F-SINGULARITIES FOR NON-F-FINITE RINGS

TAKUMI MURAYAMA

We review some classes of singularities defined using the Frobenius morphism, taking care to avoid F-finiteness assumptions. Most of this material is well-known, but some of the implications in Theorem 8 are new, at least in the non-F-finite case. We recommend [TW18] for a survey of F-singularities (mostly in the F-finite setting), and [DS16, §6] and [Has10, §3] as references for the material on strong F-regularity in the non-F-finite setting.

To define different versions of F-rationality, we will need the following:

Definition 1 [HH90, Def. 2.1]. Let R be a noetherian ring. A sequence of elements $x_1, x_2, \ldots, x_n \in R$ is a *sequence of parameters* if for every prime ideal p containing (x_1, x_2, \ldots, x_n), the images of x_1, x_2, \ldots, x_n in R_p are part of a system of parameters in R_p.

We now begin defining different classes of singularities. We start with F-singularities defined using tight closure. Recall that if R is a ring, then R° is the complement of the union of the minimal primes of R.

Definition 2 [HH90, Def. 8.2]. Let R be a ring of characteristic $p > 0$, and let $\iota: N \hookrightarrow M$ be an inclusion of R-modules. The tight closure of N in M is the R-module $N^*_{M} := \{ x \in M : \text{there exists } c \in R^\circ \text{ such that for all } e \gg 0, \ c \otimes x \in \text{im}(\text{id} \otimes \iota): F^eR \otimes_R N \to F^eR \otimes_R M \}$.

We say that N is tightly closed in M if $N^*_{M} = N$.

Definition 3 (F-singularities via tight closure). Let R be a noetherian ring of characteristic $p > 0$. We say that

(a) R is strongly F-regular if N is tightly closed in M for every inclusion $N \hookrightarrow M$ of R-modules [Hoc07, Def. on p. 166];
(b) R is weakly F-regular if I is tightly closed in R for every ideal $I \subseteq R$ [HH90, Def. 4.5];
(c) R is F-regular if R_p is weakly F-regular for every prime ideal $p \subseteq R$ [HH90, Def. 4.5]; and
(d) R is F-rational if I is tightly closed in R for every ideal I generated by a sequence of parameters in R [FW89, Def. 1.10].

We note that (a) is not the usual definition of strong F-regularity, although it coincides with the usual definition (Definition 6(a)) for F-finite rings; see Theorem 8. We also note that the original definition of F-regularity asserted that localizations at every multiplicative set are weakly F-regular, but the definition using prime ideals is equivalent by [HH90, Cor. 4.15].

Next, we define F-singularities via purity of homomorphisms involving the Frobenius. We recall that a ring homomorphism $\varphi: R \to S$ is pure if the homomorphism

$\varphi \otimes \text{id}: R \otimes_R M \to S \otimes_R M$

is injective for every R-module M. To simplify notation, we fix the following:

Notation 4. Let R be a noetherian ring of characteristic $p > 0$. For every $c \in R$ and every integer $e > 0$, we denote by λ^e_c the composition

$R \xrightarrow{F_R} F^e_R \xrightarrow{F_R^e(-c)} F^e_R$
Definition 5 (F-singularities via purity). Let R be a noetherian ring of characteristic $p > 0$. For $c \in R$, we say that R is F-pure along c if λ^e_c is pure for some $e > 0$. Moreover, we say that

(a) R is F-pure regular if it is F-pure along every $c \in R^\circ$ [HH94, Rem. 5.3];
(b) R is F-pure if it is F-pure along $1 \in R$ [HR76, p. 121]; and
(c) R is strongly F-rational if for every $c \in R^\circ$, there exists $e_0 > 0$ such that for all $e \geq e_0$, the homomorphism $\lambda^e_c \otimes R/I$ is injective for every ideal $I \subseteq R$ generated by a sequence of parameters in R [V´ el95, Def. 1.2].

The terminology F-pure regular is from [DS16, Def. 6.1.1] to distinguish it from the definition using tight closure (Definition 3(a)). F-pure regular rings are also called very strongly F-regular [Has10, Def. 3.4].

We note that F-purity is a local condition [DS16, Lem. 6.1.4(e)]. Strong F-regularity is a local condition [Has10, Lem. 3.6], and while it is equivalent to F-pure regularity in the local case [Has10, Lem. 3.6], F-pure regularity is not known to be a local condition [DS16, Rem. 6.3.3].

Next, we define F-singularities via splitting of homomorphisms involving the Frobenius. We use the same notation as for F-singularities defined using purity (Notation 4).

Definition 6 (F-singularities via splitting). Let R be a noetherian ring of characteristic $p > 0$. For $c \in R$, we say that R is F-split along c if λ^e_c splits as an R-module homomorphism for some $e > 0$. Moreover, we say that

(a) R is split F-regular if it is F-split along every $c \in R^\circ$ [HH94, Def. 5.1]; and
(b) R is F-split if it is F-split along $1 \in R$ [MR85, Def. 2].

The terminology split F-regular is from [DS16, Def. 6.6.1]. split F-regularity is usually known as strong F-regularity in the literature.

Finally, we define F-injective singularities.

Definition 7 [Fed83, Def. on p. 473]. A noetherian local ring (R, \mathfrak{m}) of characteristic $p > 0$ is F-injective if the R-module homomorphism

$$H^i_{\mathfrak{m}}(F): H^i_{\mathfrak{m}}(R) \longrightarrow H^i_{\mathfrak{m}}(F_*R)$$

induced by Frobenius is injective for all i. An arbitrary noetherian ring R of characteristic $p > 0$ is F-injective if $R_{\mathfrak{m}}$ is F-injective for every maximal ideal $\mathfrak{m} \subseteq R$.

The relationship between these classes of singularities can be summarized as follows:

Theorem 8. Let R be a noetherian ring of characteristic $p > 0$. We have the following diagram of implications of properties of R:
where “C–M” (resp. “Gor.”) is an abbreviation for Cohen–Macaulay (resp. Gorenstein).

Proof. We first list the implications that are easy or appear in the literature.

<table>
<thead>
<tr>
<th>Implication</th>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>split F-regular $\Rightarrow F$-split</td>
<td>Definition</td>
</tr>
<tr>
<td>F-regular \Rightarrow weakly F-regular</td>
<td>Definition</td>
</tr>
<tr>
<td>weakly F-regular $\Rightarrow F$-rational</td>
<td>Definition</td>
</tr>
<tr>
<td>split F-regular $\Rightarrow F$-pure regular</td>
<td>split maps are pure</td>
</tr>
<tr>
<td>F-split \Rightarrow F-pure</td>
<td>split maps are pure</td>
</tr>
<tr>
<td>regular \Rightarrow strongly F-regular</td>
<td>[DS16, Thm. 6.2.1]</td>
</tr>
<tr>
<td>F-pure regular \Rightarrow strongly F-rational</td>
<td>[Has10, Lem. 3.8]</td>
</tr>
<tr>
<td>F-pure regular \Rightarrow strongly F-rational</td>
<td>[DS16, Rem. 6.1.5]</td>
</tr>
<tr>
<td>strongly F-regular \Rightarrow F-regular</td>
<td>[Has10, Cor. 3.7]</td>
</tr>
<tr>
<td>weakly F-regular \Rightarrow F-pure</td>
<td>[FW89, Rem. 1.6]</td>
</tr>
<tr>
<td>F-pure \Rightarrow F-injective</td>
<td>[Fed83, Lem. 3.3]</td>
</tr>
<tr>
<td>strongly F-rational \Rightarrow F-rational</td>
<td>[Vé95, Prop. 1.4]</td>
</tr>
<tr>
<td>F-rational \Rightarrow normal</td>
<td>[HH94, Thm. 4.2(b)]</td>
</tr>
<tr>
<td>F-rational \Rightarrow weakly normal</td>
<td>[Vé95, Prop. 0.10]</td>
</tr>
<tr>
<td>F-rational + locally excellent \Rightarrow Cohen–Macaulay</td>
<td>[HH94, Thm. 4.2(c)]</td>
</tr>
<tr>
<td>F-rational + image of C–M ring \Rightarrow Cohen–Macaulay</td>
<td>[HH94, Thm. 4.2(c)]</td>
</tr>
<tr>
<td>F-rational + F-finite \Rightarrow F-split</td>
<td>[Has10, Lem. 3.3]</td>
</tr>
<tr>
<td>F-pure + F-finite \Rightarrow F-split</td>
<td>[HR76, Cor. 5.3]</td>
</tr>
<tr>
<td>F-pure + complete local \Rightarrow F-split</td>
<td>[Fed83, Lem. 1.2]</td>
</tr>
<tr>
<td>F-rational + Gorenstein \Rightarrow F-regular</td>
<td>[HH94, Cor. 4.7(a)]</td>
</tr>
<tr>
<td>F-injective + quasi-Gorenstein \Rightarrow F-pure</td>
<td>[EH08, Rem. 3.8]</td>
</tr>
</tbody>
</table>

We now show the remaining implications, for which we could not find a reference.

F-pure \Rightarrow weakly normal. We adapt the proof of [Sch09, Thm. 4.7]. It suffices to show that if R is F-pure, then R_p is weakly normal for every prime ideal $p \subseteq R$ by [Man80, IV.4]. Suppose not, and choose a prime ideal $p \subseteq R$ of minimal height such that R_p is not weakly normal. The local ring R_p is F-pure by [DS16, Lem. 6.1.4(e)] hence F-injective and reduced. Moreover, the punctured spectrum $\text{Spec}(R_p) \setminus \{pR_p\}$ is weakly normal by the minimality of p, hence [Sch09, Lem. 4.6] implies R_p is weakly normal, a contradiction.

Weakly F-regular + Gorenstein away from isolated points + Cohen–Macaulay \Rightarrow strongly F-regular. Let R be the weakly F-regular ring that is Cohen–Macaulay, and also Gorenstein away from isolated points. Then, the localization R_m is weakly F-regular for every maximal ideal $m \subseteq R$ by [HH90, Cor. 4.15], and to show that R is strongly F-regular, it suffices to show that 0 is tightly closed in

$$E_m := E_{R_m}(R/m)$$
for every maximal ideal $m \subseteq R$ [Has10, Lem. 3.6]. Since R_m is weakly R-regular, every submodule of a finitely generated module is tightly closed [HH90, Prop. 8.7], hence the finitistic tight closure $0^{fg}_{E_m}$ as defined in [HH90, Def. 8.19] is zero. Finally, since $0^{fg}_{E_m} = 0_{E_m}$ under the assumptions on R [LS01, Thm. 8.8], we see that 0 is tightly closed in E_m, hence R is strongly F-regular.

Remark. When the ring is $\text{I. M. Aberbach. Some conditions for the equivalence of weak and strong } F$-regularity. In the implication F-regular \iff strongly F-regular. We adapt the proof of [LS99, Cor. 4.4]. Let R be the \mathbb{N}-graded ring with irreducible ideal m; note that by assumption in [LS99, §3], the ring R is finitely generated over a field $R_0 = k$ of characteristic $p > 0$. The localization R_m of R is weakly F-regular by [HH90, Cor. 4.15]. Now let L be the perfect closure of k, and let m' be the expansion of m in $R \otimes_k L$; since R is graded, m' is the irrelevant ideal in $R \otimes_k L$. The ring homomorphism

$$R_m \to R_m \otimes_k L \cong (R \otimes_k L)_{m'}$$

is purely inseparable and m expands to m', hence $(R \otimes_k L)_{m'}$ is weakly F-regular by [HH94, Thm. 6.17(b)]. By the proof of [LS99, Cor. 4.3], $R \otimes_k L$ is strongly F-regular. Finally, R is a direct summand of $R \otimes_k L$ as an R-module, hence R is strongly F-regular as well [Has10, Lem. 3.17].

F-rational $+$ F-finite \Rightarrow strongly F-rational. The hypotheses of [V´el95, Thm. 1.12] are satisfied when the ring is F-finite since an F-finite ring is excellent and is isomorphic to a quotient of a regular ring of finite Krull dimension by [Gab04, Rem. 13.6].

Remark. The condition that R is the image of a Cohen–Macaulay ring is not too restrictive in practice. For instance, it suffices for R to have a dualizing complex [Kaw02, Cor. 1.4], which in turn is implied by F-finiteness [Gab04, Rem. 13.6].

Remark. In the implication $\text{Weakly } F$-regular $+$ Gorenstein away from isolated points $+$ Cohen–Macaulay \Rightarrow strongly F-regular, MacCrimmon [Mac96, Thm. 3.3.2] showed that for F-finite rings, the Gorenstein condition can be weakened to being \mathbb{Q}-Gorenstein away from isolated points. The implication weakly F-regular $+$ F-finite \Rightarrow split F-regular is a famous open problem, and is known in dimensions at most three by [Wil95, §4]. See also [Abe02] for other situations in which this implication is known and for a proof of MacCrimmon’s theorem.

References

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA
Email address: takumim@umich.edu
URL: http://www-personal.umich.edu/~takumim/