We review some classes of singularities defined using the Frobenius morphism, taking care to avoid F-finiteness assumptions. Most of this material is well-known, but some of the implications in Theorem 8 are new, at least in the non-F-finite case. We recommend [TW18] for a survey of F-singularities (mostly in the F-finite setting), and [DS16, §6] and [Has10, §3] as references for the material on strong F-regularity in the non-F-finite setting.

To define different versions of F-rationality, we will need the following:

Definition 1 [HH90, Def. 2.1]. Let R be a noetherian ring. A sequence of elements $x_1, x_2, \ldots, x_n \in R$ is a sequence of parameters if for every prime ideal p containing (x_1, x_2, \ldots, x_n), the images of x_1, x_2, \ldots, x_n in R_p are part of a system of parameters in R_p.

We now begin defining different classes of singularities. We start with F-singularities defined using tight closure. Recall that if R is a ring, then R^0 is the complement of the union of the minimal primes of R.

Definition 2 [HH90, Def. 8.2]. Let R be a ring of characteristic $p > 0$, and let $\iota: N \hookrightarrow M$ be an inclusion of R-modules. The tight closure of N in M is the R-module

$$N^*_M := \left\{ x \in M \mid \text{there exists } c \in R^c \text{ such that for all } e \gg 0,\ c \otimes x \in \text{im}(\text{id} \otimes \iota: F^e R \otimes_R N \to F^e R \otimes_R M) \right\}.$$

We say that N is tightly closed in M if $N^*_M = N$.

Definition 3 (F-singularities via tight closure). Let R be a noetherian ring of characteristic $p > 0$. We say that

(a) R is strongly F-regular if N is tightly closed in M for every inclusion $N \hookrightarrow M$ of R-modules [Hoc07, Def. on p. 166];
(b) R is weakly F-regular if I is tightly closed in R for every ideal $I \subseteq R$ [HH90, Def. 4.5];
(c) R is F-regular if R_p is weakly F-regular for every prime ideal $p \subseteq R$ [HH90, Def. 4.5]; and
(d) R is F-rational if I is tightly closed in R for every ideal I generated by a sequence of parameters in R [FW89, Def. 1.10].

We note that (a) is not the usual definition of strong F-regularity, although it coincides with the usual definition (Definition 6(a)) for F-finite rings; see Theorem 8. We also note that the original definition of F-regularity asserted that localizations at every multiplicative set are weakly F-regular, but the definition using prime ideals is equivalent by [HH90, Cor. 4.15].

Next, we define F-singularities via purity of homomorphisms involving the Frobenius. We recall that a ring homomorphism $\varphi: R \to S$ is pure if the homomorphism

$$\varphi \otimes \text{id}: R \otimes_R M \to S \otimes_R M$$

is injective for every R-module M. To simplify notation, we fix the following:

Notation 4. Let R be a noetherian ring of characteristic $p > 0$. For every $c \in R$ and every integer $e > 0$, we denote by λ_c^e the composition

$$R \xrightarrow{F^e} F^e_* R \xrightarrow{F^e_* (\cdot - c)} F^e_* R.$$
Definition 5 (*F*-singularities via purity). Let R be a noetherian ring of characteristic $p > 0$. For $c \in R$, we say that R is *F*-pure along c if λ^e_c is pure for some $e > 0$. Moreover, we say that

(a) R is *F*-pure regular if it is *F*-pure along every $c \in R^\circ$ [HH94, Rem. 5.3];
(b) R is *F*-pure if it is *F*-pure along $1 \in R$ [HR76, p. 121]; and
(c) R is strongly *F*-rational if for every $c \in R^\circ$, there exists $e_0 > 0$ such that for all $e \geq e_0$, the homomorphism $\lambda^e_c \otimes R/I$ is injective for every ideal $I \subseteq R$ generated by a sequence of parameters in R [Vél95, Def. 1.2].

The terminology *F*-pure regular is from [DS16, Def. 6.1.1] to distinguish it from the definition using tight closure (Definition 3(a)). *F*-pure regular rings are also called very strongly *F*-regular [Has10, Def. 3.4].

We note that *F*-purity is a local condition [DS16, Lem. 6.1.4(e)]. Strong *F*-regularity is a local condition [Has10, Lem. 3.6], and while it is equivalent to *F*-pure regularity in the local case [Has10, Lem. 3.6], *F*-pure regularity is not known to be a local condition [DS16, Rem. 6.3.3].

Next, we define *F*-singularities via splitting of homomorphisms involving the Frobenius. We use the same notation as for *F*-singularities defined using purity (Notation 4).

Definition 6 (*F*-singularities via splitting). Let R be a noetherian ring of characteristic $p > 0$. For $c \in R$, we say that R is *F*-split along c if λ^e_c splits as an R-module homomorphism for some $e > 0$. Moreover, we say that

(a) R is *split* *F*-regular if it is *F*-split along every $c \in R^\circ$ [HH94, Def. 5.1]; and
(b) R is *F*-split if it is *F*-split along $1 \in R$ [MR85, Def. 2].

The terminology *split* *F*-regular is from [DS16, Def. 6.6.1]. *Split* *F*-regularity is usually known as strong *F*-regularity in the literature.

Finally, we define *F*-injective singularities.

Definition 7 [Fed83, Def. on p. 473]. A noetherian local ring (R, m) of characteristic $p > 0$ is *F*-injective if the R-module homomorphism

$$H^i_{m}(F): H^i_{m}(R) \longrightarrow H^i_{m}(F^i_{*}R)$$

induced by Frobenius is injective for all i. An arbitrary noetherian ring R of characteristic $p > 0$ is *F*-injective if R_m is *F*-injective for every maximal ideal $m \subseteq R$.

The relationship between these classes of singularities can be summarized as follows:

Theorem 8. Let R be a noetherian ring of characteristic $p > 0$. We have the following diagram of implications of properties of R:
where “C–M” (resp. “Gor.”) is an abbreviation for Cohen–Macaulay (resp. Gorenstein).

Proof. We first list the implications that are easy or appear in the literature.

<table>
<thead>
<tr>
<th>Implication</th>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-regular \Rightarrow weakly F-regular</td>
<td>Definition</td>
</tr>
<tr>
<td>F-regular \Rightarrow F-rational</td>
<td>Definition</td>
</tr>
<tr>
<td>weakly F-regular \Rightarrow F-pure regular</td>
<td>split maps are pure</td>
</tr>
<tr>
<td>F-split \Rightarrow F-pure</td>
<td>split maps are pure</td>
</tr>
<tr>
<td>F-split \Rightarrow WN1</td>
<td>[SZ13, Thm. 7.3]</td>
</tr>
<tr>
<td>weakly F-regular \Rightarrow F-regular</td>
<td>[DS16, Rem. 6.1.5]</td>
</tr>
<tr>
<td>F-pure regular \Rightarrow strongly F-regular</td>
<td>[DS16, Lem. 6.1.4(e)]</td>
</tr>
<tr>
<td>strongly F-regular \Rightarrow F-injective</td>
<td>[Vé95, Prop. 1.4]</td>
</tr>
<tr>
<td>F-rational \Rightarrow normal</td>
<td>[HH94, Thm. 4.2(b)]</td>
</tr>
<tr>
<td>F-pure + weakly normal domain \Rightarrow weakly normal</td>
<td>[Sch09, Thm. 4.7]</td>
</tr>
<tr>
<td>F-regular + quasi-Gorenstein \Rightarrow F-pure</td>
<td>[EH08, Rem. 3.8]</td>
</tr>
</tbody>
</table>

We now show the remaining implications, for which we could not find a reference.

F-pure \Rightarrow weakly normal. We adapt the proof of [Sch09, Thm. 4.7]. It suffices to show that if R is F-pure, then R_p is weakly normal for every prime ideal $p \subseteq R$ by [Man80, Cor. IV.4]. Suppose not, and choose a prime ideal $p \subseteq R$ of minimal height such that R_p is not weakly normal. The local ring R_p is F-pure by [DS16, Lem. 6.1.4(e)] hence F-injective and reduced. Moreover, the punctured spectrum $\text{Spec}(R_p) \setminus \{p R_p\}$ is weakly normal by the minimality of p, hence [Sch09, Lem. 4.6] implies R_p is weakly normal, a contradiction.

Weakly F-regular + Gorenstein away from isolated points \Rightarrow Cohen–Macaulay \Rightarrow strongly F-regular. Let R be the weakly F-regular ring that is Cohen–Macaulay, and also Gorenstein away from isolated points. Then, the localization R_m is weakly F-regular for every maximal ideal $m \subseteq R$ by [HH90, Cor. 4.15], and to show that R is strongly F-regular, it suffices to show that 0 is tightly closed in

$$E_m := E_{R_m} (R/m)$$
for every maximal ideal \(m \subseteq R \) [Has10, Lem. 3.6]. Since \(R_m \) is weakly \(R \)-regular, every submodule of a finitely generated module is tightly closed [HH90, Prop. 8.7], hence the finitist tight closure \(0^f_E \) as defined in [HH90, Def. 8.19] is zero. Finally, since \(0^f_E = 0^a_E \) under the assumptions on \(R \) [LS01, Thm. 8.8], we see that 0 is tightly closed in \(E_m \), hence \(R \) is strongly \(F \)-regular.

Weakly \(F \)-regular + \(N \)-graded ⇒ split \(F \)-regular. We adapt the proof of [LS99, Cor. 4.4]. Let \(R \) be the \(N \)-graded ring with irrelevant ideal \(m \); note that by assumption in [LS99, §3], the ring \(R \) is finitely generated over a field \(R_0 = k \) of characteristic \(p > 0 \). The localization \(R_m \) of \(R \) is weakly \(F \)-regular by [HH90, Cor. 4.15]. Now let \(L \) be the perfect closure of \(k \), and let \(m' \) be the expansion of \(m \) in \(R \otimes_k L \); since \(R \) is graded, \(m' \) is the irrelevant ideal in \(R \otimes_k L \). The ring homomorphism

\[
R_m \longrightarrow R_m \otimes_k L \cong (R \otimes_k L)_{m'}
\]

is purely inseparable and \(m \) expands to \(m' \), hence \((R \otimes_k L)_{m'} \) is weakly \(F \)-regular by [HH94, Thm. 6.17(b)]. By the proof of [LS99, Cor. 4.3], \(R \otimes_k L \) is strongly \(F \)-regular. Finally, \(R \) is a direct summand of \(R \otimes_k L \) as an \(R \)-module, hence \(R \) is strongly \(F \)-regular as well [HH94, Thm. 5.5(e)].

\(F \)-rational + \(F \)-finite ⇒ strongly \(F \)-rational. The hypotheses of [Vel95, Thm. 1.12] are satisfied when the ring \(R \) is \(F \)-finite since an \(F \)-finite ring is excellent and is isomorphic to a quotient of a regular ring of finite Krull dimension by [Gab04, Rem. 13.6].

Remark 9. The condition that \(R \) is the image of a Cohen–Macaulay ring is not too restrictive in practice. For instance, it suffices for \(R \) to have a dualizing complex [Kaw02, Cor. 1.4], which in turn is implied by \(F \)-finiteness [Gab04, Rem. 13.6].

Remark 10. In the implication Weakly \(F \)-regular + Gorenstein away from isolated points + Cohen–Macaulay ⇒ strongly \(F \)-regular, MacCrimmon [Mac96, Thm. 3.3.2] showed that for \(F \)-finite rings, the Gorenstein condition can be weakened to being \(\mathbf{Q} \)-Gorenstein away from isolated points. The implication weakly \(F \)-regular + \(F \)-finite ⇒ split \(F \)-regular is a famous open problem, and is known in dimensions at most three by [Wil95, §4]. See also [Abe02] for other situations in which this implication is known and for a proof of MacCrimmon’s theorem.

Remark 11. The stated cases for the implication “\(F \)-rational ⇒ \(F \)-injective” follow by reducing to the local case, which is proved in [QS17, Thm. 3.7]. Thus, the implication “\(F \)-rational ⇒ \(F \)-injective” holds under different hypotheses by using [AHH93, Thm. 5.21], which shows that \(F \)-rationality localizes under various assumptions. In particular, by [AHH93, Thm. 5.21(b)], it suffices to assume that \(R \) has a weak test element and that \(R/p \) is of acceptable type (in the sense of [AHH93, p. 87]) for every minimal prime ideal \(p \subseteq R \).

Acknowledgments. I would like to thank Rankeya Datta for pointing out the implication “weakly \(F \)-regular + \(N \)-graded ⇒ split \(F \)-regular,” and for finding a correct reference for the implication “\(F \)-rational + local ⇒ \(F \)-injective.”

References

F-SINGULARITIES FOR NON-F-FINITE RINGS

