THE INTERPLANETARY TRANSPORT OF SOLAR COSMIC RAYS

T. I. GOMBI
Central Research Institute for Physics, Budapest

AND

A. J. OWENS
Bartol Research Foundation of the Franklin Institute, University of Delaware

Received 1980 April 14; accepted 1980 June 26

ABSTRACT

Numerical solutions are presented for the propagation of solar cosmic rays in interplanetary space, including the effects of pitch-angle scattering and adiabatic focusing. The intensity-time profiles can be well fitted by a simple radial spatial diffusion equation with scattering mean-free path λ_{fit}. The radial mean-free path so obtained is significantly larger than the true scattering mean-free path for low-rigidity particles due to both adiabatic focusing and the inapplicability of the diffusive approximation early in the event. The well-known discrepancy between λ_{fit} and the theoretical predictions may be resolved by these calculations.

Subject headings: cosmic rays: general — interplanetary medium

1. INTRODUCTION

Since the pioneering work of Meyer, Parker, and Simpson (1956), it has been customary to model the interplanetary propagation of solar cosmic rays by a time-dependent spatial diffusion equation of the form

$$\frac{\partial U}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 K_r \frac{\partial U}{\partial r}) , \quad (1a)$$

where U is the omnidirectional intensity and $K_r = \frac{1}{3} \lambda_s w$ is the radial diffusion coefficient for particles with speed w. If the radial diffusion coefficient is independent of the distance from the Sun, and the particles diffuse into infinite space, the solution to equation (1a) is simply

$$U(r, t) = A r^{-3/2} \exp \left(-r^2 / 4 K_r t \right) , \quad (1b)$$

where A is a constant. Recent spacecraft have gone beyond 20 AU without finding a free-escape boundary for cosmic rays.

More fundamental than the spatial diffusion equation is the pitch-angle scattering equation in phase space (Jokipii 1966, 1971; Roelof 1969; Earl 1974, 1976; Luhmann 1976),

$$\frac{\partial F}{\partial t} + w \frac{\partial F}{\partial z} + \left(w / 2 L \right) \frac{\partial}{\partial \mu} \left[(1 - \mu^2) F \right] = \frac{\partial}{\partial \mu} \left(D_\mu \frac{\partial F}{\partial \mu} \right) . \quad (2)$$

Here F represents the number of energetic particles per unit length along a magnetic field line, or the phase-space density n multiplied by the cross-sectional area of a flux tube. The magnetic field points in the s-direction and has a magnitude scale length $L^{-1} = - (1 / B) dB / dz$. The particle's pitch-angle cosine $\mu = w / w_s$, and D_μ is the pitch-angle scattering coefficient. Under a set of assumptions including slow temporal evolution and small anisotropy, equation (2) reduces to equation (2a), where the spatial diffusion coefficient is $\lambda_s = \lambda_s = 3 K_r / w$. Zwickl and Webber (1977a) analyzed a large set of spacecraft measurements with this method and found that the observed λ_s for ~ 10 MeV protons is about a factor of 10 larger than the value derived from quasi-linear theory (QLT) and equations (3)–(4) (Jokipii 1966, 1971; Hasselmann and Wibberenz 1968).

Here ψ is the Parker spiral angle between the interplanetary magnetic field (IMF) and heliocentric radius vectors. The corresponding mean-free path is

$$\lambda_s = 3 K_r / w . \quad (4)$$

Experimental intensity-time profiles are often fitted to equations (1), perhaps including convection and deceleration, to determine the "observed" mean-free path $\lambda_{\text{fit}} = 3 K_r / w$. Zwickl and Webber (1977a) analyzed a large set of spacecraft measurements with this method and found that the observed λ_{fit} for ~ 10 MeV protons is about a factor of 10 larger than the value derived from quasi-linear theory (QLT) and equations (3)–(4) (Jokipii 1966, 1971; Hasselmann and Wibberenz 1968).

The discrepancy $\lambda_{\text{fit}} > \lambda_s$ has been known for some time, and along with some theoretical arguments it leads to suggestions that the quasi-linear results for D_μ are incorrect (e.g., Klimas and Sandri 1971). Subsequent theoretical (Volk 1973; Goldstein 1976) and Monte Carlo (Jones, Kaiser, and Birmingham 1973; Kaiser, Birmingham, and Jones 1978; Owens and Gombosi 1980) work has shown that the nonlinear corrections to the QLT results for D_μ are surprisingly small, so nonlinear effects are unlikely to resolve the $\lambda_{\text{fit}} > \lambda_s$ discrepancy. Recently, Goldstein (1980) has proposed that the problem is an improper characterization of the magnetic-field fluctuations, since they appear
to be more in the nature of a rotating fixed-length vector (Lichtenstein and Sonett 1980) rather than two independently varying transverse components (as in the slab model).

We show here that another resolution of the $\lambda_{\text{fit}} > \lambda_r$ discrepancy is possible, even within the context of the slab model and QLT. Since the anisotropy of solar flare events is large, equation (2) rather than equation (1a) should be used. The diffusive idealization upon which equation (1a) is based is inapplicable during the initial phases of solar particle events, because both the time evolution of the particle distribution and the anisotropy are large.

Of course, it is well known that the diffusive idealization is inapplicable for a rapidly evolving particle distribution (e.g., Jokipii 1971; Earl 1974). The importance of adiabatic focusing and nondiffusive transport was emphasized by Earl (1976) and Bieber (1977). In these models, the length scale L of the interplanetary magnetic field’s size is taken to be constant, so the IMF diverges exponentially with distance from the Sun.

This model, including effects of coronal transport, has been shown to fit a large number of solar-flare profiles (Ma Sung and Earl 1978). However, the numerical calculations of Ng and Wong (1979) show that the use of a constant focusing length L significantly overestimates the influence of adiabatic focusing compared with the more realistic Parker spiral interplanetary magnetic field geometry. Since our numerical calculations confirm the results of Ma and Wong, we suggest that the conclusion of Earl and co-workers that the observed λ_{fit} is much larger than the value obtained from quasi-linear theory may have to be reexamined.

We have used Ng and Wong’s numerical technique to investigate the propagation of solar cosmic rays over a wide range of rigidities. We find that low-energy particles arrive at Earth much more rapidly than equation (1b) predicts. Thus fits to intensity-time profiles using a spatial diffusion equation (like our eq. (1a)) significantly overestimate the scattering mean-free path.

II. NUMERICAL SOLUTIONS OF THE TRANSPORT EQUATION

Following Ng and Wong (1979), we solve equation (2) by a numerical finite-difference technique. We define the dimensionless time $\tau = wt/l$ and position in space $\mathcal{R} = ln(r/l)$, where we choose the scaling length l to be the correlation length of the IMF fluctuations,

$$l = 10^{12} \text{ cm}$$

(Hedegock 1975). The magnetic field in the solar equatorial plane is taken to be an Archimedes spiral, with focusing length $L = (1/B) dB/ds$ varying with radial position accordingly. We use the slab model and QLT to calculate the pitch-angle scattering coefficient, $D_{\mu\mu} = (w/l) D_0 (1 - \mu^2) \sqrt{\mu}$,

$$D_{\mu\mu} = (w/l) D_0 (1 - \mu^2) \sqrt{\mu}, \quad (5a)$$

where

$$D_0 = 0.65 (r_0/l)^{1/2} (\langle B^2 \rangle / B_0^2). \quad (5b)$$

Here r_0 is the particle’s gyroradius in the 5γ IMF (near Earth), and $\langle B^2 \rangle / B_0^2 = 1/4$ is the relative variance of a component of the IMF perpendicular to the average field (Hedegock 1975).

Equation (2), in these dimensionless units, becomes

$$\partial F / \partial \tau = D_0 \partial / \partial \mu (1 - \mu^2) \mu^{1/2} \partial F / \partial \mu - \mu g(\mathcal{R}) \partial F / \partial \mathcal{R} - (l/2L) \partial / \partial \mu [(1 - \mu^2) F]. \quad (6)$$

Here $g(\mathcal{R})$ gives the transformation from the field-aligned z to $\mathcal{R} = ln (r/l)$. For a fixed IMF power spectrum, the single parameter in the models is the dimensionless size of the pitch-angle scattering coefficient D_0 which we take to be a constant throughout the solar system. The D_0 constant requires the fluctuations to scale as $< B^2 > / B_0^2 = 1/4$. The parallel diffusion coefficient and mean-free path, calculated from equation (3), are thus independent of heliocentric radius, and we have simply

$$\lambda_r = 1.2 \cos^2 \psi L / D_0 = (0.04 \text{ AU}) / D_0. \quad (7)$$

The particle rigidity R and D_0 are simply related by

$$D_0 = 0.61 (1 \text{ GV}) / R^{1/3}. \quad$$

In our numerical code, particles are injected near the Sun ($r = 0.1 \text{ AU}$) with velocities spread smoothly over positive values of μ. We imposed a free-escape condition ($F = 0$) at an outer radial distance $r = R_0$. The anisotropies and temporal profiles inside 1 AU were unaffected by the choice of R_0 in the range investigated (5 AU $< R_0 < 15$ AU). As done by Ng and Wong (1979), for numerical stability we integrated with respect to \mathcal{R} in opposite directions for $\mu > 0$ and $\mu < 0$, and we matched the fluxes through $\mu = 0$ to join the two halves of the solution.

We checked our numerical integration code for some simple cases and via a detailed comparison with Ng and Wong’s published profiles. A typical intensity-time profile and representative anisotropy diagrams are shown in Figure 1, which is relevant for ~ 1 MeV protons. The time scale is such that $120 \tau = 1$ day. The calculated intensity-time profile (solid curve) is well approximated by a simple diffusion profile (eq. (1b)) with mean-free path $\lambda_{\text{fit}} = 0.09$ AU. The actual scattering mean-free path, calculated from equation (7) via QLT, is $\lambda_r = 0.01$ AU. The dashed curve shows that using a spatial diffusion profile (eq. (1b)) with the actual value of λ_r gives a much more slowly evolving profile than the numerical solution to equation (2). The anisotropy diagrams show the “mushroom” shape discussed by Bieber (1977) for this power spectrum.

The anisotropy obtained in our numerical calculation is similar to that of spatial diffusion for the parameters shown in Figure 1. In our numerical solutions to equation (2) the anisotropy as a function of time is strongly dependent upon the amount of scattering, while simple diffusion (eq. (1b)) gives an anisotropy $3r/2wt$ that is independent of K_{rr}. Thus the use of
anisotropy as well as temporal profile data is extremely important in the interpretation of fits to solar particle propagation data.

We also calculated solutions to equation (6) under the assumption that the relative magnetic-field fluctuations \(\delta B_\parallel / B_\parallel \) are constant throughout the solar system. This variation gives more scattering near the Sun than in the constant \(D_s \) models. The solutions are very similar to those discussed here. At Earth, for example, the parameter \(\lambda_{\text{fit}} \) varies by less than 5% from the constant \(D_s \) to the constant \((\delta B_\parallel / B_\parallel)_{\text{max}}/B_\parallel \) model.

We interpret the results shown in Figure 1 like this: During the early phases of the solar flare event, particles propagate through space much more rapidly than equations (1) predict because in the initial anisotropy phase a telegrapher's type equation is more appropriate than the diffusive one. We verified that adiabatic focusing has little effect on the intensity profile shown in Figure 1 by taking the focusing length arbitrarily large. In the onset phase of the solar particle event, the first particles that reach Earth are those few that traverse the interplanetary medium essentially without scattering. The initial arrival of particles then depends mainly on their speed and is independent of \(D_{\nu r} \). Late in the event, the temporal profile depends mostly on the geometrical properties of the field and is independent of \(D_{\nu r} \) as long as scattering is strong enough. In equation (1b), for example, at late times the profile is dominated by the \(t^{-3/2} \) “geometrical” factor and is independent of \(K_{\nu r} \). Thus, for a sufficiently large amount of scattering, the temporal profile is dominated by simple rectilinear transport for early times and the geometry of the field for late times, and the amount of scattering is relatively unimportant. This explains the flattening of the \(\lambda_{\text{fit}} \) curve in Figure 2 for \(R < 1 \) GV. In our dimensionless units, the intensity-time profiles for \(R < 1 \) GV are quite similar in shape.

III. DISCUSSION

Figure 2 gives the primary result of this investigation. It shows that the radial mean-free path deduced from observed profiles will be significantly overestimated, if a spatial diffusion model as in equations (1) is used to fit temporal profiles of solar cosmic rays. The solutions to the pitch-angle scattering equation, including focusing, give a much more rapid profile than equation (1b) indicates for low rigidities (see Fig. 1). Some observational points are shown in Figure 2 (Zwickl and Webber 1977a), and they show the same features as our \(\lambda_{\text{fit}} \) curve. Using a collection of other spacecraft data, Zwickl and Webber (1977b) show that the \(\lambda_{\text{fit}} \) curve is rigidity independent down to 1 MV, in agreement with our calculations. The actual scattering mean-free path, determined from the equation (3) with the \(D_{\nu r} \) used in the solutions, is considerably smaller than \(\lambda_{\text{fit}} \) for \(R \ll 1 \) GV.

Thus we conclude that the simple diffusion picture for solar-particle transport can give quite misleading results. Although the intensity-time profiles “look” diffusive, for small scattering mean-free paths (\(\lambda_{\nu} \lesssim 0.1 \) AU) the fitted profiles significantly overestimate \(\lambda_{\nu} \). For simplicity in our discussion here, we have not mentioned the influences of prolonged coronal injection of particles or the large event-to-event variability in the interplanetary scattering conditions. And it is clear that there are occasionally events in which the scattering mean-free path is large (~1 AU). Our Figure 2 should be taken to represent a hypothetical event for a
well-connected flare with negligible coronal storage, or perhaps an average over a large number of such flares, rather than a relation applicable to all events.

These results indicate that the discrepancy between observed and theoretical (QLT) values for the diffusion coefficient of low-energy solar cosmic rays may be due to the improper use of a spatial diffusion equation in circumstances for which it is inappropriate, rather than to some fundamental error in the theoretical models or a serious misrepresentation of the interplanetary scattering conditions. In light of this conclusion, it is suggested that a new analysis of the solar cosmic-ray propagation data obtained on spacecraft should be done, using the methods of Ng and Wong (1979) and this Letter, based on the pitch-angle scattering equation with focusing, rather than on a spatial diffusion equation. For a first approximation, our Figure 2 gives the relationship between the reported λ_{fit} determined using diffusion models and the actual mean-free path λ_{α}.

Our calculations neglect the contributions of adiabatic deceleration and convection. As discussed above, these effects are important for cases in which λ_{fit} is smaller than about 0.1 AU. The inclusion of convection and adiabatic deceleration into our equation (2) is understood theoretically (Luhmann 1976): additional momentum-dependent terms are introduced on the right-hand side of the equation. The momentum loss is then pitch-angle dependent, and the calculations must be carried out in a three-dimensional array (position, μ, and momentum) rather than the two-dimensional calculation (position, μ) that we have done. Although the computing time is considerable, in light of the results discussed here we believe that this is the only accurate way to determine the diffusive scattering mean-free path for solar particles with rigidities less than about 1 GV. The assumptions underlying the derivation of the spatial diffusion equation are invalid for low-rigidity solar-flare particles.

We thank J. R. Jokipii, C. K. Ng, and I. D. Palmer for several helpful discussions. This work was done while T. I. G. was a Visiting Scientist at the University of Michigan; Prof. A. F. Nagy's hospitality there is gratefully acknowledged. This research was supported, in part, by the National Science Foundation through grants DPP 76-23429 and ATM 77-12615 (A. J. O.) and by NASA through grant NGR23-003-015 and NASA ARC contract NAS2-9130 at the University of Michigan (T. I. G.).

REFERENCES

Ng, C. K., and Wong, K.-Y. 1979, 16th Internat. Cosmic Ray Conf. (Kyoto), 5, 252.

T. I. GOMBOSI: Central Research Institute for Physics, H-1525, Budapest, Hungary

A. J. Owens: Building 304, DuPont Experimental Station, Wilmington, DE 19898

© American Astronomical Society • Provided by the NASA Astrophysics Data System