APPLICATIONS OF LOCAL COHOMOLOGY

TAKUMI MURAYAMA

Abstract. Local cohomology was discovered in the 1960s as a tool to study sheaves and their cohomology in algebraic geometry, but have since seen wide use in commutative algebra. An example of their use is to answer the question: how many elements are necessary to generate a given ideal, up to radical?

For example, consider two planes in 4-space meeting at a point. The vanishing ideal \(I = (x, y) \cap (u, v) \subseteq k[x, y, u, v] \) can be generated up to radical by \(xu, yv, xv + yu \). Krull’s Hauptidealsatz implies that one element is not enough, but local cohomology is used to show two elements also do not work.

The main sources for this talk are [Hum07] and [Eis05, App. 1]. For a more “homological” introduction, see [Wei94, §4.6]. The speaker would like to point out that the algebro-geometric literature on the topic takes a different approach via sheaf cohomology; see [Har67; Har77].

1. Introduction: Complete intersections

We start off with our favorite counterexample from Algebraic Geometry I.

Example 1 (Twisted Cubic [Har77, Exc. I.2.17]). Let \(C \) be the twisted cubic curve, defined by the equations \(V(x^2 - yu, xz - y^2, xy - zw) \subseteq \mathbb{P}^3 \).

In algebraic geometry, this is usually the first example of a variety that is not a complete intersection, that is, its vanishing ideal \(I(C) \) cannot be generated by \(r \) elements, where \(r \) is the codimension of \(C \). You can see this by looking at the degree 2 piece of \(I(C) \), which is three-dimensional. However, the vanishing ideal of \(I(C) \) is generated up to radical by \(x^2 - yw, z(xy - zw) + y(xz - y^2) \),

since
\[
(xz - y^2)^2 = x^2z^2 - 2xy^2z + y^4 = z^2(x^2 - yw) - y(z(xy - zw) + y(xz - y^2))
\]
\[
(xy - zw)^2 = x^2y^2 - 2xzw + z^2w^2 = y^2(x^2 - yw) - w(z(xy - zw) + y(xz - y^2))
\]

We can then naively ask: can we generate \(I(C) \), up to radical, by one element? This is impossible by Krull’s Hauptidealsatz, since then \(C \) would have dimension 2, not 1. We say that \(C \) is a set-theoretic complete intersection, that is, there are two hypersurfaces in \(\mathbb{P}^3 \) that cut out \(C \) set-theoretically.

Even in one dimension higher, it’s already hard to answer such questions.

Example 2 (Hartshorne’s Example [Har70, Exc. III.5.12; Har77, Exc. III.4.9]). Let \(Y \subseteq \mathbb{A}^2 \) be the union of two planes meeting at a point (you can also think of this example as two skew lines in \(\mathbb{P}^3 \)). Its vanishing ideal is
\[I(Y) = (x, y) \cap (u, v) = (xu, xv, yu, yv) \subseteq k[x, y, u, v], \]
which is generated up to radical by the elements \(xu, yv, xv + yu \), since
\[
(xv)^2 = xv(xv + yu) - (xu)(yu) \in (xu, yv, xv + yu).
\]

We can ask again: can we generate \(I(Y) \), up to radical, by less than three elements? We know it cannot be generated by one element by Krull’s Hauptidealsatz again, since then \(Y \) would have dimension 3. But we can’t rule out two elements by dimension arguments alone!

We want to answer the question: is \(Y \) a set-theoretic complete intersection? To do so, we want to construct some sort of obstruction for \(I(Y) \) to be generated by two elements, up to radical. To a ring \(R \) and an ideal \(J \), we will construct a sequence of modules \(H^j_J(R) \) such that

Properties 3.

Date: February 2, 2016.
(1) $H^j_I(R) = H^j_{\sqrt{I}}(R)$, and
(2) if J is generated by k elements, then $H^j_J(R) = 0$ for all $i > k$.

These modules are what we will call local cohomology modules.

2. LOCAL COHOMOLOGY AS A DERIVED FUNCTOR

Just like sheaf cohomology, there are multiple ways to define local cohomology. We will describe the derived functor construction first.

Let R be a noetherian ring, $I \subseteq R$ an ideal, and M an R-module. We define the I-power torsion module of M to be

$$H^0_I(M) := \{ m \in M \mid I^d m = 0 \text{ for some } d \in \mathbb{N} \} = \varinjlim \text{Hom}(R/I^d, M).$$

Note that $\text{Hom}(R/I^d, -)$ is left exact and \varinjlim is exact, and so H^0_I is a left exact functor. Like any left exact functor, we can define its right derived functors, by choosing an injective resolution

$$0 \rightarrow M \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots,$$

applying the functor $H^0_I(\cdot)$ term by term to get a new complex $H^0_I(E^\bullet)$, and then computing cohomology to get modules $H^i_I(M)$. We automatically get some really nice properties!

Properties 4.

(1) If I and J have the same radical, they define the same functor $H^j_I(-)$ (Property 1 from before).
(2) If $0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0$ is a short exact sequence of R-modules, there is a long exact sequence

$$0 \rightarrow H^0_I(N) \rightarrow H^0_I(M) \rightarrow H^0_I(L) \rightarrow H^1_I(N) \rightarrow H^1_I(M) \rightarrow \cdots.$$

(3) Every element of $H^i_I(M)$ is killed by some power of I.
(4) Since \varinjlim is exact, we can compute local cohomology as

$$H^i_I(M) \cong \varinjlim \text{Ext}^i(R/I^d, M).$$

Before we get too carried away with technical details, let’s compute some examples.

Example 5. Let $p \in \mathbb{Z}$ be a prime number. We will compute $H^1_I(\mathbb{Z})$, where $I = (p)$. Since \mathbb{Z} is a PID, the injective modules are exactly the divisible modules. We have the following injective resolution of \mathbb{Z}:

$$0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q}/\mathbb{Z} \rightarrow 0.$$

Now since H^0_I simply computes p^d-torsion for all d, the only non-vanishing term after applying $H^1_I(\cdot)$ is $H^0_I(\mathbb{Q}/\mathbb{Z})$, and so we have

$$H^1_I(\mathbb{Z}) = H^0_I(\mathbb{Q}/\mathbb{Z}) \cong \mathbb{Z}[p^{-1}]/\mathbb{Z},$$

where the last isomorphism is by unique factorization.

Similarly, we can compute the local cohomology of $R = k[x]$, where k is a field:

Exercise 6 ([Hum07, Ex. 2.12]). Let $R = k[x]$ be a polynomial ring in one variable over a field k. Our goal is to completely describe $H^1_I(M)$ for $I = (x)$ and M an arbitrary finitely generated module.

(1) Using the structure theorem for finitely generated modules over a PID, reduce to the case of computing $H^1_I(R/(g))$ for $g \in R$.

Proof. The structure theorem says

$$M = \bigoplus_{j=1}^s R/(g_j)$$

for some elements $g_j \in R$, possibly equal to zero. We conclude by the fact that computing local cohomology commutes with direct sums. □

(2) First compute the case when $g = 0$ by considering the short exact sequence

$$0 \rightarrow R \rightarrow K \rightarrow K/R \rightarrow 0,$$

where $K = k(x)$ is the fraction field of $k[x].$
Then, there is a long exact sequence in local cohomology

\[\text{Theorem 7.} \]

For any \(I \) be ideals in a noetherian ring \(R \), and let \(M \) be a finitely generated module \(M \). Then, there is a long exact sequence in local cohomology

\[0 \rightarrow H^i_I(M) \rightarrow H^i_I(M) \oplus H^0_J(M) \rightarrow H^0_{I,I}(M) \rightarrow H^0_{I,I}(M) \oplus H^1_J(M) \rightarrow \cdots \]

Proof. We will use the identification \(H^1_J(M) \cong \varinjlim \text{Ext}^1(R/I^n, M) \) from before. Take the short exact sequences

\[0 \rightarrow R/(I^n \cap J^n) \rightarrow R/I^n \oplus R/J^n \rightarrow R/(I^n + J^n) \rightarrow 0 \]

for each \(n \), and consider their corresponding long exact sequences on Ext modules. Then, since the system \(\{I^n \cap J^n\} \) is cofinal with \(\{(I + J)^n\} \), and since the system \(\{I^n + J^n\} \) is cofinal with \(\{(I + J)^n\} \), we can take direct limits over these long exact sequences to get the desired long exact sequence. ∎

3. Computing local cohomology

One disadvantage of working with derived functors is that computing injective resolutions in practice is rather difficult. We already saw how the long exact sequence associated to a short exact sequence can be very useful, since we can break apart local cohomology modules into pieces we can understand. We first give another example where a similar breaking apart procedure is useful.

3.1. The Mayer–Vietoris sequence. In algebraic topology, we learn about the Mayer–Vietoris sequence, which allows us to break apart a topological space into smaller pieces whose (co)homology we hopefully understand. We have a similar result for local cohomology:

\[C(x_1, \ldots, x_t; M) := \left\{ 0 \rightarrow M \xrightarrow{d} \bigoplus_{i=1}^{t} M[x_i^{-1}] \xrightarrow{d} \bigoplus_{|J|=s} M[x_J^{-1}] \xrightarrow{d} \cdots \bigoplus M[x_{\{1, \ldots, t\}}^{-1}] \rightarrow 0 \right\} \]
where the differential takes an element
\[m_J \in M[x_J^{-1}] \subseteq \bigoplus_{|J|=s} M[x_J^{-1}] \]
to the element
\[d(m_J) = \sum_{k \notin J} (-1)^{o_J(k)} m_{J \cup \{k\}}, \]
where \(o_J(k) \) denotes the number of elements of \(J \) less than \(k \), and \(m_{J \cup \{k\}} \) denotes the image of \(m_J \) in the further localization \(M[x_J^{-1}] = M[x_J^{-1}][x_k^{-1}] \).

We omit the proof, and instead point the reader to [Eis05, Thm. A1.3] or [Hun07, Prop. 2.13].

Corollary 9. If \(I = (x_1, \ldots, x_t) \), then \(H^1_I(M) = 0 \) for all \(i > t \).

Proof. The length of the Čech complex \(C(x_1, \ldots, x_t; M) \) is \(t \).

We have therefore found a nice functor that satisfies the properties we wanted!

4. **Hartshorne’s Example**

We now turn back to Example 2.

Exercise 10 (Hartshorne’s Example [Har70 Exc. III.5.12; Har77 Exc. III.4.9]). Consider the ideal
\[I(Y) = (x, y) \cap (u, v) = (xu, xv, yu, yv) \subseteq k[x, y, u, v]. \]
We want to show that \(I(Y) \) cannot be generated, up to radical, by two elements.

1. Using our two main properties, show that it suffices to show \(H^3_I(Y)(R) \neq 0 \).

 Proof. Suppose \(J \) is an ideal generated by two elements such that \(\sqrt{J} = I(Y) \). Then, by Corollary 9 of the identification of local cohomology with Čech cohomology, we have \(H^3_J = H^3_I(Y) = 0 \), using our other main property that local cohomology does not change under taking the radical of \(J \). \(\square \)

2. Use the Mayer–Vietoris sequence on \(I(Y) \) and the vanishing property to show \(H^3_I(Y)(R) \cong H^4_m(R) \), where \(m = (x, y) + (u, v) \).

 Proof. The Mayer–Vietoris sequence gives
 \[H^3_{(x,y)}(R) \oplus H^3_{(u,v)}(R) \rightarrow H^3_I(Y)(R) \rightarrow H^4_m(R) \rightarrow H^4_{(x,y)}(R) \oplus H^4_{(u,v)}(R). \]
 The two edge modules vanish since \((x, y) \) and \((u, v) \) are generated by two elements each, and by applying Corollary 9 \(\square \)

3. Compute \(H^4_m(R) \) using Čech cohomology. *Hint:* The relevant part of the Čech complex is

\[
\begin{array}{c}
\oplus \\
\oplus \\
\oplus \\
\oplus \\
\end{array}
\xrightarrow{1}
\xrightarrow{-1}
\xrightarrow{1}
\xrightarrow{-1}
\rightarrow 0
\]

Proof. The hard part is writing down the complex. Using the above representation of the complex, we obtain
\[H^3_I(Y)(R) \cong H^4_m(R) \cong k(a^b \cdot x^c \cdot x^d \mid a, b, c, d < 0) \neq 0. \] \(\square \)
5. Back to Curves

In Example 1, we saw that it was fairly easy to construct examples of non-complete intersections by considering monomial curves in \mathbb{P}^3. The twisted cubic ended up being a set-theoretic complete intersection. However, the generalization of this fact is not known:

Open Question ([Har77, Exc. I.2.17(d)]). *Can all irreducible curves in \mathbb{P}^3 be defined set-theoretically by two equations?*

This question is surprisingly difficult: while local cohomology gives us an obstruction for a variety to be a set-theoretic complete intersection, if the relevant local cohomology module vanishes, we get no information. Even for the following simple example, we have no idea:

Example 11. Consider the smooth rational quartic curve C in \mathbb{P}^3 defined as the image of the map

$$\mathbb{P}^1 \to \mathbb{P}^3$$

$$[s : t] \mapsto [s^4 : s^3t : st^3 : t^4]$$

It is known that $H^i_{\mathcal{I}(C)}(M) = 0$ for all $i > 2$ and all modules M [Har70, Ch. III], so local cohomology does not provide an obstruction to C being a set-theoretic complete intersection. On the other hand, it is known that if we work over a field of characteristic $p > 0$, we do get a set-theoretic complete intersection [Har79].

References

