FINITE GENERATION OF K-GROUPS OF RINGS
OF INTEGERS IN NUMBER FIELDS

TAKUMI MURAYAMA

Abstract. I present Quillen’s proof of the fact that the K-groups $K_i A$ where A is the ring of integers in a number field F are finitely generated. This talk was given in the Algebraic K-theory seminar at Michigan during the Winter semester of 2015.

CONTENTS

Introduction 1
1. Buildings 1
2. A long exact sequence 3
3. Proof of Theorem 1 6
3.1. Reduction to a group homology calculation 6
3.2. The Borel-Serre compactification 7
3.3. Proof of Theorem 8 8
References 9

INTRODUCTION

We follow [Qui73a]. The main result we will show in this talk is the following

Theorem 1. If A is the ring of algebraic integers in a number field F (finite over Q) then $K_i A$ is a finitely generated group for all $i \geq 0$.

To show this, we use the definition of $K_i A$ as

$$K_i A := \pi_{i+1}(N(Q \mathcal{P}), 0)$$

where $Q-$ denotes Quillen’s q-construction [Qui73b], $N-$ denotes the nerve of a category, and \mathcal{P} is the category of finitely-generated projective A-modules.

We pause to note the arithmetic significance of this result. Lichtenbaum in [Lic73] conjectured that higher K-groups $K_i A$ can give information about special values of the Dedekind zeta functions $\zeta_F(s)$. In particular, the ranks of $K_i A$ computed by Borel in [Bor74] give multiplicities of trivial zeros of $\zeta_F(s)$. We unfortunately don’t have much time to go deeply into this, but see [Kah05, Wei05] for surveys on the subject.

1. Buildings

To prove Theorem 1, we introduce the notion of a building.

Definition. The building $[V]$ of an n-dimensional vector space V over a field F is the nerve associated to the poset of nontrivial proper subspaces of V, i.e., p-simplices are chains $0 \subsetneq W_0 \subsetneq \cdots \subsetneq W_p \subsetneq V$ of subspaces W_i of V. If $n \leq 1$, then $[V] = \emptyset$; if $n = 2$, then $[V]$ is the projective space $P(V)$ of lines in V as a discrete space.

A fundamental theorem about buildings is the following

Theorem 2 (Solomon-Tits [Sol69]). If $n \geq 2$, then $[V]$ has the homotopy type of a wedge of $(n-2)$-spheres.
To prove this, we first state a corollary of the following theorem by Quillen:

Theorem A*. Let $f : \mathscr{C} \to \mathscr{C}'$ be a functor, and let $f/Y := \{(X, u) \mid u: f(X) \to Y\}$. Then, if $N(f/Y)$ is contractible for every object $Y \in \mathscr{C}'$, then f induces a homotopy equivalence of nerves.

Lemma 3. Let $g : K \to K'$ be a simplicial map of simplicial complexes. If for every closed subsimplex $\sigma \subset K$, its inverse image $g^{-1}(\sigma)$ is contractible, then g is a homotopy equivalence.

Proof. Let $\text{Simpl} K$ and $\text{Simpl} K'$ denote the posets of subsimplices of K,K' ordered by inclusion, and let h be the map on posets such that g is homeomorphic to Nh. Then, h/σ is the poset of subsimplices of $g^{-1}(\sigma)$, and the claim follows by Theorem A*. □

Now to prove the Solomon-Tits theorem, we introduce a new simplicial complex. We call V the simplicial complex with p-simplices being chains $0 \subseteq W_0 \subsetneq \cdots \subsetneq W_p \subseteq V$, i.e., it is defined in the same way as V but W_0 can be 0. Note $\text{Cone} \text{V} \simeq \text{V}$.

Proof of Theorem 2 (by induction). If $n = 2$, then the claim is trivial since V is discrete hence is trivially a wedge of 0-spheres.

Now suppose $n \geq 3$. Fix a line $L \subseteq V$, and let H be the set of hyperplanes H such that $V = H \oplus L$. Now let Y be the full subcomplex of V obtained by removing the vertices H.

Claim. Y is contractible.

Proof of Claim. If $V \to V/L$ is the projection, we get an induced simplicial map $q : Y \to \overline{V/L}$; the latter is contractible since it has a minimal element 0. Now by the Lemma 3, it suffices to show for every subsimplex $\sigma = (W_0/L \subsetneq \cdots \subsetneq W_p/L)$ of $\overline{V/L}$, its inverse image $q^{-1}(\sigma)$ in Y is contractible.

Now if $U \in q^{-1}(\sigma)$, then $q(U) = W_i/L$ for some i, so $U + L = W_i$. We can then visualize the simplices in Y and $\overline{V/L}$ as follows:

```
Y  \quad U_0 + L \subsetneq U_1 + L \subsetneq \cdots \subsetneq U_p + L
q  \downarrow
  \quad U_0 \subsetneq U_1 \subsetneq \cdots \subsetneq U_p
\overline{V/L} \quad \sigma = W_0/L \subsetneq W_1/L \subsetneq \cdots \subsetneq W_p/L
```

“Pushing up” then defines a deformation retraction $q^{-1}(\sigma) \simeq \Delta^p$. □

We then have the following schematic picture of V from [Qui10, p. 483]:

![Diagram of the simplicial complex V](image-url)
where for each \(H \in \mathcal{K} \), \(\text{Link}(H) \) is the subcomplex of \([V]\) formed by simplices \(\sigma \) such that \(H \notin \sigma \) but \(\sigma \cup \{H\} \) is a simplex. Note \(\text{Link}(H) \subset Y \), and that \([V]\) is the union of \(Y \) with the cones over these links, glued along the \(\text{Link}(H) \) as \(H \) varies in \(\mathcal{K} \). Thus,

\[
[V] \simeq [V]/Y \simeq \bigvee_{H \in \mathcal{K}} \text{Link}(H).
\]

Now \(\text{Link}(H) = \overline{H} \) for any \(H \in \mathcal{K} \), so the theorem follows by induction since \(\dim H = n - 1 \).

Now we define another poset \(J(V) \) which will be useful later because it is simpler to analyze.

Let \(J(V) \) be the set of subspaces \(W_0 \subseteq W_1 \) of \(V \) such that \(\dim(W_1/W_0) < n \), ordered by \((W_0, W_1) \preceq (W'_0, W'_1) \) if \(W'_0 \preceq W_0 \) and \(W_1 \preceq W'_1 \). For \(n = 1 \), \(J(V) \) consists of \((0, 0)\) and \((V, V)\), which are incomparable, hence \(NJ(V) = S^0 \).

Proposition. If \(n \geq 2 \), there is a \(\text{GL}(V) \)-equivariant homotopy equivalence

\[
\overline{V} \to N(J(V))
\]

where \(\overline{V} \) is the simplicial complex with \(p \)-simplices being chains \(0 \subseteq W_0 \subseteq \cdots \subseteq W_p \subseteq V \) such that \(\dim(W_p/W_0) < n \), which is a subsimplicial complex of the complex \(\overline{V} \) formed without this restriction.

Proof. Define a map \(g: \text{Simpl} \overline{V} \to J(V) \) by

\[
g(W_0 \subseteq W_1 \subseteq \cdots \subseteq W_p) = (W_0, W_p).
\]

\(g \) is a \(\text{GL}(V) \)-equivariant functor. Now \(N(\text{Simpl} \overline{V}) \) is a barycentric subdivision of \(\overline{V} \), so it suffices to show \(N \circ g \) is a homotopy equivalence. By Theorem A*, it suffices to show for each \((U_0, U_1) \in J(V) \), the category \(g/(U_0, U_1) \) is contractible. But the objects of \(g/(U_0, U_1) \) are simplices \(W_0 \subseteq W_1 \subseteq \cdots \subseteq W_p \) such that \(U_0 \nsubseteq W_0 \) and \(W_p \nsubseteq U_1 \) ordered by inclusion. Now this is isomorphic to \(\text{Simpl} \overline{V} \), which is contractible since it has an initial object.

Noting that \(\overline{V} \simeq \bigvee \overline{V} \), we have the following

Corollary 4. Suppose \(n \geq 1 \). The reduced homology \(\tilde{H}_i(NJ(V)) \) vanishes for \(i \neq n - 1 \), and is a free \(\mathbb{Z} \)-module for \(i = n - 1 \).

Definition. The \(\mathbb{Z} \)-module \(\tilde{H}_{n-1}(NJ(V)) \cong \tilde{H}_{n-2}(\overline{V}) \) with the natural \(\text{GL}(V) \) action is called the **Steinberg module** of \(V \), and is denoted \(\text{st}(V) \).

2. A Long Exact Sequence

The main homological input in this theorem is a long exact sequence, which we will prove in this section.

Let \(A \) be a Dedekind ring with field of fractions \(F \). For each \(n \geq 0 \), let \(Q_n \) be the full subcategory of \(Q \mathcal{P}(A) \) formed by projective modules of rank \(\leq n \). Then, \(Q_0 \) is the trivial category with one object and no morphisms, \(Q_n \subset Q_{n+1} \), and \(Q = \bigcup_n Q_n \).

Theorem 5. Let \(n \geq 1 \). The inclusion \(w: Q_{n-1} \to Q_n \) induces a long exact sequence

\[
\cdots \to H_i(NQ_{n-1}) \to H_i(NQ_n) \to \prod_{\alpha} H_{i-n}(\text{GL}(P_\alpha), \text{st}(V_\alpha)) \to H_{i-1}(NQ_{n-1}) \to \cdots
\]

where \(P_\alpha \) represent isomorphism classes of projective modules of rank \(n \), and \(V_\alpha = P_\alpha \otimes_A F \).

To prove this theorem, we first recall the following fact about computing homology of nerves:
Proposition 6 ([GZ67 App. II, 3.3]). If $F: C \to \text{Ab}$ is a functor, then $H_n(NC, F)$ can be computed by $\lim_{\to}^\ell F$, the nth derived functor of $\lim_{\to}^\ell: \text{Ab}^C \to \text{Ab}$.

Example. If L is the constant functor \mathbf{Z}, then $\lim_{\to}^\ell \mathbf{Z}$ gives integral homology $H_n(NC)$.

Proof of Theorem 5. The main ingredient in this proof is a Grothendieck spectral sequence obtained from the following commutative diagram of functors:

\[
\text{Ab}^{Q_{n-1}} \xrightarrow{w^*} \text{Ab}^{Q_n} \\
\text{Ab} \xrightarrow{\lim_{\to} Q_{n-1}} \text{Ab} \\
\text{Ab}^{(w/P)} \xrightarrow{\lim_{\to} (w/P)} \text{Ab}
\]

where w^* is defined (on objects) by

\[(w^*f)(P) = \lim_{(P', u) \in \text{w/P}} f(P') = \lim_{u(P') \to P} f(P')\]

for any functor $f: Q_{n-1} \to \text{Ab}$. Note this “looks like” the pullback functor for sheaves, and indeed the functor w_* defined by precomposition is a right adjoint to this functor that preserves epimorphisms since it does so componentwise. Thus, w^* preserves projectives and so we have the following Grothendieck spectral sequence:

\[E_2^{pq} = \lim_{\to}^{Q_n}(Lq(w^*)(f)) \Rightarrow \lim_{\to}^{Q_{n-1}}(f)\]

for any functor $f: Q_{n-1} \to \text{Ab}$. We can simplify this further by looking at the following commutative diagram:

\[
\text{Ab}^{Q_{n-1}} \xrightarrow{w^*} \text{Ab}^{Q_n} \\
i_{P*} \downarrow \quad \downarrow \text{eval}_P \\
\text{Ab}^{(w/P)} \xrightarrow{\lim_{\to} (w/P)} \text{Ab}
\]

for each $P \in Q_n$, where i_P is the projection $w/P \to Q_{n-1}$ defined by $(P', u) \mapsto P'$. The two vertical functors are exact, hence we have that

\[(Lq(w^*)(f)) \cong (P \mapsto \lim_{\to} w/P f \circ i_P)\]

and the spectral sequence becomes

\[E_2^{pq} = \lim_{\to}^{Q_n}(P \mapsto \lim_{\to}^{(w/P)} f \circ i_P) \Rightarrow \lim_{\to}^{Q_{n-1}}(f).\]

In particular, for $f = \mathbf{Z}$, by Proposition 6 this becomes the spectral sequence

\[E_2^{pq} = \lim_{\to}^{Q_n}(P \mapsto H_q(N(w/P))) \Rightarrow H_{p+q}(NQ_{n-1}). \quad (1)\]

Now to use this spectral sequence, we would like to know what $H_q(N(w/P))$ looks like. Recall $w/P = \{(P', u) \mid u: P' \to P\}$. We can write down the following bijection, noting that the morphisms $u: P' \to P$ in Q_n are of the form on the left by the q-construction:

\[
\{P' \leftarrow P_1 \Rightarrow P\} \leftrightarrow \left\{ \text{pairs } (P_0, P_1) \text{ of submodules } P_0 \subseteq P_1 \text{ of } P \\right\} \\
\text{such that } P' \cong P_1/P_0 \text{ is an isomorphism}
\]

so w/P is equivalent to the poset J of pairs of submodules $P_0 \subseteq P_1$ of P such that $\text{rk}(P_1, P_0) < n$, with the ordering $(P_0, P_1) \leq (P'_0, P'_1)$ if $P'_0 \subseteq P_0$ and $P_1 \subseteq P'_1$.

Now if \(\operatorname{rk} P < n \), then \(J \) has a maximal element \((0, P)\), so \(N(w/P) \) is contractible. If instead \(\operatorname{rk} P = n \), then the map \(P' \to P' \otimes_A F \subset V = P \otimes_A F \) induces an equivalence \(J \simeq J(V) \), hence Corollary 4 applies. Thus, if \(n = 1 \), then

\[
H_q(N(w/P)) = 0 \quad \text{if } q > 0
\]
\[
H_0(N(w/P)) = \begin{cases} \mathbb{Z} & \text{if } P = 0 \\ \mathbb{Z} \oplus \mathbb{Z} & \text{if } \operatorname{rk} P = 1 \\ \end{cases}
\]

and if \(n \geq 2 \),

\[
H_0(N(w/P)) = \mathbb{Z}
\]
\[
H_q(N(w/P)) = 0 \quad \text{if } q \neq 0, n - 1
\]
\[
H_{n-1}(N(w/P)) = \begin{cases} 0 & \text{if } \operatorname{rk} P < n \\ \text{st}(V) & \text{if } \operatorname{rk} P = n \\ \end{cases}
\]

We first analyze the case when \(n \geq 2 \). The \(E^2_{pq} \) terms in the spectral sequence (1) are given by

\[
E^2_{pq} = \lim_{\to}^{Q_n}(P \mapsto H_q(N(w/P))) = \begin{cases} H_p(NQ_n) & \text{if } q = 0 \\ 0 & \text{if } q \neq 0, n - 1 \\ \end{cases}
\]

It remains to analyze what happens when \(q = n - 1 \). To do so, consider the full subcategory \(Q' \) of \(Q_n \) consisting of rank \(n \) projectives. Since functor \(P \mapsto H_q(N(w/P)) \) is the zero functor for objects not in \(Q' \), we have an isomorphism of functors

\[
\lim_{\to}^{Q_n}(P \mapsto H_q(N(w/P))) \cong \lim_{\to}^{Q'}(P \mapsto H_q(N(w/P)))
\]

where in the latter, the functor is restricted to \(P \in Q' \) (to be precise, it is necessary to understand the details of the calculation of left-derived functors \(\lim_{\to} \) from [GZ67, App. II, 3.2]). \(Q' \) is equivalent to the groupoid of rank \(n \) projectives and their isomorphisms, which is in turn equivalent to the full skeletal subcategory with one object \(P_\alpha \) from each isomorphism class, and this is the category for the groupoid \(Q'' = \coprod_\alpha \text{GL}(P_\alpha) \). On this category, the functor \(P_\alpha \mapsto H_{n-1}(w/P) \) maps \(P_\alpha \) to the \(\text{GL}(P_\alpha) \)-modules \(\text{st}(V_\alpha) \) where \(V_\alpha = P_\alpha \otimes_A F \) by (2). Thus,

\[
E^2_{p,n-1} = \lim_{\to}^{Q_\alpha}(P \mapsto H_{n-1}(N(w/P))) = \coprod_\alpha H_p(\text{GL}(P_\alpha), \text{st}(V_\alpha)) =: L_p
\]

and the \(E^2 \) page of our spectral sequence looks like

\[
\begin{array}{cccccc}
\ldots & L_0 & L_1 & \cdots & L_p & \cdots \\
\vdots & \cdots & 0 & \cdots & \cdots & \cdots \\
0 & H_0(NQ_n) & H_1(NQ_n) & \cdots & H_p(NQ_n) & \cdots \\
\end{array}
\]
which is the same until the E^n page, where it converges to E^∞. The desired long exact sequence is obtained by splicing together the maps from the E^∞ page:

$$0 \to E_{p+1,0}^\infty \to H_{p+1}(NQ_n) \to L_{p+1-n} \to H_p(NQ_{n-1}) \to H_p(NQ_n) \to L_{p-n} \to \cdots$$

Finally, for $n = 1$, the spectral sequence (1) degenerates to an isomorphism

$$\lim_{\to}^Q (P \mapsto H_0(w/P)) \cong H_p(Q_0) = \begin{cases} \mathbb{Z} & \text{if } p = 0 \\ 0 & \text{if } p > 0 \end{cases}$$

We also have the short exact sequence

$$0 \to (P \mapsto \tilde{H}_0(w/P)) \to (P \mapsto H_0(w/P)) \to \mathbb{Z} \to 0$$

in Ab^Q and just like the case $n \geq 2$, we have the isomorphism

$$\lim_{\to}^Q (P \mapsto H_0(N(w/P))) = \prod_{\alpha} H_p(GL(P_\alpha), \text{st}(V_\alpha)) =: L_p$$

The desired long exact sequence is exactly that obtained by the long exact sequence on homology for \lim_{\to}^Q:

$$\cdots \to H_p(NQ_0) \to H_p(NQ_1) \to L_{p-1} \to H_{p-1}(NQ_0) \to \cdots \square$$

3. **Proof of Theorem 1**

3.1. **Reduction to a Group Homology Calculation.** We are now ready to prove the main theorem. Grayson in [Gra82] noted that Quillen’s argument boils down to the following statement:

Proposition 7. Let A be a Dedekind domain with fraction field F. Then, $K_i A$ is finitely generated for all $i \geq 0$ if Pic A is finite and $H_i(\text{GL}(P), \text{st}(V))$ is finitely generated for all $P \in \mathcal{P}$ and $V = P \otimes_A F$.

Proof. By Theorem 5, there is a long exact sequence

$$\cdots \to H_i(NQ_{n-1}) \to H_i(NQ_n) \to \prod_{\alpha} H_{i-n}(\text{GL}(P_\alpha), \text{st}(V_\alpha)) \to H_{i-1}(NQ_{n-1}) \to \cdots$$

Note for each n there are only finitely many isomorphism classes of projective A-modules of rank n by the finiteness of Pic A and the classification of finitely generated modules over a Dedekind domain [DF04, Ch. 6, Thm. 22], so the groups $\prod_{\alpha} H_{i-n}(\text{GL}(P_\alpha), \text{st}(V_\alpha))$ are finitely generated.

We first claim $H_i(NQ_n)$ is finitely generated for all i, n. First, $H_0(NQ_0) = \mathbb{Z}$ and $H_i(NQ_0) = 0$ for all $i > 0$ by the fact that Q_0 is the trivial category. Using the long exact sequence above, the claim follows by induction.
We outline the construction of such a classifying space in the sequel.

We give a brief outline of the construction.

Theorem 8. If $\sigma_i \in \mathcal{P}(A)$ and $V = P \otimes_A F$, then $H_i(\text{GL}(P), \text{st}(V))$ is finitely generated for all i.

Note that $\text{GL}(P)$ is an arithmetic subgroup of $\text{GL}(V \otimes \mathbb{Q} R)$, so the main technical tool we use here is the Borel-Serre compactification, which is used to compute the (co)homology of arithmetic groups.

3.2. The Borel-Serre compactification. We give a short description of the compactification and its applications to computing (co)homology of arithmetic groups in our particular case; see [Bor73, Bor06] for surveys on the cohomology of arithmetic groups, and [Gor05, Sap03] for surveys on the Borel-Serre (and other compactifications) in the reductive case. Note that most treatments of the Borel-Serre compactification only deal with the semi-simple case.

Let G be a connected reductive linear algebraic group defined over \mathbb{Q}; we write $G = G(\mathbb{R})$. Fix an arithmetic subgroup $\Gamma \subset G(F)$ where F is a number field, that is, a subgroup a subgroup that is commensurable with $G(A)$ where A is the ring of integers in F. We make the assumption that Γ is torsion-free. One motivation for the Borel-Serre compactification is the following

Question. What is a good finite classifying space $B\Gamma$ for an arithmetic group Γ, from which we can deduce facts about the group cohomology of Γ?

We outline the construction of such a classifying space in the sequel.

Let $K \subset G$ be a fixed maximal compact subgroup, and let A_G be the (topologically) connected identity component of the group of real points of the greatest \mathbb{Q}-split torus A_G in the center of G. Define $X := G/KA_G$. Then, Borel and Serre proved the following

Theorem 9 ([BS73]). There exists an enlargement \overline{X} of X satisfying the following properties:

1. \overline{X} is contractible [BS73, Lem. 8.6.4];
2. $\partial \overline{X}$ has the homotopy type of the Tits building T associated to $G(\mathbb{Q})$, and has dimension ℓ, the \mathbb{Q}-rank of G/RG, where RG denotes the radical of G [BS73, Thm. 8.4.1];
3. Γ acts freely on \overline{X}, hence \overline{X}/Γ is a space $B\Gamma$ that is compact [BS73, Thm. 9.3, n° 9.5].

We give a brief outline of the construction.

Construction. First, for any G as above, define 0G as follows:

$$^0G := \bigcap \ker(\chi^2),$$

where the intersection is taken over all rationally defined characters $\chi: G \to G_m$ [BS73, n° 1.1].

Then, the group G decomposes as $G = ^0GA_G$, where $^0G = ^0G(\mathbb{R})$ [BS73, Prop. 9.2].
Let P be a rational parabolic subgroup of G, and let $P = P(R)$ be its group of real points. Then, P has a Langlands decomposition

$$P = U_P A_P L_P,$$

where U_P is the unipotent radical of P, L_P is the Levi quotient of P, and the decomposition follows as above. Now define $e(P) = X/A_P$. X is obtained set-theoretically by glueing each space $e(P)$ to X, and the topology is defined in [BE73, §7]. The closures of the $e(P)$ form a locally finite cover of the boundary ∂X, whose nerve is the Tits building [BS73, Thm. 8.4.1]. The nerve of a locally finite cover of a space is homotopy equivalent to the space itself by [BS73, Thm. 8.2.2], so we have (b). □

3.3. Proof of Theorem 8. We are now ready to prove Theorem 8. Recall that A is the ring of integers in a number field F, and P is a finitely-generated projective module over A.

Let G be the general linear group, such that $G(F) = \text{GL}(V)$, where $V = P \otimes_A F$. By [BS73, Thm. 8.2.2], ∂X has the homotopy type of the Tits building T associated to $\text{GL}(V)$. In our case, there is a natural isomorphism $V \to T$ where the simplex $W_0 \subseteq \cdots \subseteq W_p$ of V corresponds to the reverse chain of stabilizers of each space in $\text{GL}(V)$. Its homology is then described by Theorem 2.

Now we can compute the cohomology (with compact support) of X.

Proposition 10 ([BS73, Thm. 8.6.5]). The groups $H^i_c(X)$ are 0 for $i \neq d - \ell$, where $d = \dim X$. The group $H_c^{d - \ell}(X)$ is free abelian, and is isomorphic to $\text{st}(V)$.

Proof. If $\ell = 0$, $X = X$, hence is a orientable manifold, and Poincaré duality gives that

$$H^i_c(X) \cong H_{d-i}(X)$$

and the result follows by contractibility of X.

For $\ell \geq 1$, since X is contractible, the long exact sequence of the pair gives isomorphisms $\tilde{H}_j(\partial X) \cong H_{j+1}(X, \partial X)$. Then, Poincaré duality for manifolds with boundary [Hat02, Thm. 3.35] gives isomorphisms

$$H^j_c(X) \cong H_{d-i}(X, \partial X) \cong H_{d-i-1}(\partial X)$$

and the result follows by Theorem 2 and Theorem 9. □

Now consider the arithmetic subgroup $G(L)$ of $G(V) = G(F)$. It has a finite index torsion-free subgroup Γ by Minkowski’s theorem (see [Sou07, Thm. 8] for a proof). Then, X/Γ is a classifying space BT, hence we can calculate the cohomology of Γ by calculating the cohomology of this space. We then have the following

Theorem 11 (Duality, [BS73, Thm. 11.4.2]). There is an isomorphism

$$H^{d - \ell - i}(\Gamma, Z) \cong H_i(\Gamma, \text{st}(V))$$

for each i.

Proof. General facts about classifying spaces in, say, [BE73, n° 6.3] imply the isomorphisms

$$H^i(\Gamma, Z[\Gamma]) \cong H^i_c(X/\Gamma, Z[\Gamma]) \cong H^i_c(X, Z)$$

hence $H^i(\Gamma, Z[\Gamma]) = 0$ for all $i \neq d - \ell$, and $H^{d - \ell}(\Gamma, Z[\Gamma]) \cong \text{st}(V)$ is free abelian by Proposition 10. Γ is thus a duality group in the sense of [BE73, Thm. 4.5], and the isomorphism follows. □

By [BS73, n° 11.1], $H^{d - \ell - i}(\Gamma, Z)$ is finitely generated for each i, hence by the Duality theorem above, $H_i(\Gamma, \text{st}(V))$ is as well. Finally, the homology spectral sequence

$$H_p(\text{GL}(P)/T, H_q(\Gamma, \text{st}(V))) \Rightarrow H_{p+q}(\text{GL}(V), \text{st}(V))$$

implies that since $\text{GL}(V)/\Gamma$ is finite, the groups $H_i(\Gamma, \text{st}(V))$ are finitely generated. □

We finally note that while it is beyond the scope of this talk, we know the ranks of the K-groups K_iA:
Theorem 12 ([Bor74]). The ranks are given by the formula

\[\text{rk} K_i A = \begin{cases}
 r_1 + r_2 & \text{if } n \equiv 1 \pmod{4} \\
 r_2 & \text{if } n \equiv 3 \pmod{4} \\
 0 & \text{otherwise}
\end{cases} \]

where \(r_1, r_2 \) are the numbers of real and complex places in \(A \), respectively.

On the other hand, the torsion parts of \(K_i A \) were not known until recently; see [Wei05].

References

