DO < f and when DO > f. In the first case, the lens is up close to the object. Here we 
have m > 1, and always positive. The value of m is largest when DO ~ f, and gradually shrinks to 
1 when DO goes to zero. What happens when DO approaches f from below? In this case, the 
magnification becomes very large and positive. Such an image is upright (not flipped) and bigger 
than the original object. 
 
When DO > f, the magnification will be negative and the image will be inverted relative to the 
original object. If DO is just slightly larger than f, then the magnification will be large, but still 
negative. An inverted image will be observed. 
 
What happens when DO = f? Now the magnification is infinite. Looking at the first version of the 
magnification equation you can see what this means; the image distance DI has become infinite. 
The rays coming out from the object pass through the lens and emerge parallel, never coming 
together to form an image. If DO is just a little less than f, the rays do come together, but very far 
from the lens, producing a seriously magnified uninverted image. 
If DO is just a little more than f, the rays do come together, 
producing a seriously magnified inverted image. When DO = f, the 
rays never come together. 
 
As a little test for yourself, figure out whether the distance from 
this lens to the eye behind it (which is the object here) is a little 
less, or a little greater, than the focal length of the lens. 

Imperfections in lenses 
 
We have noted before that optical systems rarely produce images which are perfect replicas of 
their objects. In general this is a good thing, as magnification allows us to map big scenes onto 
small detectors (as in eyes or cameras) or to map tiny things onto larger images (as in 
magnifying glasses or microscopes). But usually optical systems do not only magnify images, 
they also distort them. This is something we generally don’t want. It is worth noting a few of the 
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more common kinds of distortions, just so that you’ll have heard about them. Distortions like 
these are usually called “optical aberrations”. Here are three common examples: 
 

1. Spherical aberration: All the lens equations we have used (the lens-maker’s equation and 
the thin lens equation) are accurate for small angles of incidence on the spherical lenses 
only. They work fine for objects close to 
the center of the lens. As objects get 
farther out, these relations begin to fail. 
Points far from the axis come to a focus 
sooner than those close to the axis. Since 
the light from an object does not all come 
to a focus at the same place, this creates 
blurring in the image of an object. Note 
the similarity between this and the 
aberration which affects spherical mirrors. 
  

2. Chromatic aberration: Because of dispersion, different wavelengths of light bend in the 
lens differently, usually with blue light 
bending more and red light bending less. This 
too causes some of the light to come to a 
focus before the rest, again blurring the 
image. Note that this has a noticeable color 
effect. It could be that the blue light is in 
perfect focus, while the red light is blurry. 
Because there is no dispersion in reflections, 
chromatic aberration is not an issue for 
systems which form images by reflection. This is one reason many telescopes use mirrors 
to form images rather than lenses. 
 
 

3. Coma: If all the light from an object comes 
into the lens at a steep angle, if it is not 
paraxial, it will not all come to a focus at the 
same point. This off-axis distortion produces 
comma shaped images of points of light and 
hence has the name “coma”. 

 
 
 
So light will typically be well focused by a lens system when it is in a narrow beam close to the 
center of the lens, consists of mostly one color, and arrives essentially parallel to the optical axis 
of the system. All of these (and many other) distortions limit the fidelity of optical images. By 
blurring images they can place practical limits on magnification. Nothing is gained by making 
indistinguishable blobs larger. By distorting images these aberrations can confuse. 
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32.5 The human eye as an optical instrument 
 
To get an appreciation for how organisms use optics to image the world around them, we need to 
pick apart an example. Just to keep this close to home, it’s useful to consider the human eye as a 
model system.  
 
Your eye is basically a spherical body, with a 
bulge on the front held in place by the cornea. 
The part behind the bulge is filled with a watery 
substance called “aqueous humor”. Then there is 
an aperture (the iris) which limits the light that 
can come in. Behind this is a rather stiff lens 
made of transparent proteins. Behind the lens is a 
transparent region and a nearly spherical surface 
lined with the light sensing retina. Let’s look at 
each of these pieces in more detail.  

The parts: cornea, iris, and lens 
 
The function of all of these pieces is to produce an image of the outside world focused on the 
retina. The eye is obviously not just a single thin lens, so how is the image formed? Remember 
that an image is formed by bringing together all the light arriving from one point on an object 
together at a single point on the image. To do this, diverging light rays which arrive at the eye 
must be bent so that they come back together at a point. In your eye, the bending occurs at 
several places. The most important is at the transition from the air (with an index of refraction 

1.0airn ≈ ) into the cornea (which has 1.377cornean ≈ ).  Since this is a relatively large change in 
index, the bending here is substantial. Notice too that the surface of the cornea is curved 
dramatically. As a result, rays reaching the outer parts of the eye will be bent much more than 
rays passing through the center. 
 
After passing through the cornea, the light enters the aqueous humor, which has an index almost 
matched to the cornea ( aqueous humor 1.337n = , very like that of water, since that’s mostly what it is). 
Since the index change at this transition is small, there is very little bending here. The function of 
the aqueous humor is mostly mechanical; it provides a small pressure which keeps the cornea 
bulging outward in the right shape.  
 
The iris which is encountered next acts as a variable aperture; opening wide to allow a lot of light 
through when light levels are low and closing down to limit the light flow when the scene being 
viewed is dim. Notice too that when light levels are adequate it can ‘stop down’ the entering 
light, ensuring that it remains close to the optical axis of the eye, and avoiding some of the 
aberrations described above. In the extreme case of very high light levels, the iris can make the 
eye rather like the simple pinhole, and regain the advantages that provides. 
 
Sitting just behind the iris is the biconvex lens about 4 mm think and 9 mm in diameter. The 
lenses in your eyes are relatively flexible crystals of protein, built up like an onion from many 
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layers. It actually continues to grow through your life. The inner layers of the lens have a higher 
index of refraction than the outer ones. The net effect is to make it a graded index lens, with a 
central index of refraction 1.40centern ≈  which falls to 1.38edgen ≈ . It is surrounded by material 
with a rather similar index, so there is not a lot of light bending happening in the lens. It mostly 
makes small corrections to the light paths created by the more substantial bending at the cornea. 
After the lens, the light enters the vitreous humor, which again has an index about like that of 
water: vitreous humor 1.336n ≈ . 

More parts: fovea, rods and cones 
 
Lining most of the back of the eye is the retina, a complex structure whose purpose is to 
transform energy arriving as light into nerve signals sent to the brain. The transduction, already 
briefly described above, takes place via opsins housed in modified nerve cells called rods and 
cones. Rods, which are large, contain a broad spectrum opsin called rhodopsin, and are used for 
sensing light which is faint. There are around 120 million in each eye. Cones, which are smaller, 
each contain one of three types of opsins with different wavelength sensitivities. The mix of 
signals received from the three provides information about color. Each eye contains about 6.5 
million cones, and each cone is about 1000x less sensitive than a rod.  
 
Rods and cones are not uniformly distributed in the retina. There is a point located on the optical 
axis of the eye called the ‘fovea centralis’, where the density of cone cells is very high and of 
rods is correspondingly low. This little 1 mm diameter area is where visual acuity (resolution and 
sensitivity) are highest. Outside this region the density of cones drops by about a factor of 10 
while the density of rods rises by a similar number. 
 
Interestingly, the retina in vertebrates is inside out. The light strikes what you might think is the 
back of the retina, and must propagate through a layer of cells and capillaries to get to the light 
sensitive rods and cones. Signals from the rods and cones come out on the eye side of the retina, 
collect into a central optic nerve, then must pass back down through the retina to get to the brain. 
The spot where this feeds through is not sensitive to light, and forms a ‘blind spot’ in your 
vision. In normal scenes, your brain fills in the small missing region in the image by 
interpolating over it; replacing it with more of what is nearby. In cephalopods like the octopus, 
which independently evolved eyes very similar in structure to our own, the retina is right way 
round. So the octopus has no blind spot. 
 
So the retina encodes how much, and what sort, of light arrives at each point on the image. It 
then passes these signals to the brain, where a new kind of cognitive image is formed. How that 
happens is a fascinating part of neuroscience, but fortunately for this author well beyond the 
boundaries of introductory physics. 

Accomodation: an adjustable lens 
 
Most of the time, your eye is looking at things which are very far away compared to its size. In 
this case, arriving light travels in approximately parallel rays. These have to be brought to a 
focus at a single point somewhere on the retina. In a normally functioning eye, the bending of 
light needed to make this happen is almost all accomplished by the cornea. The cornea has a 
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basically static shape optimized to provide this focusing for light which enters the eye in parallel 
beams.  
 
So to view unblurred images of distant things, a well functioning eye can simply relax and let the 
natural shape of the cornea do all the focusing. In this relaxed form, the lens (which after all has 
nearly the same index of refraction as its surroundings, and hence bends the light little) hardly 
alters the path of rays passing through it.  
 
Things change if the eye wants to examine something up close, perhaps a small object held in the 
hand while you work on it. In this case, light rays arriving from the object are still diverging 
noticeably, and the eye needs to bend the rays more to bring them to a focus. For this purpose, 
your eye can “accommodate” the shape of the lens, making it bunch up, have more dramatically 
curved surfaces, and bend the light more. By bending more, the eye pulls the focus point inward 
until it lands on the retina again. Understanding this accommodation of the eye was the first 
important scientific discovery of the great British physicist and physician Thomas Young. He 
worked this out and published it at the age of 20. He later went on to establish the wave theory of 
light, to introduce the modern ideas of energy and stress and strain into physics, and to aid in the 
first translations of Egyptian hieroglyphics. 
 

 
 
 
All human eyes, even those working as well as ever, have many limitations. One of the most 
obvious is the near point. Accommodation allows the light diverging from a nearby object to be 
focused only so far. When an object is too close, the lens will not be able to bend enough to 
focus the light. Images of objects too close to your eye will, as a result, always be blurred. The 
near point for most people is about 25 cm, or about 10”. As your eye ages, the crystalline lens 
usually becomes less flexible, and you may find your near point moving outward. When you see 
your parents move a book farther away to read it, or put on ‘reading glasses’, they are responding 
to this gradually migrating near point. 

Relaxed eye focusing parallel light 
on the retina almost entirely 
because of the shape of the cornea 

Accommodation in the eye: 
diverging light is focused by 
adding additional bending of 
light in the lens. 
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32.6  Failures of the eye as an optical device: malfunctions 
 
There are many ways an eye can fail, but it’s useful to consider at least a few in more detail.  
 
What if, when fully relaxed, the eye bends parallel light too much, bringing it to focus in front of 
the retina? When this happens, the images of all distant things objects look blurry, while things 
which are nearby (so that light from them needs more bending) can be focused just fine. If you 
have this problem, you are “near-sighted”, or myopic. You can see things which are nearby well, 
but not things which are distant. For a near-sighted person there is some “far point” beyond 
which it is impossible for the eye to correctly focus light onto the retina. Beyond this point, 
images of distant objects become increasingly blurry. 
 
The opposite is possible as well. It may be that your relaxed eye does not bend parallel light 
enough to bring it to focus on your retina. This is somewhat simpler, as your eye can use its 
power of accommodation to bunch up the lens and bend the light more, bringing it to a proper 
focus. If you have this problem, you are “far-sighted”, or hyperopic. The real issue here is that 
there is a limit to the power of accommodation. When you bring objects closer, eventually you 
can’t bend the light enough to bring it to a focus, and the image becomes blurry. Far-sighted 
people see distant things well, but have trouble focusing on objects which are nearby. Like 
everyone else they have a “near point” inside of which they cannot focus their eyes adequately. 
But for those with hyperopic eyes, the near point is unusually distant. Inside this near point, 
images of objects become increasingly blurry. 
 
How can these pathologies be fixed? In these cases the task is relatively simple. Near-sighted 
people have eyes which bend incoming light too much. So for them we add a diverging lens to 
the system. This pushes incoming light rays apart a bit before they enter the eye. This preparation 
provides the eye with beams of light it can comfortably focus, making it possible for it to 
produce sharp images of distant objects.  

 
Far-sighted people have eyes which bend the incoming light too little. For them we need to add a 
little more bending. So in this case we add a converging lens which brings together incoming 

Fixing hyperopic eyes Fixing myopic eyes 
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light rays a bit before sending them on into the eye. This allows the far-sighted person’s eye to 
relax completely when looking at distant objects, retaining the additional bending power of 
accommodation for examination of nearby objects, and pulling the far-sighted persons near point 
back to a more typical distance. 
 
As the eye ages and accommodation becomes weaker, many near sighted people begin to find 
their near point moving farther away. Normally, their eyes need a diverging lens to help them see 
distant things. Now they find they need a converging lens to help them see nearby things. When 
this happened to Ben Franklin, he decided to put both kinds of lenses in a single pair of glasses 
and became one of the first to wear ‘bifocals’. 

32.7 Failures of the eye as an optical instrument: inadequacies 
 
Even when your eyes are functioning just as they evolved to, they are limited in a variety of 
ways. Overcoming these limitations, allowing us to see what was previously invisible, has been 
perhaps the single most important instrumental step for modern science. Let’s consider several 
limits and see how an understanding of optics has allowed us to enhance the performance of our 
eyes. 

Resolution limits: seeing things which are small 
 
The eye is limited in how small an object it can resolve. This limit, fundamentally, is not really a 
limit on size, but on angle. You may think of it as a limit on the minimum angular size an object 
must have before you can tell it is not a single point. When you look at a distant sheet of text, 
each letter may appear to be just a point, as you bring it closer, the letters aren’t any physically 
larger, but they cover a larger and larger angle. Eventually the angle they cover is large enough 
for you to resolve, and you can read the letter.  
 
All optical systems have such resolution limits. The most fundamental limitation is the 
“diffraction limit”. We have seen that parallel rays of light passing through an opening with size 
d will diffract, spreading out once they pass through the opening into a blob with an angular 
width roughly given by: sinθ = (λ/d). Since for light λ is so small, we’re almost always talking 
about small angles, and we can write θ ~ (λ/d). What kind of angle is this? The iris of your eye 
has a diameter of around 1 cm, so the fundamental limit on your angular resolution is θ ~ 5x10-7 
m / 1x10-2 m = 5x10-5 radians, or around 0.003°. This is around 10 arcseconds, for those of you 
who divide each degree into 60 arcminutes, and each arcminute into 60 arcseconds (as 
astronomers do).  
 
In fact though, your eye is limited to resolving only much larger angles by its imperfections. For 
example, the imperfect shape of your cornea and lens, as well as inhomogeneities in the index of 
refraction in the fluid of your eye make it impossible for you to focus as well as you might 
expect to. In addition, the angular resolution of your eye varies strongly with position on your 
retina. Images in the fovea are quite sharp, with an angular resolution of about 0.02° or 3.5x10-4 
radians. This resolution degrades rapidly as you move away from the center. Your body includes 
a very complex set of muscles capable of turning your eye in its socket, steering the high 
resolution center of your vision from place to place. It does this much more rapidly than you can 
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move your head. Many animals, most birds for example, lack this ability, even though otherwise 
their vision may be much better than ours.  
 
Now all eyes have a near point inside of which they cannot focus. For healthy eyes the near point 
is about 25 cm. This unavoidable near point limits our ability to see the tiny details in anything 
we might work with. If you hold an object at the near point of 25 cm, and can resolve an angle of 
3.5x10-4 radians, the smallest spot you can see on that object, staring as hard as you can, is about 
0.25*3.5x10-4 ~ 0.1 mm. If you bring the object closer, to increase the angular size of its 
features, it just becomes blurrier.  Using just our own eyes, there’s no way to discover cells. The 
very largest plant cells are just barely large enough to notice. Everything smaller looks like a 
smooth mess.  
 
Overcoming this limitation has been essential for the life sciences, where now much of the 
attention is focused on things too small to see. Imaging devices from magnifiers to microscopes, 
designed with our understanding of how waves interact with the world, have enabled all this 
progress. An introduction to how these devices work is presented in the next chapter. 

Sensitivity: seeing things which are faint 
 
Another important limitation of your eyes is their relative insensitivity. They are optimized to 
view scenes illuminated by ordinary daylight. Your eyes adjust to brighter or fainter illumination 
by decreasing or increasing the size of the opening in the iris. The combination of the light 
sensitivity of your retina and the collecting area of the eye provides the bounds for scenes you 
can effectively image. If the light is too bright, the rods and cones in your eyes will saturate, all 
turning on and giving you no information (other than the fact that there is a bright light out 
there!). If the light is too faint you won’t collect enough light to be able to reconstruct the scene. 
 
Many organisms which live in dark environments have unusually large eyes. Owls are perhaps 
the most familiar example. Their remarkably large eyes have a different structure from ours. 
They are tubular rather than spherical, and hence can’t be turned in their sockets. To look at 
something new the owl must turn its head. Owl eyes have very large corneas, irises which can 
open completely, and retinas paved with rods. They do have a small number of cones, and some 
color sensitivity, but most of the retina is covered with the more light sensitive rods.  
 
Other extraordinary eyes include those of the swordfish, which include a special mechanism to 
heat the retina, increasing their speed of response, and the giant squid. At almost 16 inches in 
diameter these are currently the largest eyes in the animal world. Why do sea creatures push the 
limits for eyes? Because light is so strongly absorbed in water; it’s just darker there. 
 
Scientific technology has enabled us to see fainter things using artificial eyes which improve on 
ours in two ways. First, they are really large, and hence able to collect a lot of light. Second, they 
can integrate, adding up all the light which arrives over a long period of time. Constructing large 
eyes is technically hard only because the whole, big eye has to have a surface regular and smooth 
enough to bring all the light collected over the whole aperture to a single focus. This means the 
lens (or mirror) which is focusing the light must have the correct shape, over its whole area, with 
deviations that are much smaller than the wavelength of light (5x10-7 m).  
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Telescopes are the most dramatic giant light collectors in our technological toolkit. They are 
designed primarily to detect the faintest, most distant objects possible. They do magnify a bit, but 
mostly they are “light buckets”, designed to collect as much light of the light from faint objects 
as possible. The largest today are all reflecting telescopes, which used curved mirrors to focus 
the light. This is for engineering reasons. If you use a lens through which light must pass, you 
can support it only around the edge. When a lens like this gets really large (like more than 1 
meter in diameter) it sags under its own weight, and can no longer be maintained in just the right 
shape to focus the light. Mirrors can be supported from the back side, all the way across. The 
largest telescopes today are the twin Keck telescopes, on Mauna Kea, in Hawaii. Each has a 10 
meter diameter, giving them a collecting area about 106 times larger than your eye.  
 
Telescopes (and other scientific imagers) can also integrate, adding up the light which lands over 
a long period of time. While they used to do this with film, they now do it with electronic sensors 
like the charge-coupled devices (CCDs) which are also used in your digital cameras. CCDs start 
out almost 90 times more efficient for detecting light than your eyes, and add to this the ability to 
sum up all the light detected over several hours. These factors combined allow these artificial 
eyes to detect objects about 10 billion times fainter than your eyes can. Just like the microscope, 
this enhanced sensitivity has literally revealed new worlds, showing us planets in other solar 
systems and galaxies out to the edges of the universe. 

Sensitivity: seeing things which are invisible 
 
The most extraordinary frontier of expanding our vision involves detecting electromagnetic 
radiation with wavelengths very different from optical light. Since around 1890, it has become 
possible to detect EM radiation across the spectrum. This has allowed us to image ourselves, our 
world, and the universe using everything from radio waves to gamma-rays. Our eyes, evolved to 
observe a world illuminated by the Sun, detect only a tiny bit of this enormous range. Expanding 
our senses in this new way has been especially important in astronomy and astrophysics, but has 
impacted the rest of science as well. It has allowed us to discover the left over heat of the big 
bang, look through our bodies with x-rays, and detect the glow of distant black holes. 
 
The challenges for imaging using electromagnetic radiation other than visible light are the same 
as those outlined above for light. To get useful information about the world from this other 
radiation, we must detect it, measure its properties (intensities and wavelengths), and carefully 
determine where it comes from. For this purpose, we have built a wide variety of imagers, 
artificial eyes, which do for the rest of the electromagnetic spectrum what our eyes do for visible 
light. Many of these look relatively familiar, focusing the radiation with mirrors and lenses. 
Some, especially those used for the highest energy radiation, are essentially complex pinhole 
cameras. Once again, the physical constraints imposed by the laws of nature give rise to an array 
of remarkably similar solutions. 
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A Quick Summary of Some Important Relations 
 
Components of eyes: 

Eyes have three components: a method for detecting light, a system for analyzing it (measuring 
its mix of wavelengths, its intensity, and possibly its polarization), and a system for determining 
what direction it comes from. 

Lenses and focusing of light from distant sources: 

A lens bends light so that all the light arriving from one direction comes together at a point. Any 
light detected at that point must have come from the same direction. For a thin lens made of a 
material with index of refraction n immersed in air, the focal length can be predicted from: 

 ( )
1 2

1 1 11n
f R R

⎛ ⎞
= − −⎜ ⎟
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where R1 and R2 are the radii of curvature of the front and back surface of the lens. Be careful of 
the sign conventions for these radii.  
 
Focusing light from nearby sources: 

When a source (the object) is not infinitely far away, the light from it will come to a focus at an 
image point different from the focal length. They are related by the thin lens equation: 

 
object image
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Magnification of an image like this is measured by: 
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The eye as an optical instrument: 

The human eye is a very effective imager, combining a shutter, a pupil, a variable focal length 
lens and a spherical focal plane lined with light sensing cells which measure intensity at several 
wavelengths. When operating correctly, the eye can focus light from infinitely distant sources all 
the way down to objects about 25 cm from the eye. The most common eye malfunctions involve 
failure to focus near or distant objects properly, and can be repaired with corrective lenses. 

Eyes also have intrinsic limitations in resolution, sensitivity, and their ability to see wavelengths 
longer or shorter than the visible range. 
  
                                                 
i Carroll, S., 2007, “The Making of the Fittest: DNA and the Ultimate Forensic Record of Evolution”, W.W. Norton, 
USA. 
ii Land, M., and Nillson, D., 2002, “Animal Eyes”, Oxford University Press, USA. 
iii Colicchia, G., 2006, Physics Education, 41, 15. 
iv Wagner, H., et al., 2009, Current Biology, 19, 108. 
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POLS Waves Chapter 33 
 

During its first few millennia, science was built on what people could see and hear with their 
own unaided senses. The human senses are, as we have seen, remarkably sensitive; able to record 
tiny fluctuations in the pressure of the air and to resolve objects separated by only 0.02°. They 
are, however, limited in many ways. Billions of stars and galaxies are too faint for us to see. 
Much of life’s machinery takes place on scales too small to perceive. Many important things 
happen in places hidden from the view of our senses; inside your skull or deep within the ocean. 

Many factors played a role in the dramatic rise of science in 17th century Europe. One of the 
most important was the invention and rapid dissemination of instruments which expand our 
senses, enabling us to perceive the previously invisible. 

33.1 A bit of imaging history 

The idea that one might be able to augment vision with lenses and mirrors seems to have been 
known since ancient times. Simple magnifying lenses have been found in archeological sites 
back to at least 1000 BC. The use of these simple lenses for correcting vision in eyeglasses 
seems to have become widespread between about 900 and 1100 AD. But the real impact of 
imaging on science began in the 17th century, when several lensmakers in the Netherlands hit on 
the idea of combining two lenses to create a telescope. They applied for patents on this in 1608.  

Galileo Galilei heard about this invention in 1609. Having studied optics extensively, he 
immediately built his own telescope and quickly refined the design. What he saw with this 
telescope, which magnified distant objects thirty times and collected substantially more light 
than his eye, changed our understanding of the universe dramatically. Over a period of just a few 
months he discovered the moons of Jupiter, the rings of Saturn, mountains and craters on the 
Moon, and a Milky Way filled with many thousands of previously invisible stars. He published 
what he had seen in March 1610 in a small book called The Starry Messenger. It remains one of 
the most remarkable little documents in the history of science. It begins: 

“Great indeed are the things which in this brief treatise I propose for observation and 
consideration by all students of nature. I say great, because of the excellence of the 
subject itself, the entirely unexpected and novel character of these things, and finally 
because of the instrument by means of which they have been revealed to our senses.” 

In these few sentences he says much about what was beginning to happen in science. He 
announces discoveries “for observation and consideration by all students of nature”. He isn’t just 
going to tell you about these things, he’s going to let you see for yourself; and while these things 
are remarkable in themselves, so too is the technology which enables us to see them. Galileo 
knew what he was onto, and was quite sure instruments like this would lead to many more 
discoveries. 

Galileo would similarly improve a widespread simple variant of the telescope, capable of 
magnifying objects which are very nearby; though it would be decades before one of his friends 
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christened it a “microscope”. It would take longer still for a complete realization of what the 
microscope had to say about life. It was more than 50 years before Robert Hooke published 
Micrographia, the first widely distributed volume of drawings showing what the microscope 
revealed. His work was followed by many others, perhaps most significantly by the impossibly 
careful observations of Anton Van Leeuwenhoek. Using tiny glass spheres as simple magnifiers, 
Leeuwenhoek discovered bacteria, the teeming life in drops of pond water, and single lines of 
blood cells shuttling through capillaries. His discoveries, communicated to the scientific societies 
of Europe by letter, helped to open the eyes of the scientific community to a new aspect of life, 
and to set in motion what would become much of the life sciences today. 

Physics, imaging, and science 

Since the time of Galileo and Leeuwenhoek the tools we use to present the world to our senses 
have advanced enormously. A deeper understanding of how waves interact with the world, and 
of how to manipulate them, has enabled us to ‘see’ everything from individual atoms to the 
remnant light from the big bang. Remarkably, almost all of these devices still rely, in their final 
stage, on our own senses. When we finally digest what these instruments provide, we do so 
through our own eyes. All of the scientific instrumentation described in this chapter ultimately 
produces an image which our eyes then deliver. 

33.2 Simple magnifiers 

Your eyes, like all human eyes, possess a near point, a minimum distance within which the light 
from an object cannot be focused correctly. This near point, combined with the limited angular 
resolution of your eye, limits the size of the smallest things you can see; anything smaller than 
about 0.1 mm is simply blurred into its surroundings. How to fix this problem? Fundamentally 
this is the same as the near point problem seen in hyperopic eyes. If you are far-sighted, your 
eyes can’t bend the light from a nearby object enough to bring it to a focus on your retina. To fix 
this, we have to add some additional bending of light. This is what a simple magnifier like a 
magnifying glass does.  
 
When you place an object near the focal point of a magnifying glass, light spreading out from the 
object and passing through the lens emerges in nearly parallel rays. Your eye is well constructed 
to focus parallel light. So when the light coming from the magnifying glass arrives at your eye as 
nearly parallel rays, you can focus them easily. The parallel rays of light emerging from the 
magnifying glass come into your eye as if they came from an object much closer to your eye than 
it actually is. In fact it now seems like the object is a distance from your eye equal to the focal 
length of the magnifying glass, instead of the usual 25 cm near point distance. This is shown in 
the figure below.  
 
If you set things up like this, with the object near the focal point of the magnifying glass, the 
angular magnification you get from the lens is: 
 

 0.25 mm
f

=  

 
Magnifying glasses with small focal lengths give big magnifications.  
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Notice that there is a big difference between this and what we discussed above when we talked 
about thin lenses forming images. In this case, the magnifying glass is NOT forming an image. 
In fact, it is sending out parallel light, which would travel to infinity before ever forming an 
image. That parallel light, nicely prepared by the magnifying glass, is then fed into your eye, and 
that’s where the image is formed. As we will see, many optical instruments use ‘eyepieces’ to 
prepare the light from a system for imaging with your eye. They will generally do just this; 
produce parallel light which your eye then focuses. 
          

 
 
The first microscopes, especially the ones used by Leeuwenhoek, were very simple spherical 
lenses with very short focal lengths. Basically they were tiny drops of glass, with radii of 
curvature as small as possible. These tiny radii correspond (from the lens-
maker’s equation) to very small focal lengths, and consequently large 
magnifications. Using these tiny lenses, he discovered many single celled 
organisms, including protists, bacteria, spermatozoa, muscle fibers and 
more. Early microscopists like Robert Hooke and Leeuwenhoek were able 
to “see” a world which was previously hidden from human senses. They 
discovered a new world. By using their understanding of light, they 
expanded the limits of their evolved senses, and changed biology and our 
vision of life forever. 

33.3 Microscopy 
 
Modern microscopes are much more complex than Leeuwenhoek’s. In fact most of you will have 
already used microscopes which are vastly more complex than his little spheres of glass. To get a 
sense of how they work, we will consider a basic compound microscope made of two lenses. 
This is essentially the design Galileo and his contemporaries used.  
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Compound microscopes combine two lenses to increase magnification. They provide a nice 
example of more complex optical systems made of multiple lenses. The first lens, called the 
“objective” magnifies the object substantially, placing an inverted image of it at a specified 
location inside the microscope tube. A second lens, called the eyepiece, is placed so that the 
image from the first lens lies at its focal distance. The eyepiece then converts light from this 
internal image into a parallel beam of just the kind your eye has evolved to focus. Thus the 
eyepiece prepares the light for your eye to act as the final optical element of the system. 
 
The “objective lens” in this arrangement has a relatively short focal length, typically a few to a 
few tens of millimeters. This lens is lowered until the object is close to the focal point of the lens, 
producing a substantially magnified image at a distance L behind the objective. This distance L 
is set by the design of the microscope. As we will see, you want this initial image to land just at 

the focal point of the eyepiece lens. Since I
O

O

Dm D= − , and in this case ID L=  and O OD f≅ , 

we can write O
O

Lm f= −  for the objective. 

 
Once this image is formed by the objective, the eyepiece is used as a second 
stage of magnification. The image produced by the objective is placed at the 
focus of the eyepiece. Light coming from the internal image is converted by 
the eyepiece into parallel beams. Then the final optical element is your eye, 
which focuses the parallel beams emerging from the eyepiece onto your 
cornea, allowing you to see the image. The eyepiece acts much like a 
magnifying glass, again magnifying the image, this time by an amount 

0.25 m
E

E
m f= . The combination of object and eyepiece is then a total 

magnification of around: 
 

 Combined
0.25 m

O E

Lm
f f

= −  

 
For reasonable combinations, it is easy to achieve magnifications of 100, and possible to reach 
1000. 

33.4 Compound telescopes 
 
The basic idea of a telescope is very similar; an objective lens forms an internal image which is 
then viewed by an eyepiece. The difference is purely practical; for telescopes the objects of 
interest lie essentially at infinity. Light from the 
object arrives at the objective lens in just about 
perfectly parallel beams. So the objective lens 
forms an image of the object right at its focal 
point. The eyepiece then views and magnifies this 
image, presenting it again to your eye as parallel 
beams of light, ready to be focused by your eye on the cornea. 
 

L 
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Cameras on microscopes and telescopes 
 
These days, many telescopes and microscopes lack eyepieces. This eyepiece is designed to 
prepare the light for your eye, providing a nice parallel beam like those your eye evolved to 
focus. If you use a camera, instead of your eye, to record the image, you want the optical system 
to provide focused light on the film or CCD which will record the image. Usually this means 
replacing the eyepiece with a lens which takes the internal image produced by the objective and 
focuses light from that image onto the focal plane, just like the lens in your eye focuses light 
onto the spherical light detecting surface of your retina. 

33.5 Medical imaging: seeing inside your body 
 
One of the most interesting unknown territories which has been explored using instruments 
which expand our senses is our own bodies. The ability to see what is happening inside us has 
revolutionized medicine. Modern medical imaging has largely eliminated the need for 
“exploratory surgery”, the old practice of cutting you open just to see what’s there. These 
techniques were largely developed by physicists, and even today a large number of physicists are 
employed in the medical imaging field, developing and refining new technologies and operating 
these advanced imagers in hospitals.  
 
This is a very large field, and we will touch on only a few of the most important kinds of medical 
imaging. 

X-ray imaging 
 
X-rays are very high frequency, very short wavelength (10-8 m > λ > 10-11 m) electromagnetic 
radiation. Fundamentally, they’re the same as visible light, differing only in wavelength. Because 
their wavelengths are so short, however, they interact with matter quite differently from visible 
light. When visible light strikes solid matter it is usually either reflected or absorbed within 10-6 
m of the surface. A few materials (like air and water) are relatively transparent, and allow visible 
light to pass through them. Your body, for example, does not.  
 
X-rays are different. They penetrate solid matter rather 
effectively, and are often able to pass right through your 
body. When they come out the opposite side, they can be 
detected in a variety of ways; on fluorescent screens, on 
film, and in electronic sensors like Charge-Coupled Device 
(CCDs). X-rays passing along different paths through your 
body will encounter different materials. Some may pass 
through nothing but flesh, while others will strike bone, 
organs, or tendons. Because the material along each path is 
different, the amount of absorption along each path will 
differ. An X-ray image then is a “shadow” image. Any path 
through your body which suffers a lot of absorption will 
leave a strong shadow. Paths with little absorption will leave faint shadows. 
 

Lots of 
absorption Little 

absorption
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X-ray absorption, like that of optical light, can be described by an absorption length Labs, such 
that: 
 
 
Here are a few example absorption lengths for typical X-rays in medically interesting materials: 
 
 

Material Absorption 
length 

Air 3.4 m 
Fat 0.052 m 

Water 0.047 m 
Bone 0.017 m 

 
Contrast in an X-ray image is produced by differential absorption. X-rays passing through equal 
amounts of fat and bone will have an intensity ratio on the other side of: 
 
 
 
 
This contrast is what makes x-rays effective, especially for imaging skeletal features. 

X-ray production 
 
X-rays are produced primarily by accelerating a 
beam of electrons to high energies using a high 
electrical voltage, then smashing those electrons into 
a target, usually made of metal. When the electrons 
decelerate suddenly they emit electromagnetic 
radiation with many different wavelengths, 
including the short wavelengths corresponding to X-
rays. The “braking radiation” which is produced in 
this process has the great is German name 
“bremmstrahlung”. This is all done inside glass 
vacuum tubes, so that the electrons don’t run into air molecules while being accelerated.  
 
This picture shows a dental X-ray tube. The structure on the right is the “cathode” which 
includes a hot filament from which electrons emerge. The massive structure on the left is the 
“anode” into which the electrons smash, producing the electrons. The electrons are accelerated 
across that short gap using a very high voltage, in this case about 50,000 volts. 
 
X-ray production by this mechanism is very inefficient. Only about 1% of the energy which goes 
into an X-ray tube comes out as X-rays. Most of the rest is deposited in the anode as heat. This 
heating is a major problem for X-ray production. It requires the use of high melting point metals 
(like Tungsten) as anodes. In addition, some thought 
must be paid to extracting the heat. A very common 
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kind of tube uses a “rotating anode”. This is a large, disk shaped target which is rotated while the 
tube operates. This makes the electron beam spot move to new places on the anode continuously, 
preventing any one spot from heating too dramatically.  

X-ray detection 
 
X-rays can be detected by many means. In the early days, fluorescent screens were used. These 
are translucent ground glass screens coated with or containing materials that convert incident X-
rays into visible light. When an X-rays hit the screen, it glowed with 
a brightness related to the X-ray intensity. These were often used in 
early X-ray imaging applications. They had many safety related 
drawbacks. First, they were inefficient, requiring intense X-ray 
dosages. Second, the doctor had to look straight into the screen, 
taking much of the transmitted X-ray flux straight into their head!  
The picture at the right shows such a device. The doctor looks into 
the viewer on the left, the person is put in front of the screen, and the 
X-ray tube is placed to the right of the person. X-rays blast on 
through patient, some strike the screen and the doctor sees what’s going on, then the rest of the 
X-rays plow through the doctor’s head. 
 
Many modern X-ray imagers still use chemical film. These chemical films have relatively low 
efficiency, so they are often boosted by placing them in fluorescent lined x-ray “screen film 
cassettes”. This way, the film detects some x-rays directly, and is further exposed by visible light 
produced when the x-rays strike the fluorescent lining of the cassette. 
 
Just as optical film is being replaced by electronic visible light detectors, X-ray film is being 
replaced by a variety of much more sensitive and precise electronic sensors. The high sensitivity 
of these sensors allows them to make high quality images with much smaller doses of X-rays, 
making the whole process much safer. 

X-ray health concerns 
 
X-rays are biologically much more dangerous than you might guess. When you get an X-ray at 
the doctor’s office, you don’t feel the arrival of a large quantity of energy. Your jaw doesn’t heat 
up at the dentist for example. Since so little energy is deposited, you might think the X-ray is 
harmless. They are more dangerous than you expect because their very short wavelengths allow 
them to be dump all their energy in small spots, damaging important individual molecules like 
DNA. For this reason, X-ray dosages need to be carefully controlled and minimized wherever 
possible.  

33.6 Ultrasound imaging 

A newer, very common form of medical imaging takes its cue from naval sonar the acoustic 
imaging so effectively used by marine mammals and bats. Ultrasound imaging looks inside you 
using sound waves. This kind of imaging provides a great example for this class because so 
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many important wave phenomena are involved in making it work. We’ll look into several details 
of ultrasound imaging. 
 
First, why “ultra”-sound? You would like to be able to image small things inside you, to see 
features that are perhaps 1 mm in size. If you use sound waves with wavelengths much larger 
than this, the waves will diffract around your target just as water waves pass around you at the 
beach. So you need to use wavelengths of around 1 mm or less. The speed of sound in various 
tissues is given in this table: 
 

Material Speed of sound (m/s) Acoustic impedance (ρv, kg/m2s) 
Air 340 4x102 

Lung 600 1.8x105 
Fat 1450 1.3x106 

Muscle 1540 1.7x106 
Bone 4080 7.8x106 

 
For a typical 1000 m/s speed (like those within your body), a 1 mm wavelength implies a 
frequency υ = v/λ = 106 Hz. You can’t hear any frequencies higher than about 2x104 Hz, so this 
is indeed sound with “ultra” frequencies. 
 
Ultrasound propagating in your body experiences all the usual features of wave propagation, 
including absorption, reflection at material boundaries (with θi = θr), and refraction when passing 
from materials with one wave speed to another. Absorption is dependent on frequency and the 
material the sound is passing through, and this can be a significant factor. The intensity of 
ultrasound traveling through your body might decrease by around 10% as it passes through a 
centimeter of flesh. Absorption is typically worse at higher frequencies, so the frequencies 
chosen usually emerge from trading of resolution (which favors high frequency) and 
transmission (which favors low frequency). Typical medical ultrasound imaging uses frequencies 
from 2 to 20 MHz. 

Impedance matching and ultrasound reflection 
 
Ultrasound reflection happens whenever the waves pass from one material to another. How much 
sound will be reflected can be determined from the “acoustic impedance” of the two materials. 
Acoustic impedance is the product of the density of the material and the velocity of sound in the 
material: 
 
   Z = acoustic impedance = ρv 
 
Numerical values for the acoustic impedance of several materials in your body are given in the 
table above. The fraction of sound reflected when it reaches a boundary between materials is 
governed by the impedance mismatch between the materials. For the particular case of sound 
arriving perpendicular to the interface a simple formula governs the reflected fraction: 
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When the sound reaches a boundary where the acoustic impedance changes, some of it will be 
reflected back. The fraction reflected depends strongly on how large the impedance change is. 
 
To get a sense for what this means, consider a few examples. If you have ultrasound in the air, 
outside your body, and it reaches your surface, what fraction will be reflected? Since Zair ~ 4x102 
kg/m2s and Zflesh ~ 1.5x106 kg/m2s, the reflected fraction should be very close to one. Just about 
all the sound reaching you in the air will reflect, rather than passing into your body. We note in 
passing that this is great for bats. Sound they send out to image their surroundings almost all 
bounces off, giving them a chance to get it back and hear it. 
 
If you are doing ultrasound imaging, the huge reflection of sound at your surface is a problem. 
To avoid it, you don’t send the sound in through the air, but instead couple the wand which 
produces the sound to your body with a material much more closely matched in acoustic 
impedance to your body. Usually this is a kind of gel which is spread on both the sound 
producing wand and your skin. If you have had any ultrasound imaging done on yourself you 
will know what I mean. 
 
Once the sound is in your body, you do want it to bounce off things, giving you the chance to 
image them. This is a problem too, because many of your tissues are pretty closely matched to 
one another in impedance. For example, at an interface between fat and muscle you might expect 
reflection of R = (1.3-1.7 / 1.3+1.7)2 = 0.017 of the incident sound. This small reflected intensity 
makes producing a high contrast image difficult. Ultrasound images are sometimes enhanced by 
introducing “contrast agents” designed to increase reflectivity. This is most common in efforts to 
image the circulatory system. To do this, tiny spheres of nitrogen are injected into the blood. 
When they spread through the circulatory system, they make arteries and veins much more 
“visible” than they were before. A common contrast agent consists of tiny 1-4 μm balloons made 
of albumin (egg white!) filled with nitrogen. 

Ultrasound methods 

Ultrasound imaging is primarily based on a simple idea; produce a sound, send it in, and see how 
long it takes to bounce off something and return. The sound itself (inaudible to you of course) is 
produced by a “transducer”; a device which converts electrical signals into acoustic oscillations 
and vice versa. This device both produces the output sounds and detects the reflections. It is most 
often contained in a hand-held “wand” which is coupled to your body using an impedance 
matched gel. Timing of reflections allows reconstruction of an image. But this is not completely 
simple. Remember that the speed of sound varies in different materials, making the conversion 
between return time and distance dependent on which materials the sound is passing through.  
 
An ultrasound wand is usually a 
linear array of transducers, so 
instead of acting like a point 
source, with sound going out in 
every direction, it produces a beam 
of sound, traveling out primarily in 
one direction. Because the array 

One transducer: like 
a point source An array of 

transducers: 
produces a beam 
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length (typically 5-10 cm) is much longer than the wavelength of the sound (typically 1 mm or 
less), this array of sources acts like a large slit in our earlier discussion of diffraction; it produces 
a basically parallel beam of sound. This makes interpretation of the resulting reflections 
enormously easier to do. Clever variations introduce delays between the emission of sound from 
each of the transducers in the row. These delays can either focus the beam or steer it from side to 
side. Delays can also be introduced into the receipt of the returning sound. These allow the 
system to ‘focus’ on detection of sound from particular points in the body. 
 
Spatial resolution of this echo imaging is determined in part by the duration of the pulse of sound 
sent out into the body. Imagine a pulse with a duration Γ. Since the pulse travels out into the 
body with speed vs, this pulse has a physical length in the body vsΓ. In ultrasound lingo this is 
called the “spatial pulse length”, or SPL. If the pulse runs into two objects separated by a 
distance less than half this SPL, sound will still be reflecting off the front object when it starts 
reflecting off the rear object. This will make it difficult to tell the two apart, and will limit the 
spatial resolution along the direction of the beam. Typical SPL is a few times the wavelength of 
the sound used, so that the pulse actually consists of only a few cycles of oscillation. 
 
Sound waves striking interfaces in your body are not only reflected back, some, often most, are 
refracted through these interfaces. But most of that refracted sound does not return to the 
transducers which both generate and detect the sound. Instead, this refracted sound rattles around 
inside you, producing a kind of background noise. 

Doppler ultrasound 
 
If the sound is bouncing off something in motion, like blood flowing or a heat beating, it is 
possible to measure not only the delay in echo return, and hence distance, but also any shift in 
frequency in the returning sound, and hence the velocity of the thing the sound is bouncing off. 
Just as with most of ultrasound, bats and other echolocating organisms learned to do this long 
before we did. 
 
All in all, ultrasound imaging is a very advanced, relatively 
safe, and widely used technology. It is a great example of the 
application of basic physics principles (the properties of wave 
propagation in materials) to a medical problem (how to see 
inside without cutting you open). New technical advances 
continue to be made, all based on understanding the basic 
physics principles involved. 

33.7 Magnetic resonance imaging 
 
Another very important imaging technology today is magnetic resonance imaging, or MRI. This 
technique relies on the same fact used in compasses: small magnets tend to align with an external 
magnetic field. This aligned position is the state of lowest energy. If they are able to get there, 
this is where they’ll end up. Further, if you disturb such a little magnet away from this aligned 
equilibrium, it will oscillate around that equilibrium position with a frequency f = γB, where B is 
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the strength of the magnetic field and γ is a property (its gyromagnetic ratio) of the little magnet 
which involves both the strength of its own magnet and its mechanical inertia. 
 
As it turns out, the nuclei of many atoms have non-zero “magnetic moments”; they act just like 
very tiny magnets. If you put these atoms in a magnetic field, they will tend to align with it. If 
you “bump” them away from this equilibrium orientation, they will oscillate around it. Now 
here’s the key: oscillating magnets emit electromagnetic radiation just like oscillating charges. 
So, if you put a material (perhaps a patient) in a magnetic field and then disturb the field a bit, 
many of the atomic nuclei in the object will start oscillating. When they do, they send out little 
electromagnetic signals saying “we are here, we are here…”. If you are prepared to receive these 
signals, you can determine whether this material is there inside a person. For this reason MRI 
used to be called “Nuclear Magnetic Resonance” imaging, or NMR, but the word “nuclear” in 
the name scared people and limited profits, so the name was changed to exclude it. The primary 
tool for MRI imaging in people is hydrogen. The proton which makes up the nucleus of 
hydrogen has a gyromagnetic ratio γ = 42.6 MHz / Tesla.   
 
In practice there is another detail. Rather than simply bumping the nuclei away from equilibrium, 
they are actually driven away from it by pushing them back and forth at just their resonant 
frequency. This is done using a “radio frequency” (RF) pulse which gets the nuclei oscillating. 
Then this is turned off and the emission from the oscillations is measured. 
 
The ‘imaging’ part of MRI is accomplished by putting the person in a magnetic field which 
varies in space, so that B = B(x,y,z). Since the oscillation frequency of the disturbed nuclei 
depends on both γ and B, nuclei in different places will oscillate at different frequencies. Since 
you excite a particular resonant frequency, you will excite oscillators only in a particular place. 
You can change where you create oscillations by altering the frequency to match the resonant 
frequency you drive. If you know just how the field varies, you can tell just where the oscillating 
nuclei are! 
 
MRI scanning is complex, requiring large and carefully controlled 
magnetic fields. Energy use concerns often drive the use of large, 
superconducting magnets which must be cooled to very low 
temperatures. MRI scanning is also rather slow, because the 
oscillating nuclei take a little time to settle down, and there are 
many regions to scan.  
 
New variants of MRI are always being developed. One especially important one is called 
“functional MRI”, or FMRI. This method takes advantage of the fact that oxygenated blood has a 
different MRI signal from non-oxygenated blood. By taking a scan of the brain before, during, 
and after an activity, and looking for changes, it is possible to obtain information about what 
parts of the brain are active during different kinds of activities. While this doesn’t exactly reveal 
all the secrets of how the brain works, it does provide fascinating new insight into brain function. 

Radionuclide imaging: positron emission tomography 
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A third approach to imaging involves sending in molecules which will go where you want and 
then send you a message to let you know where they are. One common approach is to send in 
radioactive forms of molecules your body would like to use, like various forms of sugar. These 
go into your system just like their non-radioactive equivalents, get transported to where they 
might be used, then decay. The right sorts of radioactive atoms will send out gamma-rays; 
electromagnetic radiation like x-rays only with still more energy. These γ-rays punch their way 
out of your body and can be detected. Since they travel in straight lines it is possible to trace 
them back to their points of origin and find out where in your body the tracer you put in has 
settled. 
 
These methods are particularly effective for examining metabolic processes. For this purpose 
things like 18F-Flourodeoxyglucose are used. This is a glucose analog. When injected in the 
body, it finds its way to glucose using very active cells like those in the brain or in cancerous 
tumors. This particular radioactive isotope of Flourine (18F) decays by emission of a positron. 
The positron is the antimatter equivalent of an electron. When the fluorine nucleus emits the 
positron, it becomes an 18O nucleus. The positron quickly finds an electron (they are oppositely 
charged and strongly attract one another). When they come together they annihilate, converting 
their mass into energy according to Einstein’s famous E = mc2. This energy emerges as two 
gamma-rays which emerge back-to-back, helping to localize where the fluorine decayed.  
 
This feature of positron emission makes it particularly 
attractive for this kind of imaging, and one major form of 
radionuclide imaging is Positron Emission Tomography, or 
PET scanning. The image at right shows a PET scan of a 
patient with multiple bone cancer tumors. These tumors 
use glucose like crazy, and show up as very hot spots in the 
PET scan. 
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A Quick Summary of Some Important Relations 
 
Simple magnifiers: 
 
Magnifiers are lenses with short focal lengths used to prepare light for your eyes to properly 
focus. They effectively allow you to bring an object closer to your eye than your near point. The 
typical magnification of such a device is: 

 0.25 mm
f

=  

Compound microscopes: 

A compound microscope uses two lenses, an objective which forms a magnified image of the 
object, then an eyepiece to magnify the light from the image and prepare it for the eye to focus. 
In the normal mode of operation, the objective uses a fixed image distance L, and the 
magnification is: 

 
objective eyepiece

0.25 mLm
f f

= −  

Cameras instead of eyepieces: 

The purpose of the eyepiece is to present your eye with parallel light which it might easily focus. 
This is useful only when your eye is part of the optical system. It is more common today for 
microscopes and telescopes to detect the light with film or an electronic sensor like a charge 
coupled device (CCD). In this case, the optical system should, instead of putting out parallel 
light, generate a final image at the location of the light sensor. 

X-ray imaging: 

X-ray imaging is shadow imaging, taking advantage of the relative absorption of x-rays as they 
pass through different kinds of tissues. X-ray absorption, like other light absorption, is given by: 

 ( )
transmitted incident

abs

x
LI I e λ
−

=  

The contrast in an x-ray image depends on the difference in absorption length along different 
paths through your body. This is why X-rays are especially good for imaging skeletal features. 

Ultrasound imaging: 

High frequency sound can be used very effectively for non-invasive imaging. It relies on the 
reflection of sound from places in your body where the acoustic impedance changes. This is an 
example of imaging where the wave nature of the method is especially obvious, much more than 
in optical or x-ray imaging. 

Magnetic resonance and radionuclide imaging: 
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Both of these methods rely on inducing particular locations in your body to emit signals. In 
magnetic resonance, the magnetic moments of atomic nuclei are made to oscillate around an 
equilibrium alignment with a field. In radionuclide imaging, radioactive substances are attached 
to molecules which are bioactive, like glucose, then decay in locations where those molecules are 
used in the body. Each sends out a signal announcing where it is. 
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Physics of the Life Sciences II: Chapter 34 

 

In these last few chapters, we’re going to take a quick look at a few topics drawn from what is 
often called “modern physics”. Ironically, this title has little to do with chronology; it is not the 
label for all the latest discoveries in The Physical Review. It is instead given to work based on a 
series of fundamental discoveries made around the beginning of the 20th century. There are two 
great themes in modern physics; quantum mechanics and relativity. Quantum mechanics 
describes the behavior of atoms and their interactions with light with extraordinary precision. 
Einsteinian relativity shifts fundamentally our conception of the space and time in which the rest 
of physics happens.  

Research into physical phenomena which relies heavily on these two areas is called “modern 
physics”, while all the rest, including virtually everything learned so far in this course, is called 
“classical physics”. Both sorts of physics remain the subject of extensive research, with new 
discoveries published every week. In fact most current research requires extensive use of both 
classical and modern physics. A particularly rich and beautiful example of this synergy is the 
field of astrophysics and its quest to understand the origins of things. 

Everything has an origin – nothing comes from nothing. Speculation about the origins of things 
is a deeply human activity, pursued in every culture and present as far back as history goes. 
There is a scientific quest to understand origins as well; indeed explaining why things are the 
way they are is one of our central goals. The decades spanning the beginning of the 21st century 
were a crucial time for this work, the period in which the main features of the history of the 
universe, our first truly scientific cosmology, were first confidently established. Developing and 
testing this cosmology involves application of all parts of physics, both classical and modern, not 
only in explaining observations, but also in constructing the instrumentation which enables this 
research. 

During the next few chapters we will explore some of what is known about how everything came 
to be: our galaxy, the Sun, the Earth, its atmosphere and oceans, life, even the atoms of which we 
are all made. This will be just a brief introduction to an enormous body of contemporary physics. 
But it is an essential story for understanding life here on Earth, and for sensibly approaching the 
search for life elsewhere in the cosmos. We will begin not on the largest scales, but on the 
smallest, with some study of the nuclei which lie at the hearts of atoms.  

Nuclear physics determines what sorts of atoms can exist. These ‘possible’ atoms are what’s 
available for chemistry, and provide the framework for life. We will find that most possible 
nuclei are unstable, they are radioactive, and transform themselves spontaneously into other 
forms. This radioactivity is important for life directly, and provides especially useful tools to the 
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modern life sciences. Finally, what we learn about nuclear physics will help us to understand the 
origin of the elements.  

34.1 Atoms and their nuclei 

In the early 20th century many properties of atoms were known:  

• they are small, around 10-10 meters in size 
• they contain negative electrons which carry very little of their mass 
• they are electrically neutral 
• they are stable 
 

All of these observations emerged from classical physics. Atomic sizes had been determined 
from measurements of diffusion and an understanding of statistical physics. But there was little 
information about their internal structure. It was clear that very tiny electrons could emerge from 
atoms, leaving behind equally charged positive ions which still contained almost all the mass of 
the atom. One theory of the time held that the atom was like a “plum pudding”, a kind of smooth 
blob of positive charge studded with electrons which were sort of like raisins in the pudding.  

To see whether this was the case, something had to be sent down into the atom to find out. This 
probe had, of course, to be very small, much smaller than an atom. Fortunately, such a probe had 
recently been discovered, in the form of alpha particles. Some naturally occurring materials are 
radioactive: they spontaneously emit “rays” of one kind of another. During the 1890’s these 
materials and the rays they emit were the subject of intense study. It was found that while many 
substances were involved, they emitted only a few kinds of rays, which were labeled alpha, beta, 
and gamma rays; names intended to acknowledge how little was really known about each. 

The α rays were known to consist of positively charged, massive, and energetic particles; each 
carrying (for something so very tiny) quite a lot of momentum. To study the inside of atoms, 
New Zealand born physicist Ernst Rutherford directed a beam of these α particles at a thin foil 
made of gold. He expected these high momentum alpha particles to plow through the smooth 
pudding of the atoms and emerge on the other side almost undeflected. Mostly, that’s what he 
found. Almost all of the α’s went more or less straight through the foil. But some did not. 
Occasionally, about 1 time in 8000, they would bounce more or less straight back. This was a 
great surprise. As Rutherford put it “It was quite the most incredible event that ever happened to 
me in my life. It was as incredible as if you fired a 15-inch shell at a piece of tissue paper and it 
came back and hit you.” 

These ricochets implied that, instead of a diffuse pudding, the positive charge in the atom must 
be concentrated in a tiny, massive, lumps at the center of each atom; in a dense nucleus. As it 
turns out, most of the atom is a nearly empty cloud of electrons, while right down at the center is 
a tiny nut containing all the positive charge and almost all the mass. The concentration of 
positive charge in the center is quite extreme. The typical size for a nucleus is 10-14 m, while the 
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typical size of an atom is 10-10 m. So the atom is this cloud of diffuse electrons which is 10,000 
times bigger than the nucleus which lies at its center. This is really empty. If the nucleus where 
the size of a period on this page, about 0.5 mm, the atom would be 10,000 times larger, or about 
5 meters across. 

34.2 Constructing the nucleus: protons and neutrons 

The discovery of the nucleus revealed the basic structure of the atom, but raised a number of 
strange new questions.  

• How could all the positive charge, which after all would like to fly apart, be crammed 
together into this really tiny space? 

• Why is there a limit to which kinds of atoms exist? Why are there not giant atoms with 
1000 electrons? 

• Why are there isotopes? These are atoms with the same number of electrons, and the 
same chemistry, but different masses. 
 

The answers to these questions lie in understanding the constituents of nuclei and their 
interactions.  

Nuclei are made up of protons and neutrons, objects collectively called nucleons. Protons have a 
positive charge equal in magnitude to the electron charge, +1.6x10-19 C. Neutrons are electrically 
neutral. The two are very similar in mass, with mass ~ 1.67×10-27 kg. The neutron is actually 
slightly more massive than the proton, by about .13%. Here are more precise values: 

  mproton = 1.672622 × 10−27 kg 

  mneutron = 1.674927 × 10−27 kg 

Each kind of nucleus is identified by knowing how many protons and neutrons it contains. The 
number of protons is called the “atomic number” of the nucleus. This is because the charge of the 
nucleus determines how many electrons the atom will have, and the number of electrons in turn 
determines the chemistry of the atom. The “atomic mass number” of the nucleus is the combined 
number of protons and neutrons, the total number of nucleons in the nucleus. Such a nucleus is 
described symbolically as: 

 

 

Where the “X” is the symbol for the chemical element (like H, He, O, etc.), A is the atomic mass 
number, and Z is the atomic number. Now the atomic number actually tells you the same thing as 
the name of the element, so this notation is a bit redundant, but including Z is still a useful 
reminder of how many neutrons there are (since Nneutrons = A – Z). 

XA
Z
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Isotopes 

Nuclei with a particular number of protons (and hence the same number of electrons) are all 
examples of the same chemical element. They are dressed with the same coating of electrons, 
and hence interact chemically with other atoms in essentially the same way.  In this sense, all 
nuclei with the same number of protons are the same. But they can differ. In particular, they may 
have different numbers of neutrons. Nuclei with the same numbers of protons but different 
numbers of neutrons are called “isotopes” of one another. 

Take carbon as an example. There are two permanently stable forms of carbon: 12
6C and 13

6C. On 
Earth most of the carbon, about 99%, is the former, while about 1% is the latter. There are other 
isotopes too. Some have fewer neutrons (like 96C – 11

6C) and some have more (like 14
6C - 21

6C). 
These are unstable nuclei. While they stick together for a while, if you wait around each will 
eventually fall apart.  

It is worth stressing that any two nuclei with the same number of protons and neutrons are truly 
identical. There is no fundamental way to label a nucleus with another property which would 
make them different. They are completely, perfectly interchangeable. 

The strong nuclear force 

It is useful to think of a nucleus as built up of very tiny hard, spherical protons and neutrons, all 
packed in together like oranges in a bowl. These spheres stick to one another: they are attracted 
together by a new force called the “strong nuclear force”. This force differs substantially from 
other fundamental forces like gravity and the electromagnetic force because it has a very short 
range. It pulls together any two nucleons, but only if they are very close, separated by less than 
about 10-15 m. As a result, each nucleon sticks to its neighbors 
only, as if they were coated with Velcro.  

So when you assemble a nucleus, it’s like a ball of nucleons. The 
radius of the nucleus then should depend on the number of 
nucleons as r = r0A1/3. The parameter r0 is a characteristic size for 
a nucleon, and the cube root of the atomic mass number A is 
there to recognize that each additional nucleon will fill more 
volume, and that the radius scales like Volume1/3. The 
characteristic size r0 is determined from experiment to be around 
1.2x10-15 m. So that’s about the size of an 11H nucleus, while a 
64

30Zn nucleus is about four times large (641/3 = 4). 

The stability of a nucleus comes about from a balance between 
forces. The strong nuclear force, by gluing together neighboring nucleons, holds it together. 
Meanwhile, the electromagnetic force, by pushing protons apart, tries to break it apart. There is a 
essential difference between these two forces. The strong force has a very short range, acting 
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only on nearest neighbors, but the electromagnetic force is long range, allowing protons on one 
side of the nucleus to push on those which are far away.  

As a result, when nuclei get bigger, they need to add more and more neutrons relative to protons. 
Adding neutrons increases the available binding from the strong force while not increasing the 
repulsive electromagnetic force. This is shown in the figure, where stable nuclei are represented 
by the little squares. At low Z, the number of neutrons is roughly equal to the number of protons. 
At higher Z, the fraction of neutrons increases for stable isotopes. 

34.3 Binding energy and the mass defect 

Nuclei are bound together by the strong nuclear force. We call it the strong force because it 
really is strong! It takes a LOT of energy to break up an atomic nucleus. This is, of course, the 
reason for the seeming permanence of the elements. What would happen if nucleons were not 
very tightly bound? If the thermal energy which is always around (~kT) was comparable to the 
binding energy of nucleons, then nuclei would spontaneously break up and reform all the time, 
just as the bonds between water molecules do in liquid water. In such a world, elements wouldn’t 
be stable. But instead, the binding energies of nucleons are much, much greater than typical 
thermal energies. As a result, nuclei are stable over very long periods of time.  

One way to see the large amount of binding energy in nucleons is by examining the so-called 
mass defect. It takes energy to break apart a nucleus. It is as if the nucleons in the nucleus have 
negative energies, they’re in an energy well, and if we want to take the nucleus apart, we must 
give them energy adequate to get out. This “binding energy” is actually measurable without even 
breaking up the nucleus. Einstein’s most famous equation, E=mc2, provides the key.  

Imagine a bunch of N neutrons and P protons, all far apart. While they are separated, they will 
have mass 

 total neutron protonm Nm Pm= +  

 Einstein tells us this corresponds to a total energy: 

 ( ) 2
separated neutron protonE Nm Pm c= +  

 Now imagine the nucleons come close together. As they do, the powerful attraction of the strong 
force pulls them together along the direction in which they’re moving. It does positive work, 
raising the kinetic energy of the nucleons. This force pulls them together and they zoom into one 
another moving fast. If they don’t give up this extra energy, they will zoom in fast, bounce off 
one another, and end up far apart again. But if they do give up this energy, emitting it in the form 
of energetic light, they can slow down, stick together, and remain bound to one another.  
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This process is exactly analogous to what happens when an electron is bound to a positive ion. 
As it approaches, it is pulled inward by the electromagnetic force. This does work on it, speeding 
it up. If it did not lose this increased kinetic energy it would zoom right past the ion and emerge 
again losing that kinetic energy on the way out. If the electron is to remain in the atom, it must 
fall inward, gaining kinetic energy, then lose that energy, again in the form of emitted light, to 
remain bound in the atom.  

Energy must be released every time a bond is formed, whether the force involved is the strong 
nuclear force (as in the formation of a nucleus), the electromagnetic force (as in the formation of 
an atom), or the gravitational force (as in the formation of a planet, star, or galaxy). As we have 
seen, this release of energy is essential to the spontaneous formation of all these things. Since 
entropy will always increase, it is only by releasing this energy that new, more ordered structures 
like large nuclei, atoms, and stars can spontaneously form.  

Returning to our nucleons; once they stick together, they actually have less energy than they did 
when widely separated, they gave it up in the process of forming. This lowered energy shows up 
as a lower mass! You can calculate it from: 

 
deficit neutron proton nucleus

2
binding deficit

m Nm Pm m

E m c

= + −

=
 

This is a very real effect. If you stick two protons and two neutrons together to form a 42He 
nucleus, quite a substantial quantity of energy is released, and about 0.75% of the total mass 
disappears. Of course this mass doesn’t really disappear; it is converted (according to Einstein’s 

2E mc= ) to energy and released when the He is formed. If you want to break apart this 42He 
nucleus, you have to return this energy. You have to add back this binding energy to separate its 
nucleons.   

The larger the nucleus, the larger the binding energy: this is just because every strong force bond 
between neighboring nucleons increases the binding. As a result it is often useful to compare the 
binding of different nuclei by measuring the binding energy per nucleon, rather than the total 
binding energy per nucleus. 

 
( ) 2

neutron proton nucleusbinding

nucleon

Nm Pm m cE
N P

+ −
=

+
 

Those nuclei with the largest binding energy per nucleon are, pound for pound, the most stable. 
Each of the nucleons inside such a nucleus is most tightly held in place, and you would have to 
supply a lot of energy to break them up. This varying stability is well illustrated in the famous 
“curve of binding energy” shown in the figure below. It graphs, for the most common stable 
forms of some elements, the amount of binding energy per nucleon as a function of atomic 
number.  
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You can see in this figure that very small nuclei have rather low BE/nucleon. This is because 
they are not yet taking full advantage of binding the strong force can provide. Each nucleon in 
them could bind to more nucleons, adding more binding without much cost. Once you reach 
56

26Fe, the isotope called Iron-56, every nucleon is doing its level best to bind to neighbors, and 
you’re getting the best binding energy per nucleon possible. Nuclei larger than this are losing the 
battle between the attractive strong force and the repulsive long range electromagnetic force. As 
you add more protons, the proton-proton repulsion increases faster than you can increase the 
nucleon binding, and the BE/nucleon slowly drops.  

 

 

Since neutrons add strong force attraction without contributing to Coulomb repulsion, you might 
wonder why there are not nuclei with many neutrons and few (or no!) protons. As we will see 
below, the neutron is not, on its own, stable. Left alone, it spontaneously decays into a proton 
and an electron. When a neutron is close to a proton, this decay doesn’t happen, and the neutron 
is stable. This makes a nucleus with a roughly equal balance of protons and neutrons stable. A 
neutron rich nucleus (with the number of neutrons much bigger than the number of protons) is 
unstable. One of its neutrons will decay relatively quickly, spitting out an electron and leaving 
behind another proton in the nucleus. This changes the atomic number, and elemental identity of 
the nucleus, moving it closer to a balanced number of protons and neutrons.  

The scale of nuclear binding energy compared to electromagnetic and gravitational binding 

When thinking about how matter is constructed, it is important to understand the very different 
energy scales associated with nuclear, electromagnetic, and gravitational binding. To make this 
comparison, let’s consider the binding energies associated with a single helium atom. The total 

Most tightly bound nucleus 

The Sun generates heat by 
‘fusing’ Hydrogen into Helium

The inside of the 
Earth stays warm, 
and atomic bombs 
release energy, by 
‘fissioning’ these 
heavy atoms 
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binding energy of this 42He nucleus is about 28.3 million electron volts. The binding energy 
associated with the two electrons attached to this atom is about 100 electron volts, three hundred 
thousand times less. Meanwhile, the gravitational energy binding the nucleons in this atom is 
about 7x10-31 electron volts. This is almost inconceivably less than the other relevant energies. 

As a useful shorthand, you should remember that the energies associated with nuclear physics 
will typically be tens of millions of electron volts, the energies associated with atomic physics 
will be tens of electron volts, and the energies associated with gravity will be completely 
negligible within atoms and molecules. To make gravity important, you must have truly 
enormous collections of matter; something the size of a planet. In this regard, it might be worth 
noting that the gravitational potential energy of this helium atom in interaction with the Earth is 
about 0.26 electron volts. Only when interacting with something enormous, like the Earth, is the 
gravitational energy of a single atom relevant.  

Nuclear fusion: combining light nuclei to release binding energy - the Coulomb barrier 

The curve of binding energy tells us many things. If, for example, we take two 21H nuclei and 
stick them together into a 42He nucleus, the amount of binding energy per nucleon will increase. 
The creation of this more tightly bound object will be associated with a release of energy. The 
energy that comes out is the same as what we would have to put in to break up that 42He nucleus.  
This process, fusing together two light elements to make heavier ones, releases energy. It can 
continue to work, providing more and more energy, until you reach 56

26Fe. Given that energy is 
released when light nuclei bind together into heavier ones, why is it that so much hydrogen 
remains? What prevents fusion from quickly eating up all the hydrogen in the universe? 

The challenge for fusion lies in the long range nature of the electromagnetic force and the short 
range nature of the strong nuclear force. To see this, let’s imagine the process of fusing two 
‘heavy hydrogen’ 21H nuclei (also called deuterons) together to form one 42He nucleus. When far 
apart the two 21H nuclei scarcely interact. As they come closer together, the electromagnetic 
force pushes the two apart, trying to prevent them from coming closer together. If they manage 
to get very close together, then the strong force can begin to act, suddenly latching on, holding 
the deuterons together much more strongly than the electromagnetic force attempts to push them 
apart, and releasing a substantial amount of binding energy. To fuse together, these deuterons 
must first overcome a substantial ‘Coulomb barrier’.  

We can estimate the size of this barrier using what we know about the potential energy 
associated with the Coulomb force and the approximate range of the strong nuclear force (around 
10-14 m). 
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This sounds like a tiny energy, but recall that this is the energy associated with a single deuteron. 
We have learned that the typical kinetic energy of an atom is determined by the temperature to 
be 

 3
2 BKE k T=  

At room temperature, this is about 6.3x10-21 J or 0.04 eV; about 3.7 million times less than is 
required to climb the Coulomb barrier for deuteron fusion. Nuclei like these don’t fuse under 
ordinary conditions because they lack the energy to cross the Coulomb barrier. 

What is required to allow fusion to happen? If the temperature is high enough, it will happen 
freely, but it must be much hotter than room temperature, a few tens of millions of degrees 
Kelvin will do the trick. Put hydrogen in these conditions, and fusion will begin to occur, 
releasing more and more energy. What happens when this occurs? The temperature of this 
material is very high. Fusion occurs, releasing still more energy, raising the temperature further. 
This very high temperature material creates a huge pressure, and it will expand explosively 
outward unless held in by a truly enormous force. 

This explosive expansion is exactly what occurs in a hydrogen bomb. The hydrogen fuel burns 
through fusion, releasing enormous amounts of energy and raising the temperature further. This 
superhot, high pressure material expands rapidly, cooling as it does, until the temperature drops 
below that required for fusion. After this, no new energy is released, and the further expansion of 
the components of the bomb are continues only because it is already so hot. 

It is possible to have fusion provide a continuous, stable source of energy. Indeed it powers every 
star. To do this, the enormous outward pressure generated by matter at temperatures of tens of 
millions of Kelvin must be balanced by an equally gigantic inward force. In a star, this is 
provided by gravity. We will discuss this balance a bit more in Chapter 36.  

Nuclear fission: splitting heavy nuclei to release binding energy 

Fusion of light nuclei into heavier ones releases energy right up to the top of the curve of binding 
energy, at 56

26Fe.  After this, fusing together two nuclei doesn’t release energy, it requires energy. 
Of course nuclei heavier than iron can be created, but since doing so requires an input of energy 
it won’t happen spontaneously. These heavier nuclei can only be created in an environment 
awash in excess energy, energy which could be used to pay for their decreased binding energy 
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per nucleon. We will see in Chapter 36 when and where the conditions which allowed this came 
about. 

There is still a way to extract energy from nuclei on the high side of the curve of binding energy. 
Instead of fusing such nuclei together, we can split them apart, separating them into pieces with 
higher total binding energy per nucleon than the original nucleus had. A very heavy nucleus, like 
235

92U, can potentially be split into two lighter nuclei, each of which has higher binding energy 
per nucleon, resulting in a release of energy. This nuclear “fission” is a natural, exothermic, 
process for heavy nuclei. You can split light nuclei like 12

6C, but it costs energy to do so, rather 
than releasing it.  

Note that there is no Coulomb barrier problem for nuclear fission, no need to push two positively 
charged nuclei close together before the action can start. Fission, in contrast to fusion, can begin 
at any temperature. Of course once it does begin, it releases quite a lot of energy, heating 
whatever is around suddenly and possibly dramatically. This is how a fission bomb works. It is 
also the process which drives nuclear power plants. Fission, running in a controlled way, releases 
energy, which is used to heat water. The hot water is then used to drive turbines, just as water 
heated with gas or coal would be.  

34.4 Heavy nuclei and nuclear stability 

Nuclei which aren’t very tightly bound, which don’t have a very good balance of neutrons and protons,are 
unstable. It is possible for them to simply fall apart in one way or another. These nuclear 
“decays” are the cause of natural radioactivity. They happen in many ways, but must always 
obey a set of conservation laws, including: 

• Conservation of energy 
• Conservation of linear and angular momentum 
• Conservation of electric charge 
• Conservation of “baryon number” 
• Conservation of “lepton number” 

 
These rules allow many different decays, but three basic forms are especially important: 

1. Alpha decay 
2. Beta decay and electron capture 
3. Spontaneous fission 

 
The first is alpha decay, in which a heavy nucleus turns into a lighter one by spontaneously 
spitting out a 42He nucleus. One example is the reaction: 

 

 
HeThU 4

2
234

90
238
92 +→
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In this reaction, the Uranium nucleus spits out a Helium nucleus, in the process turning into a 
Thorium nucleus and releasing some energy. Energy is released because the average binding 
energy per nucleon of the decay products is higher than the binding energy per nucleon of the 
original parent nucleus. In this case the difference in binding energy per nucleon is not very 
large. The total energy released in the decay is about 4.3 MeV, so the shift in binding energy per 
nucleon is only about 4.3 MeV / 238 nucleons = 0.018 MeV per nucleon.  

Alpha decay is particularly common for heavy nuclei. They can release energy by splitting into 
smaller nuclei, and since the 42He nucleus is unusually tightly bound, it is an especially likely 
candidate for emission. 

The second mode of decay is called “beta” decay, in which a nucleus emits a beta ray, now 
known to be just an electron. In this kind of decay, a neutron inside the nucleus decays into a 
proton and an electron (n => p+ + e-). This increases the atomic number of the nucleus Z by one, 
while keeping the atomic mass number A the same. An alternative form of this decay is called 
“electron capture”, a kind of inverse beta decay. In this decay, a proton in the nucleus captures 
one of the orbiting electrons, and turns into a neutron (p+

 + e- => n). This decreases Z by one 
while keeping A the same. Both beta decay and electron capture involve an important, though 
subtle, additional element. This is required by the conservation laws which the decays must all 
obey. These conservation laws include the conservation of “lepton number” and “baryon 
number”. What are these?  

Leptons are light particles (that’s what the name means), including the familiar electron and it’s 
unstable, more massive cousins the muon and tau particles. There is another, essential, lepton 
called the “neutrino”, or little neutral one. Baryons are the heavy particles; usually we see only 
the proton and neutron.  

Every one of these particles has “antiparticles”, which have opposite electric charge, lepton 
number, and baryon number. For example, while the electron has electric charge of –qe and 
lepton number +1, it’s antiparticle the positron has electric charge +qe and lepton number -1. 

 

Particle Lepton Number Baryon Number Electric Charge Antiparticle 

Electron (e-) +1 0 -1 Positron (e+) 

Neutrino (υ ) +1 0 0 Antineutrino (υ ) 

Proton (p+) 0 +1 +1 Antiproton (p-) 

Neutron ( n ) 0 +1 0 Antineutron ( n ) 
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Just as you can’t create positive or negative electric charge, so too you can’t just create new 
leptons or baryons. The accounting is done by counting lepton number and baryon number just 
as we count electric charge. Every nuclear decay must have the same electric charge, lepton 
number, and baryon number both before and after the decay. 

For beta decay, these conservation laws imply that the decay must include an additional element. 
You can’t just turn a neutron into a proton and an electron, as this would change lepton number. 
So in fact the basic relations for beta decay and electron capture look like this:  

                and          n p e p e nυ υ+ − + −⇒ + + + ⇒ +  

The presence of these “neutrinos”, which interact very little with matter, was first predicted fully 
thirty years before they were directly detected. But now it is clear that they are just as real as the 
protons and neutrons. 

The third major form of decay is spontaneous fission. Very heavy nuclei are weakly bound, and 
sometimes they just split apart into a variety of roughly equal parts. This process is  

All of these decays happen in a way which allows the nuclei to move more toward a stable 
balance in their number of protons and neutrons. For example, a neutron rich isotope like 14

6C 
will decay by converting a neutron to a proton through beta decay, becoming 14

7N. A neutron 
poor isotope, like 11

6C will decay by electron capture to 11
5B. Nuclei that are heavy, but not too 

heavy, will emit alphas, while the really heavy ones will just fall apart in fission. This instability 
at the high end is the reason that the periodic table for stable isotopes is limited. You can’t make 
heavier nuclei and have them hang around. As soon as you stick one of these together, it falls 
apart. 

Isotopes and their modes of decay are recorded in a table of isotopes which mirrors the periodic 
table, but is charted not simply as a function of atomic number,  but of both proton and neutron 
number . In this table of isotopes there is a ‘valley of stability’, a line of  isotopes which are 
stable, surrounded by nearby isotopes which are not. The farther from the central set of stable 
elements the more unstable the isotopes are. The decays which will occur are generally those 
which transform the nucleus towards the line of stability in an obvious way.  

For example, nuclei with too many neutrons beta decay, converting one of the neutrons into a 
proton and emitting an electron and an electron anti-neutrino. Nuclei with too many protons do 
the opposite, typically capturing an electron, converting a proton to a neutron, and emitting an 
electron neutrino. Nuclei far from stability, especially those well beyond iron, often decay by 
alpha emission. The heaviest nuclei are barely held together at all, and are likely to fall apart in 
spontaneous fission. These ideas are illustrated in the two figures below, which show a subset of 
a detailed table of isotopes and a cartoon sketch of the whole valley of stability. 
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A Quick Summary of Some Important Relations 
Basics of nulcei: 

Nuclei are made of protons and neutrons, have atomic numbers Z equal to their number of 
protons, atomic mass numbers A equal to the total number of protons and neutrons, and radii 
given by: 

 ( )
1

15 31.2 10  mr A−= ×  

 Binding energy per nucleon: 

The binding energy per nucleon of a nucleus can be computed from its mass deficit according to: 

 ( ) ( ) 22
neutron proton nucleusbinding

nucleon
mass deficit

number of nucleons
Nm Pm m cE c

N P
+ −

= =
+

 

The isotope 56
26Fe has the highest binding energy per nucleon of any nucleus. 

Nuclear fusion of light elements: 

Light elements can fuse to heavier ones with larger binding energy per nucleon, but only if they 
have adequate kinetic energy to overcome the repulsive Coulomb barrier caused by their positive 
electric charges. This happens only at very high temperatures. 

Nuclear fission of heavy elements: 

Elements heavier than iron can release energy (become more tightly bound) by breaking into 
smaller pieces. Often this involves emission of an α particle, but it may also involve spontaneous 
fission. Fission of Uranium is used to power nuclear power plants. 

Radioactive decays: 

Isotopes which are unstable will decay toward more tightly bound nuclei spontaneously. Three 
important modes of decay are essential: 

• Alpha decay: emission of a 4He nucleus 
• Beta decay or electron capture: conversion of a neutron to a proton, or a proton to a 

neutron 
• Spontaneous fission: large scale splitting of a particularly heavy nucleus 

These decays must all obey a series of conservation laws. 
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Physics of the Life Sciences II: Chapter 35 
 

35.1 Radioactive decay and decay chains 

Unstable, radioactive elements often decay through a series of 
reactions, each happening spontaneously so long as it releases 
energy. It is typical for such a chain to have a long series of 
reactions before all the pieces left are themselves stable. For 
example, the alpha decay: 

 

Is then followed by the beta decay reaction 

 

Each step on the decay chain, which is like a cascade, takes 
different amounts of time to occur. In each case the time required is 
related to the amount of energy which is released. Reactions which 
release a lot of energy will typically happen very quickly, while 
reactions involving very little release of energy have longer lifetimes. 

Looking at the 238U decay chain, you can see it is dominated in time by the first decay, with a 
very long 4.5 billion year half life. Even the 233,000 year half life of 234

92U is small compared to 
this. 

Gamma decay of excited nuclei 

Sometimes during these decay chains a “daughter” nucleus will be produced in an excited state. 
This excited nucleus is very like an excited state of an atom. Such an excited state decays to a 
ground state through emission of a photon. Because nuclear energies are large, the photons from 
the nuclear decays tend to be very energetic, and are typically gamma-rays. So in addition to lots 
of alpha and beta rays, radioactive decay chains often emit some gamma-rays too.  

Unlike alpha and beta decays, gamma ray emitting transitions do not mark a change in the 
identity of the nucleus. They emerge from a change in state of the nucleus (from higher to lower 
energy) but do not involve a transition from one isotope to another. 

Half-life and decay 

Radioactive decay is a purely statistical phenomenon. There is no way to predict exactly when a 
particular nucleus will decay. In this sense it is like other statistical phenomena we have touched 
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on in this course. For example, in a diffusive process, you don’t predict which atoms will be 
where, but you can make strong and simple statements about how many atoms will be in each 
location. Radioactive decay is a similarly statistical phenomenon. 

Predictions for radioactive decay begin with an assertion very like the fundamental principle of 
statistical mechanics. We start by asserting that each nucleus has exactly the same probability of 
decaying in each period of time (we will call this probability λ), and that the decay of each 
nucleus is completely unaffected by the state of any other. When this is true, the change in the 
number of nuclei dN in some period of time dt is proportional to the number of nuclei present N: 

 
dN Ndt
dN N
dt

λ

λ

= −

= −
 

Our assertion that the probability of decay is constant, and unaffected by any outside influence is 
a strong one. It says, for example, that the decay probability of a nucleus is independent of the 
temperature of the material, the ionization state of the atom, or the decays of any other nuclei in 
the sample. This assumption of independence is quite good, in large part because the nuclei are 
quite isolated, tiny little nuggets strongly bound deep within each atom. 

The relation relation for the decay rate derived above is a differential equation for the number N 
of nuclei remaining in the sample. Solving this equations implies that if you start with a number 
of nuclei N0, after a time t you will now have: 

 ( ) 0
tN t N e λ−=  

The decay constant λ, which measures the probability that each nucleus will decay in any given 
second, also tells us how long we will have to wait to see the number of remaining nuclei fall to 
a particular value. It is typical to ask, for example, how long we must wait before half of the 
nuclei originally present decay. This time, called the half-life, is related to the decay constant in a 
simple way: 
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When the time constant λ is small, the half-life is large. When the time constant λ is large, the 
half-life is short. 

Radionuclide dating: general issues 
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Radionuclide dating: Carbon 14 dating and human history 

Radionuclide dating: age of the Earth 

If you know N0, and you measure N, you can determine the age of a sample: 

 

 

This method is used with 14
6C, which has a half-life of about 5730 years, to measure the ages of 

organic remains which died sometime in the last 40,000 years. 

Longer lived isotopes provide the opportunity to date older things. For example, this sort of 
radionuclide dating has been used to provide relatively precise age for the Earth. One decay 
useful for this purpose is the chain from 238

92U => 206
82Pb. This chain, shown in the figure above, 

has an overall half-life of around 4.5 billion years. 

35.2 Radiation and life 

Radioactive elements, when they decay, release energetic particles which tend to smash through 
the material around them. All three common kinds of radiation (α, β, and γ) can cause important 
damage to biomolecules in cells. This damage can prevent the cells from working correctly, and 
even lead to death. It is important to understand why this subatomic radiation is harmful. It’s not 
that the total energy in each particle is a problem. If you had the same amount of energy in the 
form of heat, for example, no harm would be done. These subatomic particles are dangerous 
because they are very localized; able to deliver their whole load of energy to a single spot.  

The three forms of radiation differ dramatically in their penetrating power too. Each is absorbed 
by matter, and again a useful way to describe this effect is by talking about the absorption length. 
If the initial intensity of some radiation (in particles per square meter per second) is I0, then the 
intensity after passing through some material of thickness x is given by I(x) = I0e-x/x0, where x0 is 
the “absorption length” for this kind of radiation in this kind of material. Not surprisingly, these 
absorption lengths also depend on energy, with more energetic particles penetrating more deeply. 

Typical values for absorption in water are: 

• 1 mm for α rays 
• 1 cm for β rays 
• 10 cm for γ rays 

 
This sort of absorption is used in shielding, allowing a person to be protected from radiation, 
sometimes by a very small amount of material. It also suggests that, for example, α emitters are 
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not a big danger. They are easily shielded against, unless, for example, you eat them. γ emitters, 
on the other hand, are a lot more difficult to shield. 

Energy loss rates 
Dependence on charge squared over velocity squared gives a good sense of  alpha vs. proton vs. 
electron… 

Measuring exposure 

Damage from radiation is caused by ionization, by removing electrons from molecules. This 
ionization deposits energy, and the most basic measure of radiation exposure is a measure of the 
total energy deposited per unit mass: the “rad”.  

One rad is defined as 0.01 J/kg. Not so very much energy, but it is delivered in this particularly 
nasty, localized way. An exposure of about 104 rads, or 100 J/kg in the form of ionizing 
radiation, is enough to kill almost any living tissue.  

Not all doses are the same, and the simplest adjustment to account for this fact uses the “relative 
biological effectiveness”, or RBE, factor. This factor accounts for the reality that alpha particles, 
Joule for Joule, do much more harm than the others. RBE is defined to be one for beta rays. It is 
somewhere between 10 and 20 for α rays, and about 0.6 for γ rays. In other words, 1 rad of α 
exposure is roughly 15 times worse than 1 rad of β exposure.  

Putting these together gives the exposure in “biologically equivalent dose” or rems. You get this 
my multiply dose in rads * RBE. So a 1 rad dose in β rays is 1 rem, while a 1 rad dose in α rays 
is 10-20 rem. 

Natural exposure 

Radiation is natural phenomenon. We do harness it sometimes and manipulate it for our own 
purposes, but it is around us no matter what. We are all exposed to radiation from many sources. 
One of the dominant sources is cosmic rays, energetic particles smashing into the Earth from 
outer space. Cosmic rays give the typical person a dose of about 45 millirems per year.  

Additional radiation comes from radioactive rocks and other materials in your environment, as 
well as radioactive elements in your body. These give an additional dose of about the same level 
40-50 millirems per year. A total dose of 500 millirems, or 0.5 rems per year is considered safe. 

There are ways you can face much more radiation. High altitudes, especially flights, expose you 
to substantially more cosmic radiation, though this is important only if you spend a lot of time 
flying. Radon, a heavy, highly radioactive gas naturally produced in the soil in some places can 
build up in basements, leading to very large radiation doses. X-rays and various radionuclide 
based medical treatments can lead to substantially greater exposures as well. 
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A Quick Summary of Some Important Relations 
 

Radioactive decays and half lives: 

In radioactive decays the decay rate is proportional to the number of available nuclei: 

 dN N
dt

λ= −  

This implies that the number of nuclei remaining at time t is related to the number at time t=0 
according to: 

 ( ) 0
tN t N e λ−=  

At some point called the half-life, only half of the original nuclei remain. This time is related to 
the decay constant λ by: 

 ( )
1
2

ln 2 0.693t
λ λ

= =  

Radioactive dating: 

If you know how much of a nucleus was originally present, and you measure how much remains, 
you can discover the age of a sample, according to the relation:  
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Radiation damage and exposure: 

Radiation exposure is measured by total energy deposited. One ‘rad’ is 0.01 J/kg. More relevant 
biologically is the biologically equivalent dose, measured in ‘rems’. One rem is one rad 
multiplied by the ‘relative biological efficiency’ of the type of radiation. 
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Physics of the Life Sciences II: Chapter 36 
 

Once we understand how nuclei work we can see why the elements which make up our Earthly 
periodic table are all that exist. We also expect them to be all of the elements that can exist. All 
the possible nuclei are built up of just the two constituents, protons and neutrons, and even 
among these only a narrow subset are bound together tightly enough to be stable. So that’s it, the 
familiar periodic table includes the full list of elements. Every single one can be found here on 
Earth, and we don’t expect there to be any new ones found anywhere else in the universe. 

Nuclear physicists continue to test our understanding of how nucleons come together into nuclei, 
and every once and a while you may hear about them creating a new element. This means 
they’ve made at least one nucleus with atomic number greater than any seen before. 
Unfortunately, all of these new nuclei are much too large to be stable, and they decay with 
extraordinary alacrity. There are other unstable nuclei to be (briefly) constructed and studied, 
farther and farther from the ridge of stability. But unfortunately none are of practical importance. 

36.1 What is the universe made of, and how do we know? 

How do we know that these same earthly elements are the only ones that exist in the universe? 
One of the principle analytic techniques in our earth bound laboratories is spectroscopy. 
Measurements of the light emitted or absorbed by a material, particularly when that material is in 
a diffuse, gaseous form, show specific lines of emission and absorption, spectral fingerprints, 
revealing the elemental composition of the material. The origin of these spectral fingerprints lies 
in quantum mechanics: atoms can only emit and absorb light with a very specific set of energies.  

Early in the history of spectroscopy, Josef Frauenhofer examined the spectrum of the Sun in 
some detail, and found it extremely rich in information; a smooth continuum of light interrupted 
by a forest of hundreds of dark absorption lines (this is shown in the figure below). Similar 
patterns of lines were discovered in the spectra of distant stars. 

 

Physics 235 Winter 2011 
Copyright Timothy McKay

301



Understanding this rich forest required an understanding of thermodynamics, electricity and 
magnetism, statistical physics, and quantum mechanics. In 1924 a brilliant young Harvard 
astronomer named Cecelia Payne-Gaposchkin showed as part of her PhD thesis that all stars, 
including the Sun, are made almost entirely of Hydrogen and Helium. This was a shocking 
discovery, as it implied that most of the matter in the universe is made of these two light 
elements. This is in stark contrast to the Earth which has elemental abundances dominated by 
heavier elements, especially Oxygen and Silicon. Her results have held up to almost a century of 
tests, and the elemental abundances averaged over the Solar System and here on Earth are shown 
in the Figures below. 

 

The elemental composition of the universe is dominated by Hydrogen and Helium, rather than by 
heavier elements (like Oxygen and Silicon) which are most abundant here on the Earth. 
Hydrogen atoms are around 3000 times more common than Oxygen atoms. Measured by mass, 

Solar system abundances 

Terrestrial abundances

Note the much higher H and He 
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rather than by number of atoms, Hydrogen makes up 74% of the mass of atoms in the universe, 
with Helium taking up another 24%. Less than 2% of the elemental composition of the universe, 
by mass, is elements heavier than Helium. The dominance of light elements is one of the main 
facts about the universe. Any theory which aims to describe origins will have to explain why the 
elements have the abundances they do, and in particular why the light elements are so 
remarkably dominant. 

36.1 Origin of the elements: the big bang and stars 

We know why the elements we have exist, but where did they all come from? Where and how 
were they made, and why do they appear in the particular mix of abundances which we find 
today? To make nuclei you need the ingredients (protons and neutrons), and you need to be able 
to get them close enough together for the short range strong nuclear force to grab hold: you must 
overcome the Coulomb barrier. Usually, this requires having the nucleons move in very rapid 
thermal motion, so that their momentum can overcome the repulsion and let the positively charge 
bits get close enough for the strong force to kick in. So to understand the origin of the elements, 
we need to know when (and where) in the history of the universe matter was hot and dense 
enough for this to happen. 

How to see the history of the universe 

Scientific study of historical subjects, like the history of the universe, or of life on Earth, is a 
challenge because we were not present when this history occurred. We must instead take 
advantage of all the remaining information about those distant times. In this study of life on 
Earth this involves examining fossil evidence found in datable layers within the Earth, and 
increasingly within the genetic material of living descendents. When we study the history of the 
Universe our task is actually simpler; we can actually see the past directly. 

Light travels at a large but finite speed. Because of this, light arriving from a distant source right 
now was actually emitted by that source at some time in the past. The more distant a source is, 
the farther back in time you see it. Since light travels very rapidly (about 1 foot per nanosecond) 
this time delay is not apparent in everyday life. Only when you look beyond the Earth do these 
delays begin to pile up. When you examine the moon, you see it as it was about 1 second ago. 
The Sun is more remote. Sunlight arriving at the Earth is about 8.4 minutes old. You can never 
see the Sun now. You can only see it as it was 8.4 minutes ago. The nearest stars are much more 
distant, we can see them only as they were three or four years ago. The Andromeda galaxy, our 
nearest sizeable neighbor, is so far away that we see it as it was 2.9 million years in the past. 

This strange consequence of the finite speed of light is a bonanza for scientists wanting to study 
how things came to be in the universe. We don’t have to rely on limited and hidden fossil 
evidence; we can observe the past directly!  
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There are two caveats to this exciting prospect. The first is fundamental - we can’t actually see 
our own history. Light which shows the Earth as it was 2.9 million years ago isn’t here anymore; 
it’s spreading out from us, and just now arriving at the Andromeda galaxy. So we don’t see the 
Earth’s specific history, instead we see what some parts of the universe looked like at each point 
in the past. This is fine for studying the average history of the universe, and to the extent that our 
own history is typical, fine for us. 

The second caveat is technical. Since earlier epochs in history are seen from very far away, 
observing them precisely is quite a challenge. Light from such distant objects is extremely faint, 
and the angular sizes of things become very small. To observe the past, we must precisely 
measure the very distant. This technical challenge held up the development until, in the 1980’s 
and 1990’s, an array of new technologies enabled us to finally make the measurements required 
to solidly establish cosmology as an empirical science. 

First hints of cosmic history: Hubble’s velocity distance relation 

Scientific study of the origins of the universe began as pure speculation, without evidence. Once 
the finite speed of light was known (and it was first accurately measured  by Ole Romer in the 
1670’s), it was apparent that cosmic history could be seen in the sky. But for centuries it 
remained too remote to observe. With the creation of the first large telescopes in the early 20th 
century, it became possible to measure the light from galaxies more distant than Andromeda, and 
many people began doing so.  

Methods were developed for estimating the distances to remote galaxies. The most important, 
refined for use by Henrietta Leavitt at the Harvard Observatory, involved the use of pulsating 
variable stars as brightness standards. These Cepheid variable stars pulsate, growing brighter and 
fainter with a regular period. The period of each star is closely related to the total power it emits. 
By observing how the star pulsates, and measuring the intensity of light which arrives from it, it 
is possible to determine the distance to it. By defining the relation between period and total 
power, Leavitt provided a yardstick for measuring the distances to galaxies. 

This new measuring tool was quickly put to work by Edwin Hubble and his colleagues, who 
used the new 200” Hooker telescope in California to measure distances to a few dozen galaxies. 
In addition to measuring distances to the galaxies, they recorded their spectra. Galaxy spectra are 
somewhat different from stellar spectra, but only because a galaxy spectrum is constructed by 
adding together the stellar spectra of billions of individual stars. Hubble discovered a surprising 
relationship between the distance to a galaxy and the nature of its spectrum. First, the spectrum 
of almost every galaxy he examined was ‘stretched’ relative to what you might expect. Every 
spectral line he could identify was found at a wavelength longer than it would have been in the 
lab, and in each galaxy, the same stretch factor, now called the redshift, was the same for all 
spectral lines. 
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At the time, Hubble and his colleagues interpreted this shifting, this increase of all wavelengths 
relative to what was expected, as a Doppler shift. Recall that in Chapter 28 we wrote: 

 source source
emitted emitted 1observed

c v v
c c

λ λ λ+ ⎛ ⎞= = +⎜ ⎟
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In this interpretation, a galaxy with wavelengths all 10% higher than they seems to be moving 
with a speed: 
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Using this interpretation, Hubble constructed a diagram comparing the distance to each galaxy 
and each galaxies ‘velocity’. The original diagram he published in the Proceedings of the 
National Academy of Sciences in 1929 is presented below: 

 

This strange relation suggested that somehow, almost every galaxy is moving away from us. Not 
only that, there is a relation between distance and recession velocity. The more distant a galaxy 
is, the more rapidly it seems to move away from us. 
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Reinterpreting Hubble’s diagram: measurements of expansion history 

Since Hubble’s time, we have come to understand this relation between distance and stretching 
in a new, much clearer way. The stretching seen in each galaxy spectrum is now called the 
redshift of the galaxy, usually given the symbol z, and defined in the following way: 

 observed

emitted

1 zλ
λ

= +  

If the stretching observed in the spectrum of a galaxy is 3%, then the redshift 0.03z = . 

We no longer think of redshift as a measure of velocity. It is instead a measure of how much the 
universe expanded during the time while the light was traveling from its source to the Earth. 
Hubble’s velocity-distance relation is actually the first sign that the universe is expanding today. 
The space between any two galaxies is growing larger with time.  

To understand what an expanding universe is like, it may be useful to think of something like a 
giant chocolate chip cookie. In this cookie there are chips, which we shall think of as galaxies. 
Now imagine this cookie expanding; becoming larger in every dimension. The distance between 
every pair of chips grows larger with time. More than that, the farther apart two chips are, the 
more rapidly they move apart.  

 

In an expanding universe, everything moves apart from everything else. When Hubble saw that 
the spectrum of each galaxy was stretched, and that the stretching was proportional to distance, 
he had found evidence that the universe is expanding. Since Hubble’s time, we have continued to 
measure the relationship between redshift and distance. Instead of calling this a velocity-distance 
diagram, we now think of it as a measurement of expansion history. When we look at a distant 
object, we know we see it in the past. The more distant the object is, the farther back in time we 
are probing. In this way of thinking, the distance plotted on the x-axis of Hubble’s diagram is 
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really a measure of time back into the past. When we also reinterpret the y-axis of Hubble’s 
diagram as a measure of integrated expansion, the velocity-distance diagram is redefined as a 
measure of expansion as a function of time: it’s really an expansion history diagram. 

Observation of expansion, perhaps best represented as this expansion history diagram, provided 
the first observational evidence for what is now called the hot big bang cosmology. We will call 
it the ‘first observational pillar’ of big bang cosmology. 

Consequences of expansion today: a hot dense beginning? 

The universe is expanding today, the space between galaxies growing larger and larger. This 
suggests something about the past: in the past, everything we see today should have been much 
closer together, all the matter and energy we see in the universe today packed closer together. 
Running the clock back far enough, there ought to have been a time when the universe was much 
smaller, and the density of matter and energy much higher – the universe ought to have had a 
beginning which was hot, dense, and expanding. This ‘big bang’ origin is a logical consequence 
of seeing a universe which is expanding today. But is it true? How do we know that it really 
happened? 

To test ideas about the history of the universe, we need only examine it – the history is laid out 
before us. There should be places so distant that the light they emitted when the universe was hot 
and dense is just arriving at the Earth now. Indeed we should be able to look in any direction at 
all and see this hot early universe. What should it look like? Hot, dense material emits blackbody 
radiation with a peak wavelength and intensity dependent on temperature. How hot should it be? 
At some point matter should have been hot enough to be ionized, so that light could not pass 
through it. This happens at temperatures of a few thousand Kelvin. This hot plasma should look 
rather like the surface of the Sun. The peak wavelength for 3000 K blackbody radiation is given 
by: 
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This 930 nm light lies off the red end of the visible spectrum; a blackbody emitter at this 
temperature would look deep red. There is a caveat however: the universe has expanded a lot 
since this hot dense time, so this light will have been stretched in wavelength enormously, by 
perhaps a factor of 1000. Instead of red visible light we should expect to find the sky filled with 
roughly 1 millimeter radio waves (1000 x 9.3x10-7 m ≅ 1x10-3 m). 

The observation of cosmic expansion in the universe today led to a simple prediction. When we 
look at the sky, in every direction, we should see an early universe which is hot, dense, and 
emitting blackbody radiation with a peak wavelength typical of thousands of degrees Kelvin, 
stretched out by about a factor of 1000 so that it arrives as millimeter radio waves.  
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This so-called Cosmic Microwave Background Radiation (CMBR) was first confidently 
observed in 1964 by Arno Penzias and Robert Wilson at Bell Labs in New Jersey. This CMBR 
has since been measured with ever increasing precision by a long series of experiments, 
including most importantly the Wilkinson Microwave Anisotropy Probe, named for leading 
cosmologist and University of Michigan graduate David Wilkinson. The CMBR, an inescapable 
prediction of a hot big bang universe, provides striking experimental confirmation of this model 
for cosmic origins. The detection of the CMBR, and the precise agreement between its predicted 
and observed properties, provides the second observational pillar of the big bang cosmology.  

This part of the story, about the big bang and how we know it really happened, is a great story 
which we don’t have time to cover. If you would like to know more, you can go online and 
watch several lectures which I gave on the subject a few years ago. You will find them at the 
Web Lecture Archive Project: 

 http://lecb.physics.lsa.umich.edu/CWIS/browser.php?ResourceId=2106 

 http://lecb.physics.lsa.umich.edu/CWIS/browser.php?ResourceId=2107  

The hot early universe and the dominance of light elements 

We now know that the universe began about 13.7 billion years ago. At that time, everything was 
much closer together, with both the matter density and the energy density much higher than 
today. In addition, the universe was expanding, with the space between things increasing, and the 
density of both matter and energy dropping drastically.  

In this superhot, dense environment, enough energy existed to continuously create matter. For 
example, if a bit of light has adequate energy, it can convert its energy into mass according to 
Einstein’s famous 2E mc= , creating particles. In a typical example, a particle of light can create 
an electron-positron pair. This energy into matter conversion always produces pairs. It has to 
because of charge conservation. Creating just an electron would violate the conservation of 
electric charge. In the very early universe, while everything was very hot and dense, matter was 
freely created and destroyed.  

If the universe weren’t expanding, nothing else would ever have happened. Everything would 
have stayed hot, dense, and uniform forever. There would be microscopic change, with energy 
becoming matter and matter energy, participles moving around, and light being emitted and 
absorbed. But on the large scale, everything would remain at equilibrium, a uniform density and 
temperature. It would have been a dull universe indeed, and we would surely not be here to 
ponder it.  

Fortunately the universe was not static at this time, it was expanding, and as it expanded it 
cooled, stretching the wavelengths of all the light around until with the average energy in 
particles of light becoming too low to create new matter. Huge numbers of protons, neutrons, and 
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electrons were around, already created, and zooming along. Initially, these moved too fast to 
stick together, but as the universe continued to expand and cool, they eventually slowed down 
enough to be able to stick together. 

For a time, they still had enough energy to get close enough to bind, protons could overcome the 
Coulomb barrier and fuse, but not so much that they simply smashed past one another. Many of 
the protons found neutrons and other protons and merged together into Helium. Remember that 
this bonding is exothermic, it releases energy, and that means it will happen very freely if it can. 
If conditions had stayed like this for a long time, all the Hydrogen available would have merged 
into Helium, and Helium into heavier things, until everything ended up at the top of the curve of 
binding energy. We’d have had a universe full of Iron; also fairly dull. 

But conditions didn’t stay like this for long. When fusion begam, the universe was still 
expanding and cooling, and rather quickly it became so cool and diffuse that nuclear fusion 
stopped. The positively charged nuclei now were moving too slowly to reach one another, and 
the nuclear cooking ceased. As a result, this early burst of nuclear creation, called “big bang 
nucleosynthesis” left most (about 76% by mass) of the nucleons as Hydrogen nuclei (just 
protons), with most of the remaining 24% in Helium. Tiny bits were in different forms, like 21H 
(deuterium) and 32He (Helium-3). 

That was it. The big bang first made all the nucleons, cooled and cooked them for a bit until 
some of them were stuck together in Helium nuclei, then cooled further and stopped. It left us 
with a universe dominated by light elements. The universe is still very strongly dominated by 
light elements. Hydrogen remains the dominant element, still making up nearly the same 76%. 
Helium is also incredibly common, still about 24% of the mass. 

The ability of a big bang cosmology to naturally accommodate the dominance of the light 
elements in the mass budget of the universe is another strong observational confirmation of the 
big bang model. Not only does it qualitatively predict a lot of Hydrogen and some Helium, it 
makes precise predictions for the abundances of some rare light elements, like Deuterium (2

1H) 
and Helium-3 (3

2He). Abundances of these rare elements, reliably measured for the first time in 
the late 1990’s, confirm these predictions. This makes the dominance of the light elements the 
‘third observational pillar’ of the big bang cosmology.  

If nothing else happened, if there were no other way to “cook” elements, the universe would still 
be just about only Hydrogen and Helium, and again, we certainly would not be here to study this.  

Gravity, stellar furnaces, and supernova pollution 

The rest of the story of the origin of the elements is, in one sense, not very important. Most of the 
ordinary matter in the universe is just as it was when the Big Bang nucleosynthesis ended. In 
another sense, the rest of the story is everything, because we couldn’t exist without large 
amounts of the heavier elements like carbon, nitrogen, and oxygen. 
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After the universe cooled enough for nucleosynthesis to end, nothing much happened for a while. 
The universe continued to expand and cool, with a nearly uniform density. But there were, from 
the beginning, very small differences in density from place to place, perhaps originally created 
by quantum fluctuations. Whatever their cause, we know these small fluctuations existed because 
we have measured them. The intensity of light seen in the CMBR is very slightly different from 
place to place, differences of a few parts in 100,000. These tiny initial fluctuations in density 
provide the seeds for the formation of all the structures we see today. Everywhere there was a 
little more matter, the inexorable pull of gravity began to draw more matter in. As these lumps 
became more dense, they pulled harder, and the growth proceeded faster and faster. 

 

Images of the tiny variations in temperature seen in the Cosmic 
Microwave Background Radiation, initially seen crudely by the ‘Cosmic 
Background Experiment’ around 1992, then measured more precisely by 
the ‘Wilkinson Microwave Anisotropy Probe’ in 2003.  
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Eventually, the pull of gravity allowed clouds of gas to become more and more compressed, and 
stars formed. A star is a cloud of gas stopped in the process of collapse. It is stopped, held up, by 
the release of fusion energy. How does this happen? As the gas falls inward it is squashed by 
gravity, compressed, and heated. If the star is large enough, the gravity is substantial enough to 
increase the internal pressure and temperature until, once again, conditions were adequate for 
nuclear fusion to begin! 

When this happens, the core of the star suddenly has a wonderful, very efficient, new source of 
heat. The heat which comes out from fusion generates more than enough thermal pressure to 
resist the inward pull of gravity, the star stalls in its collapse and becomes, for a time, stable. If 
the core burns too fast for a bit, the star expands and cools, settling back to equilibrium. If the 
core burns too slowly, the star collapses a bit and heats, burning faster. So this equilibrium is 
stable.  

And there it sits, gradually cooking its Hydrogen into Helium, Helium into Carbon, and so on, 
until eventually the star starts to build up a core of Iron. Big stars with a lot of mass (and hence 
gravity) will do this quickly, in as little as a few million years. Small stars don’t have so much 
gravity to resist, so they can last much longer. The most common kinds of stars, red dwarf stars, 
have lifetimes more than 10 times the age of the universe so far, so they’ll be around for a long 
time. The Sun, which is actually pretty large for a star (though far from the largest) ought to last 
for more than 9 billion years. It’s about 4.57 billion years old now, so it will last for a while. 

Inside these stars, elements up to Iron are gradually constructed. Nothing beyond that though, 
because creating elements beyond Iron takes you down the curve of binding energy, and requires 
an input of energy. So we have two problems left. We have to get the heavy elements out of 
these stars, to places where they can create planets and people, and we must somehow create the 
really heavy elements, those heavier than iron. Supernova explosions are responsible for both. 

36.2 Stellar death and supernovae 

Once a star burns up most of its fuel, it no longer has a source of internal energy. At this point, 
there’s nothing to resist the gravitational pressure to collapse, and collapse it does. All the matter 
in the star falls inward, with pressure and temperature rising higher and higher until some new 
resisting force emerges. At this point there are three possible outcomes.  

Smallish stars, those up to a bit more massive than the Sun, will shrink down into “white dwarf” 
stellar remnants. When this happens to the Sun, it will shrink to around down until it is about the 
size of the Earth, at which point a quantum mechanical effect called “electron degeneracy 
pressure” will suddenly resist the pull of gravity, and collapse will cease. Before this final 
collapse, such stars will cast off some of their outer layers, creating beautiful “planetary 
nebulae”. This mechanism is one way in which heavy elements get spread through the universe. 
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More massive stars have too much gravity to stop as a white dwarf. Their gravity actually 
squashes the electrons into the protons converting them into neutrons. This process is the same as 
the electron capture decay we discussed when talking about nuclear physics. The whole star 
continues to collapse until it becomes about 10 km across, about the size of Ann Arbor. At this 
point, a new resistive force can act; “neutron degeneracy pressure”. This is one stiff force, and 
stops the collapse of the rest of the star in its tracks. In fact, the outer layers of the star, falling 
onto this stiff core, actually bounce back out, and the star explodes as a “supernova”.  

The supernova does two things. First, it blasts a substantial fraction of the star’s mass, including 
lots of these heavy elements, off into space. Second, because a lot of extra energy is available 
from the infalling material, a sudden burst of endothermic nucleosynthesis can occur. It’s during 
this brief period that all the nuclei heavier than Iron are produced, and then immediately blasted 
back out into space. Supernovae are really the key. Not only do they create the heavy, trans-iron 
elements, they also blast the lot back out into space. 

These are images of some planetary nebulae, the cast off outer layers of stars late in their 
lives. These expelled layers help to spread matter enriched in heavy elements which can 
later be incorporated in new stars, planets, and even people 
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If a star is even more massive, the gravitational pressure is too much for even neutron 
degeneracy pressure to stop. These stars collapse completely, never stopping, and become black 
holes. Any heavy elements they produce are lost, fallen into the black hole, never to return. 

Summing up the origin of the elements 

To summarize: the light elements, Hydrogen and Helium were made in the big bang’s brief but 
universal nuclear furnace. They remain the dominant components of the universe. All the heavier 
elements were made in later generations of stars. Good estimates of cosmic abundances of some 
of these elements are given in the table to the below. 

The presence of all these elements on the Earth is possible because the solar system formed from 
preprocessed material, stuff which had already passed through the cores of stars, suffered the 
violence of stellar collapse, and been cast back out into space. Every heavy atom in your body 

X-ray images of the expansion of the cast off shell of material from Supernova 1987a, 
the first to explode near the Milky Way in almost 400 years. The upper left image 
shows the remnant in January 2000, and the lower right shows it in January 2005. The 
neutron star remnant at the center has not yet been observed. 
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has been through this. All those heavier than Iron were formed only in the wild, non-equilibrium, 
endothermic reactions which took place as part of the explosion.  

Why is the Earth not still dominated in mass by Hydrogen and Helium? These two elements, at 
the typical temperature of the Earth, have kinetic energies larger than their gravitational potential 
energies at the Earth’s surface. As a result, they are free to escape into space. Some Hydrogen 
remains of course, but only because it is chemically bound to heavier atoms which help to bind it 
gravitationally to the Earth. Larger planets, like Jupiter, have more than enough gravity to hang 
onto their light elements, and indeed their composition is dominated by them. 

It is remarkable that we know this, how all the elements found on the Earth, or in fact anywhere 
in the cosmos, are formed. Understanding the origin of the elements is a great accomplishment. 
We know where it all came from. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Atomic 
number 

Element Cosmic mass fraction 
in parts per million 

1 Hydrogen 739,000 

2 Helium 240,000 

8 Oxygen 10,700 

6 Carbon 4,600 

10 Neon 1,340 

26 Iron 1,090 

7 Nitrogen 950 

14 Silicon 650 

12 Magnesium 580 

16 Sulfur 440 

 All Others 650 
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A Quick Summary of Some Important Relations 
 

Elemental composition of the universe: 

The universe is dominated by the light elements Hydrogen and Helium, which make up about 74% and 
24% of the atoms in the universe respectively. 

Observational cosmology and expansion: 

Because light travels at a finite speed distant objects are seen in the past. This allows us to view the 
history of the universe. Distant objects (from which light has traveled a long time) have spectra which are 
stretched relative to nearby objects. This is the basic evidence for expansion, and is often viewed in a 
Hubble velocity-distance diagram. We have argued that this is actually an expansion history diagram. 

Cosmological redshift: 

The  redshift z defined as: 

 observed

emitted

1 zλ
λ

= +  

Expansion and a hot dense early universe: 

The existence of expansion implies a hot dense early phase. Evidence for this is clearly seen in the cosmic 
microwave background radiation which arrives from every direction on the sky. It has a characteristic 
temperature of about 3 K. 

The hot dense early universe and light element dominance: 

The Hydrogen and Helium which so dominate the universe were made in this brief hot, dense, expanding 
period. Fusion stopped with them because expansion caused the universe to cool below the temperatures 
required to continue it. 

Stars and the heavier elements: 

All the elements up to iron are slowly cooked in the cores of stars, where the inward pressure of gravity is 
balanced by the outward thermal pressure generated by fusion. 

Stellar death and element enrichment: 

When stars run out of fuel they collapse, but ironically also often shed their outer layers as planetary 
nebulae or supernovae. Supernovae are especially important, because their violent explosions briefly 
provide the excess energy required to make the elements heavier than iron. 
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Physics of the Life Sciences II: Chapter 37 
 

37.1 Life in the Universe 

During the past nine months we’ve been learning how the laws of nature envelop life, limiting 
what is possible and providing it with mechanisms to accomplish its goals. Everything we know 
about life is based on just one example: the life here on Earth. Though life on Earth is 
remarkably diverse, there is also overwhelming evidence that all life on Earth is intimately 
related, and all descended from a single origin. We also know that life on Earth emerged quite 
quickly, appearing almost as soon as the most extreme violence of the Earth’s formation came to 
an end. 

We have no convincing reason to suspect that life is rare. There is nothing extraordinarily 
unusual about the Earth, and life emerged quickly here, so perhaps it should emerge eventually 
wherever conditions are adequate. Such conditions are likely to be rather common, and perhaps 
life is too. Unfortunately, we’re still at a very early stage in this study. Though we know much 
about stars, it’s only in the last fifteen years that we have been able to detect any planets at all 
around other stars. Exploration even of our own solar system is still in its infancy. For now, the 
expectation that life ought to be common is difficult to test. We know our current tools aren’t yet 
adequate to find life beyond the solar system, and they’re a very long way from being able to 
prove it doesn’t exist.  

This question of “astrobiology” is one of the great questions for the next generation of scientists. 
Nothing, really nothing, will be more important that the first discovery of extraterrestrial life 
which emerged independent of life on Earth. There’s a good chance it will happen in your lives, 
especially if some of you dedicate yourselves to it.  

This chapter will consider what conditions seem necessary for life, and ask where they exist in 
the universe. This will help you to form your own opinions about the likelihood of finding life 
beyond the Earth. 

What is life really? 

Is understand what life needs, we must first ask what life is, where we draw the line between the 
living and the non-living. There is no complete consensus about what marks this line. The 
Oxford English Dictionary waffles, defining life as: 
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“The property which constitutes the essential difference between a living animal or plant, 
or a living portion of organic tissue, and dead or non-living matter; the assemblage of the 
functional activities by which the presence of this property is manifested.1” 

Not too satisfying. This definition says life is what makes the difference between living and non-
living matter. Ernst Mayr, one of the 20th century’s leading biologists, expressed his exasperation 
with the problem this way: “Attempts have been made again and again to define `life'. These 
endeavours are rather futile since it is now quite clear that there is no special substance, object, 
or force that can be identified with life.2” 

Still it seems useful to try. Probably the narrowest, most widely accepted definition of life is 
something which reproduces itself with the possibility of modification. This definition at least 
lets in most widely accepted living things, though of course it is limited. Surely a neutered pet 
remains alive. But the idea of life as something which can reproduce itself with modification is a 
good place to start. 

 Some prefer a longer list of criteria. Here’s the Wikipedia version3, which captures most of the 
properties usually raised. Something is probably alive if it has most of these properties… 

1. Homeostasis: Regulation of the internal environment to maintain a constant state; for 
example, sweating to reduce temperature. 

2. Organization: Being composed of one or more cells, which are the basic units of life. 
3. Metabolism: Consumption of energy by converting nonliving material into cellular 

components (anabolism) and decomposing organic matter (catabolism). Living things 
require energy to maintain internal organization (homeostasis) and to produce the other 
phenomena associated with life. 

4. Growth: Maintenance of a higher rate of synthesis than catalysis. A growing organism 
increases in size in all of its parts, rather than simply accumulating matter. The particular 
species begins to multiply and expand as the evolution continues to flourish. 

5. Adaptation: The ability to change over a period of time in response to the environment. 
This ability is fundamental to the process of evolution and is determined by the 
organism's heredity as well as the composition of metabolized substances, and external 
factors present. 

6. Response to stimuli: A response can take many forms, from the contraction of a 
unicellular organism when touched to complex reactions involving all the senses of 
higher animals. A response is often expressed by motion, for example, the leaves of a 
plant turning toward the sun or an animal chasing its prey. 

7. Reproduction: The ability to produce new organisms. Reproduction can be the division 
of one cell to form two new cells. Usually the term is applied to the production of a new 
individual (either asexually, from a single parent organism, or sexually, from at least two 

                                                 
1 Oxford English Dictionary online 
2 Mayr, E. 1982. The Growth of Biological Thought. Diversity, Evolution, and Inheritance. Harvard University, 
Cambridge: The Belknap Press, . 
3 http://en.wikipedia.org/wiki/Life 
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differing parent organisms), although strictly speaking it also describes the production of 
new cells in the process of growth. 
 

Looking at this list, the feature most difficult to mimic with engineering is reproduction. Life is 
particularly good at this, and so perhaps this is remains the best dividing line between the living 
and the non-living. 

A long discussion offering a variety of alternate definitions of life in the Encyclopedia Brittanica 
concludes by pointing out the more essential problem biology currently faces; we only know 
about one form of life, that on Earth, and all of the life on Earth seems completely related. 

“The existence of diverse definitions of life surely means that life is something 
complicated. A fundamental understanding of biological systems has existed since the 
second half of the 19th century. But the number and diversity of definitions suggest 
something else as well. As detailed below, all the organisms on the Earth are extremely 
closely related, despite superficial differences. The fundamental ground pattern, both in 
form and in matter, of all life on Earth is essentially identical. As will emerge below, this 
identity probably implies that all organisms on Earth are evolved from a single instance 
of the origin of life. It is difficult to generalize from a single example, and in this respect 
the biologist is fundamentally handicapped as compared, say, to the chemist or physicist 
or geologist or meteorologist, who now can study aspects of his discipline beyond the 
Earth. If there is truly only one sort of life on Earth, then perspective is lacking in the 
most fundamental way.4” 

Among all this confusion there is a clear consensus that, whatever life is exactly, all living things 
exist in open thermodynamic circumstances in which they take in resources, use them to 
construct themselves and near replicas of themselves, then expend these resources, always at the 
expense of substantial increases in entropy. This tells us what life (at least in its familiar guise) 
needs to exist. 

37.2 The evolution of the cosmos: setting the stage for life 

What are the basic requirements for life? Given that life is hard to even define, it is difficult to 
say for sure. But we can at least think about what’s needed for life similar that that we find on 
Earth. Such life requires at least three things: 

• A regular flow of energy. This regular flow of energy is what makes possible all sorts of 
cyclic processes, both living and not. Without this flow of energy, equilibrium will be 
quickly reached, and nothing much will ever happen. 

                                                 
4 life. (2007). In Encyclopædia Britannica. Retrieved August 25,  2007, from Encyclopædia Britannica Online: 
http://search.eb.com/eb/article-9106478 
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• An enriched mix of chemical elements, including probably the “organic” compounds 
(Carbon, Oxygen, Nitrogen, Hydrogen, Phosphorus, Sulfur, etc.). It’s certainly not 
enough to have only Hydrogen and Helium. 

• Liquid water. Why is this so important? The highly polar nature of water makes it a great 
matrix for complex chemistry. The electrostatic shielding water provides is a big part of 
what makes complex protein chemistry possible for life. 
 

In addition to these essential ingredients, there presumably has to be some level of stability. If 
the conditions last for only a short time and then change dramatically, it may not be possible for 
life to emerge and adapt with adequate speed. So where might we find stable flows of energy, a 
rich mix of chemicals, and liquid water on which both liveliness and life might subsist? This 
stability is provided by planets, especially those which orbit stars. These planets, in stable orbits 
around long-lived stars, may provide conditions which remain stable for billions of years. So 
we’re looking for planets, but the flows of energy involved might come from any one of several 
different sources. 

•  Planets orbiting stars: On the Earth's surface, action is driven the flow of energy from 
the Sun. This flow powers weather and the water cycle. It also enables life. So the 
traditional place to seek life is on planets with surfaces heated by nearby stars. There is a 
Goldilocks problem though. The arrangement has to be just right; not too hot and not too 
cold. Within the solar system, only the Earth will do. 

 
• Molten cores: One new possibility has emerged that is literally beneath our feet. The 

core of the Earth is heated by radioactive decays of heavy elements trapped within it 
when it formed. Energy from this inner glow, emerging from below, fuels life in the deep 
oceans. Take away the Sun, and this flow of heat would remain, providing, perhaps, 
enough to keep life cooking. Planets heated by this sort of radioactive glow, even if far 
from any star, might simmer with life beneath their surfaces. Perhaps only surface life is 
rare… 

 
• Tormented moons: Closer to home, in our own solar system, a more exotic flow of 

energy exists in moons of the outer planets: tidal heating. Io and Europa, moons orbiting 
Jupiter, provide a good example. Io swings around Jupiter every 42 hours or so. A little 
farther out, Europa takes just about twice as long. Every time Io passes between Jupiter 
and Europa, it is tugged outward a little. Trapped in this struggle, Io is repeatedly 
stretched and squashed by the varying tug of Jupiter and Europa’s combined gravity.  
 
This cyclic stress heats Io, just as you might warm a ball of clay by squashing and 
stretching it with your hands. In the case of Io, the effect is extreme, making this poor 
little moon (with about a quarter the radius and 2% of the mass of the Earth) the most 
violently volcanic body in the solar system. Europa, too, is heated in this dance, enough 
to maintain a 60-mile-thick ocean of liquid water beneath a deep layer of ice. The same 
process is active in the moons of Saturn as well, most spectacularly on Enceladus, where 
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dramatic plumes of water vapor were discovered spewing from this tiny moon's South 
Pole in 2005. 

These three examples, all based on what we know from the our own Solar system, make it clear 
that various possibilities exist supplying the conditions needed for life. The first extra-solar 
planets were discovered only a dozen years ago. Now more than 500 have been found, and the 
pace of discovery is accelerating rapidly. New planets are discovered every week.  So far, nearly 
all of these planets are “gas giants”, rather like Jupiter, and not thought to be likely hosts of life. 
We’d like to find earth-like, rocky little planets orbiting other stars. It is extremely likely that 
they exist, but our experiments are just now becoming sensitive enough to detect them.   

Even worse, we have no technology for traveling to another star in less than a lifetime. We will 
search from afar. But life, something we can’t even properly define, is going to be hard to 
definitively identify from a distance of many light years. I’m not betting we'll find it in our 
lifetimes. So the best hope for confidently identifying life beyond the Earth still lies here in the 
Solar System. Unmanned exploration of Mars and the moons of Jupiter and Saturn probably hold 
the most promise.  
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Physics of the Life Sciences II: Chapter 38 
 

Some final conclusions 

The purpose of this 135/235 course sequence has been to teach you about some of the most 
important principles of physics within which life must accomplish its goals. Doing this helps a 
lot in explaining why life is the way it is. You should know now: 

• why children so rarely break their bones 
• why gorillas don’t grow as large as King Kong 
• why warm blooded animals aren’t smaller than shrews 
• why lungs have such complicated networks of aveoli 
• why blood pressure is high before and after an occlusion 
• why the largest animals live in the water 
• why bats use ultrasound to detect their prey 
• why eyes have muscles for accommodation 
• why magnetic resonance imagers can see inside you 
• why the highly polarized medium of water is essential for life’s chemistry 
• why you can hear but not see around corners 
• why your body uses bizarrely shaped nerve cells to reliably transmit messages 
• why a bacteria might labor to grow a magnetic needle inside itself 
• why all the carbon in you was created in a star 
• why life might be common 

 
and, one hopes, quite a few other things. 

Physical laws of nature frame everything about life, including the sizes, shapes, structures, 
required conditions, and modes of communication for all living things. Nothing can violate these 
laws, whether living or dead. And nothing, living or not, can do anything not allowed by these 
laws. Appreciating these physical influences is as essential as evolution for understanding life. 
Without understanding these physical limitations, it is impossible to understand the diversity and 
limitations of life. 

This is the lesson to take from these classes. It’s OK if you forget the details, but you have to 
remember that life is physical, that everything it does is subject to the same physical constraints 
as all nonliving processes. If someone asks you what physics has to do with life, you should have 
no trouble answering at length. 

Physics 235 Winter 2011 
Copyright Timothy McKay

321


	p235w11_cover_page_v0.1
	p235w11_syllabus_intro_v0.1
	POLS_EM_chapter_20
	POLS_EM_chapter_21
	POLS_EM_chapter_22
	POLS_EM_chapter_23
	POLS_EM_chapter_24
	POLS_EM_chapter_25
	POLS_EM_chapter_26
	POLS_EM_chapter_27
	POLS_waves_chapter_28
	POLS_waves_chapter_29
	POLS_waves_chapter_30
	POLS_waves_chapter_31
	POLS_waves_chapter_32
	POLS_waves_chapter_33
	POLS_MPO_chapter_34
	POLS_MPO_chapter_35
	POLS_MPO_chapter_36
	POLS_MPO_chapter_37
	POLS_MPO_chapter_38



