Supplementary Text

Principal

M.O.C. acknowledges funding from the Edinburgh University Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA. 13Université de Toulouse; UPS-OMP: Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France. 14CNRS: IRAP: 9 Avenue du Colonel Roche, Boîte Postale 44346, F-31028 Toulouse Cedex 4, France.

Corresponding author. E-mail: martin.rubin@space.unibe.ch

Deceased.

Acknowledgments

M.O.C. acknowledges funding from the Edinburgh University Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA. 13Université de Toulouse; UPS-OMP: Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France. 14CNRS: IRAP: 9 Avenue du Colonel Roche, Boîte Postale 44346, F-31028 Toulouse Cedex 4, France.

Corresponding author. E-mail: martin.rubin@space.unibe.ch

Deceased.

Supplementary Materials

www.sciencemag.org/content/348/6231/229_supp/DC1

Materials and Methods

Supplementary Text

Figs. S1 to S9

Tables S1 to S10

References (39–84)

8 October 2014; accepted 4 March 2015

10.1126/science.aaa0193

COMETARY FORMATION

Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature

M. Rubin,1,2,4 K. Altwegg,1,3,5 H. Balsiger,1 A. Bar-Nun,3 J.-J. Berthelier,4 A. Bieler,1,3,5 P. Bochsler,1 C. Briois,6 U. Calmone,7 M. Combi,6 J. De Keyser,1 F. Dhoooge,7 P. Eberhardt,1,7 B. Fiethe,6,8 A. S. Flesser,6,8 S. Gase,6,8 T. I. Gombosi,9 K. C. Hansen,5 M. Hässig,1,9 A. Jäckel,1 E. Kopp,1 A. Korth,10 L. Le Roy,24 U. Mall,10 B. Marty,10 O. Mouissi,12 T. Owen,13 H. Rème,14,15 T. Sémon,1 C.-Y. Tzu,9 J. H. Waite,9 P. Wurz12

Molecular nitrogen (N$_2$) is thought to have been the most abundant form of nitrogen in the protosolar nebula. It is the main N-bearing molecule in the atmospheres of Pluto and Triton and probably the main nitrogen reservoir from which the giant planets formed. Yet in comets, often considered the most primitive bodies in the solar system, N$_2$ has not been detected. Here we report the direct in situ measurement of N$_2$ in the Jupiter family comet 67P/Churyumov-Gerasimenko, made by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer aboard the Rosetta spacecraft. A N$_2$/CO ratio of (5.70 ± 0.66) × 10$^{-3}$ (2σ standard deviation of the sampled mean) corresponds to depletion by a factor of ~25.4 ± 8.9 as compared to the protosolar value. This depletion suggests that cometary grains formed at low-temperature conditions below ~30 kelvin.

The thermochemical models of the protosolar nebula (PSN) suggest that molecular nitrogen (N$_2$) was the principal nitrogen species during the disk phase (1) and that the nitrogen present in the giant planets accreted in this form (2). Moreover, Pluto and Triton, which are both expected to have formed in the same region of the PSN as Jupiter family comets (JFCs), have N$_2$-dominated atmospheres and surface deposits of N$_2$ ice (3, 4). This molecule has never been firmly detected in comets; however, CN, HCN, NH, NH$_2$, and NH$_3$ among others have been observed spectroscopically (5, 6). The abundance of N$_2$ in comets is therefore a key to understanding the conditions in which they formed.

Condensation or trapping of N$_2$ in ice occurs at similar thermodynamic conditions as those needed for CO in the PSN (7, 8). This requires very low PSN temperatures and implies that the detection of N$_2$ in comets and its abundance ratio with respect to CO would put strong constraints on comet formation conditions (7, 8). Ground-based spectroscopic observations of the N$_2$ band in the near ultraviolet are very difficult because of the presence of telluric N$_2^*$ and other comet emission lines. Searches conducted with high-resolution spectra of comets 122P/De Vico, C/1995 O1 (Hale-Bopp), and 153P/2002 C1 (Ikeya-Zhang) have been unsuccessful and yielded upper limits of 10$^{-6}$ to 10$^{-4}$ for the N$_2$/CO ratio (9, 10). Only one N$_2$ detection in C/2002 VQ$_{84}$ (LINEAR) from ground-based observations is convincing, because the comet was at sufficient distance from the Sun to prevent terrestrial twilight N$_2^*$ contamination (11). The in situ measurements by Giotto in 1P/Halley were inconclusive, because the resolution of the mass spectrometers aboard the spacecraft (12) was insufficient to separate the nearly identical masses of N$_2$ and CO during the 1P/Halley encounter, and only an upper limit could be derived for the relative production rates [Q(N$_2$)/Q(CO) ≤ 0.1] (13).

Here we report the direct in situ measurement of the N$_2$/CO ratio by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)
in the JFC 67P/Churyumov-Gerasimenko (hereafter 67P). ROSINA is the mass spectrometer suite on the European Space Agency’s Rosetta spacecraft (14) and measures the gas density and composition at the location of the spacecraft (15). The Double Focusing Mass Spectrometer (DFMS) has a high mass resolution of \(\frac{m}{D_m} \) about 3000 at the 1% level (corresponding to ~9000 half peak width at the 50% level) at atomic mass per unit of charge 28 u/e, allowing the separation of N\(_2\) from CO (\(\Delta m = 0.011 \) u) by numerical peak fitting. Neutral gas is ionized by electron impact and then deflected through an electrostatic, then magnetic, filter onto a position-sensitive microchannel plate (MCP) detector. The peak shape of a single species on the MCP is well known, and therefore numerical fitting can distinguish overlapping contributions from different atoms and molecules (see the supplementary materials).

Starting on 5 August 2014, ROSINA observed the cometary gas flux rise above the spacecraft background signal for the major species, including H\(_2\)O, CO, and CO\(_2\). For N\(_2\), which has a higher relative spacecraft background, the cometary signal became apparent a few days later. The spacecraft background signal (16) for both species, CO and N\(_2\), was derived at different times before detecting the coma and shown to be temporally quite stable. N\(_2\) and CO were both observed in the Rosetta spacecraft background mass spectra, e.g., on 11 May 2014, while the spacecraft was still at a distance of 1.65 x 10\(^6\) km from the comet (Fig. 1A). A comparable N\(_2\) background was measured on 1 August 2014, at almost 800 km from the nucleus before the cometary signal became apparent. Another mass spectrum, representative of the measurements within a distance of 10 km from the nucleus, was obtained on 18 October 2014 (Fig. 1B) and includes both cometary and spacecraft background signal. The indicated background was subsequently removed, leaving only cometary CO and N\(_2\). Furthermore, CO from dissociative electron-impact ionization of cometary CO\(_2\) inside DFMS’ ion source was removed (a 7 to 36% reduction), and the signal was corrected for the instrument alignment with respect to the comet (supplementary materials).

This procedure was carried out for 138 spectra over two terminator orbits of the Rosetta spacecraft from 17 to 23 October 2014. Clear diurnal variations in the cometary signal of both species associated with the 12.4-hour rotation period of the comet have been observed (Fig. 2A).

Fig. 1. Mass per charge 28 u/e spectra before (A) and after (B) entering the coma of 67P, including statistical and 10% pixel gain error. (A) was obtained in May 2014 and (B) is a representative spectrum from October containing the sum of the cometary parents and fragments and the spacecraft background signals.

Fig. 2. Cometary parent CO and N\(_2\) signal during 17 to 23 October 2014. (A) The error bars are associated with the accuracy of the fit, background subtraction, detector gain, and statistical error. Gaps in the data indicate times when ROSINA was off due to thruster operations. The sections below show phase angle and local time (B), latitude and longitude of the subspacecraft point (C) in the Cheops coordinate system, and the distances of Rosetta to the comet (\(r_{67P} \)) and the comet to the Sun (\(r_{\text{Sun}} \)) (D). The summer hemisphere is at positive latitudes.
The value derived from protosolar N and C abundances might influence the measured N2/CO ratio to be more representative of the N2 in amorphous water ice as compared to CO. This possibility is supported by laboratory experiments in which a mixture of water vapor with N2 and CO was directed onto a cold plate in the 24 to 30 K temperature range (7). In these experiments, gases initially trapped in growing amorphous ice were later released when ice warmed up, and the evolved gases were measured by mass spectrometry. At 24 K, the depletion factor for the N2/CO ratio was found to be ~19, a value within the range of the one observed in 67P of 25.4 ± 8.9. This yields a lower limit for the temperature experienced by the grains agglomerated by 67P, because the N2/CO ratio in amorphous ice would increase at temperatures lower than 24 K due to increasing efficiency of N2 trapping.

An alternative interpretation of the low N2 abundance is that 67P agglomerated from grains consisting of clathrates, which are icelike crystalline solids formed by cages of water molecules that contain small nonpolar molecules (20). This hypothesis is based on models showing that the vaporization distance of ISM ices could have been as high as about 30 AU from the Sun when they entered the PSN (22). With time, the decrease of the gas temperature and pressure allowed water to condense at ~140 to 150 K in the form of crystalline ice, leaving negligible water in the gas phase to condense at low temperatures where amorphous ice is expected to form (22). Depending on the nature of the entrapped species, clathrates formed from preexisting crystalline water ice when the PSN temperature was lower than about 80 K, provided that the slow kinetics of the process was balanced by sufficient formation time (8). As in the case of trapping in amorphous ice, experiments and models suggest that N2 is poorly trapped in clathrate cages, because of its small size (8, 23–25). In particular, statistical thermodynamics models (26) used to compute the composition of clathrates formed from a protosolar-composition gas in the PSN show that an N2/CO ratio in the comet’s nucleus is consistent with the measured value in the coma if the nucleus agglomerated from grains formed in the 26 to 56 K temperature range (8).

Both interpretations are consistent with the idea that 67P agglomerated from grains formed at about 30 K or below. However, the measured N2/CO ratio may reflect in whole or in part the comet’s post-formation evolution. A possibility is that 67P agglomerated from grains formed at a lower temperature (around 20 K) in the PSN, favoring the trapping of much more N2 in its building blocks, in a way consistent with the known compositions of the atmospheres and surfaces of Pluto and Triton (3, 4). This possibility would be consistent with an inferred Kuiper Belt origin for 67P and its high D/H ratio (27). In these conditions, 67P could have been initially N2-rich but subsequent post-accretion heating due to the radiogenic decay of nuclides and/or thermal cycles during its transit from the Kuiper Belt and its subsequent history in a short period orbit could have been sufficient to trigger the outgassing of N2 (5). A scenario such as this may explain how initial nitrogen-rich cometesimals similar to Triton and Pluto evolved into nitrogen-depleted comets.

Because N2 trapped in 67P is presumably PSN gas, its 15N/14N ratio should be about 441, the value found in Jupiter and the solar wind (28). This is much higher than values measured in other cometary N-bearing species such as NH3 and HCN (~130) (5). Thus, depending on the proportions of N2 relative to other N-bearing species, the terrestrial 15N/14N ratio of 272 could possibly be cometary in origin, given an appropriate mix of the different nitrogen species in the comets that contributed to terrestrial volatiles (e.g., ~50% N2 and ~50% NH3 or HCN). Our initial ROSINA measurement for N2/CO of 0.57% may be compared with NH3/CO of 6% and HCN/CO of ~2% in the Oort cloud comet Hale-Bopp (6). The production rates of volatiles relative to water vary from one comet to another, but their values normalized to CO remain close to those measured in Hale-Bopp (6). If 67P is a typical JFC, then the ROSINA value for N2/CO implies that the amount of N2 reaching the surface of a solid body in the inner solar system from a JFC impact was almost 15 times less than the amounts of NH3, HCN, and certain organic compounds (6). This comparison suggests that JFC comets were not the main source of Earth’s nitrogen.
HUMAN GENETICS

Common variants spanning PLK4 are associated with mitotic-origin aneuploidy in human embryos

Rajiv C. McCoy,1 Zachary Demko,2 Allison Ryan,2 Milena Banjevic,2 Matthew Hill,2 Styrmir Sigurjonnsson,3 Matthew Rabinowitz,1 Hunter B. Fraser,1 Dmitri A. Petrov1

Aneuploidy, the inheritance of an atypical chromosome complement, is common in early human development and is the primary cause of pregnancy loss. By screening day-3 embryos during in vitro fertilization cycles, we identified an association between aneuploidy of putative mitotic origin and linked genetic variants on chromosome 4 of maternal genomes. This associated region contains a candidate gene, Polo-like kinase 4 (PLK4), that plays a well-characterized role in centriole duplication and has the ability to alter mitotic fidelity upon minor dysregulation. Mothers with the high-risk genotypes contributed fewer embryos for testing at day 5, suggesting that their embryos are less likely to survive to blastocyst formation. The associated region coincides with a signature of a selective sweep in ancient humans, suggesting that the causal variant was either the target of selection or hitchhiked to substantial frequency.

Previous validation has been performed for individual blastomeres (6), so it is unknown how accuracy would be affected in the face of chromosomal mosaicism that could potentially affect multicell trophectoderm biopsies. We therefore performed an association study on 2362 unrelated mothers (1956 IVF patients and 406 oocyte donors) and 2360 unrelated fathers meeting genotype quality-control thresholds (5) and from whom at least one day-3 biopsy was obtained, with the blastomere providing a high-confidence result (a total of 20,798 blastomeres). We then separately analyzed the additional 15,388 trophectoderm biopsies to gain insight into selection occurring before this developmental stage.

We first tested for associations between the rates of errors of putative maternal meiotic origin (fig. S1) (5) and maternal genotypes, identifying no association achieving genome-wide significance (logistic GLM, P-value threshold = 5 × 10−7). We next tested for associations between the rates of errors of putative mitotic origin and parental genotypes. The first mitotic divisions of the developing embryo take place under the control of maternal gene products provided to the oocyte (7) and are substantially error-prone (2, 3). We hypothesized that variation in maternal gene products may thus contribute to variation in rates of postzygotic error among embryos from different mothers. To encode the mitotic error phenotype, we designated all blastomeres with aneuploidies affecting a paternal chromosome copy (excluding paternal trisomies of putative meiotic origin) as cases, and all other blastomere samples as controls (Fig. 1A). Because aneuploidy has been estimated to affect fewer than 5% of sperm (8) and because paternal meiotic trisomies were detected for fewer than 1% of the blastomeres in our data, this set of aneuploid cases should be nearly exclusively mitotic in origin.

B

deviation from a balanced chromosome complement, a phenomenon known as aneuploidy, is common in early human embryos and often leads to embryonic mortality (4). Approximately 75% of embryos are at least partially aneuploid by day 3 because of prevalent errors of both mitotic and postzygotic origin (2, 3), and this proportion increases with maternal age (7). The propensity to produce aneuploid embryos varies substantially, however, even among mothers of a similar age (4). We therefore hypothesized that variation in parents' genomes may explain variation in aneuploidy incidence. We tested this hypothesis by performing a genome-wide association study of aneuploidy risk among patients undergoing pre-implantation genetic screening (PGS) of embryos collected from in vitro fertilization (IVF) cycles. Embryo DNA (single-cell day-3 blastomere biopsies or multicell day-5 trophectoderm biopsies) and parent DNA were genotyped on a single-nucleotide polymorphism (SNP) microarray (5). The Parental Support algorithm (6) was then applied to determine the chromosome-level ploidy status of each embryo sample. This algorithm overcomes high rates of allelic dropout and other quality limitations of whole-genome amplification by supplementing these data with high-quality genotypes from parental chromosomes. The copy number of each embryonic chromosome can then be inferred by comparing microarray channel intensities from DNA amplified from the embryo biopsy to those expected given the parental genotypes at each marker. Combining these fine-scale observations across large chromosomal windows facilitates the detection of particular forms of aneuploidy and the assignment of copy number variations to specific parental homologs (6).

REFERENCES AND NOTES

ACKNOWLEDGMENTS

The authors thank the following institutions and agencies, which supported this work: Work at the University of Bern was funded by the State of Bern, the Swiss National Science Foundation, and the European Space Agency PRODEX Program. Work at the Max Planck Institute for Solar System Research was funded by the Max-Planck Society and Bundesministerium für Wirtschaft und Energie under contract 50QP1302. Work at the Southwest Research Institute was supported by subcontract no. N00016J18J1041 from the Jet Propulsion Laboratory (JPL). Work at BIRA-IASB was supported by the Belgian Science Policy Office via PRODEX/ROSINA PEAL 50200. This work has also been carried out thanks to the support of the AMIDEEX project (no. ANR-11-IDEX-0002-02) funded by the ‘Investissements d’Avenir’ French government program, managed by the French National Research Agency (ANR). This work was supported by CNES grants at IRAP, LATMOS, LPC2E, Uivers, Transport, Interfaces, Nanostructures, Atmosphere et Environnement, Molecules (UTINAM), and CRPG and by the European Research Council (grant no. 267255). Work by J.-P. Karsen, I. V. Kulik, V. L. Manasiev, and the ROSINA instrument team over the past 20 years, whose contributions are gratefully acknowledged. We thank herewith the work of the whole European Space Agency (ESA) Rosetta team. Rosetta is an ESA mission with contributions from its member states and NASA. All ROSINA data are available on request until they are released to the Planetary Science Archive of ESA and the Planetary Data System archive of NASA.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/348/6231/232/suppl/DC1

Materials and Methods

12 January 2015; accepted 9 March 2015

Published online 13 March 2015

10.1126/science.aaa6100
Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature
M. Rubin et al.
Science 348, 232 (2015);
DOI: 10.1126/science.aaa6100