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Relationship between Deleterious Variation,
Genomic Autozygosity, and Disease Risk:
Insights from The 1000 Genomes Project

Trevor J. Pemberton1,* and Zachary A. Szpiech2

Genomic regions of autozygosity (ROAs) represent segments of individual genomes that are homozygous for haplotypes inherited iden-

tical-by-descent (IBD) from a common ancestor. ROAs are nonuniformly distributed across the genome, and increased ROA levels are a

reported risk factor for numerous complex diseases. Previously, we hypothesized that long ROAs are enriched for deleterious homozy-

gotes as a result of young haplotypes with recent deleterious mutations—relatively untouched by purifying selection—being paired IBD

as a consequence of recent parental relatedness, a pattern supported by ROA andwhole-exome sequence data on 27 individuals. Here, we

significantly bolster support for our hypothesis and expand upon our original analyses using ROA and whole-genome sequence data on

2,436 individuals from The 1000 Genomes Project. Considering CADD deleteriousness scores, we reaffirm our previous observation that

long ROAs are enriched for damaging homozygotes worldwide. We show that strongly damaging homozygotes experience greater

enrichment than weaker damaging homozygotes, while overall enrichment varies appreciably among populations. Mendelian disease

genes and those encoding FDA-approved drug targets have significantly increased rates of gain in damaging homozygotes with

increasing ROA coverage relative to all other genes. In genes implicated in eight complex phenotypes for which ROA levels have

been identified as a risk factor, rates of gain in damaging homozygotes vary across phenotypes and populations but frequently differ

significantly fromnon-disease genes. These findings highlight the potential confounding effects of population background in the assess-

ment of associations between ROA levels and complex disease risk, which might underlie reported inconsistencies in ROA-phenotype

associations.
Introduction

Genomic regions of autozygosity (ROAs) reflect homozy-

gosity for haplotypes inherited identical-by-descent (IBD)

from a recent ancestor. Long ROAs most likely derive

from a more recent ancestor; shorter ones from a more

distant ancestor. Their patterns in individual genomes

therefore reflect the long-term effects of both population

history, such as founder effects and isolation, and cultural

practices, such as endogamy and prescribed inbreeding. In-

vestigations in worldwide human populations have found

ROAs to be ubiquitous and frequent even in ostensibly

outbred populations,1–5 where ROAs of different lengths

have different continental and population patterns, both

with regards to their total lengths in individual ge-

nomes1–5 and in their nonuniform genomic distribution

that forms hotspots and coldspots.2,5 Moreover, long

ROAs, which arise most frequently via recent inbreeding,

are enriched for deleterious variation carried in homozy-

gous form,6,7 providing a potential mechanistic basis for

the general reduction in fitness and health of individuals

that are the outcome of prolonged inbreeding, a phenom-

enon commonly referred to as inbreeding depression.8

Over the past decade, it has been increasingly apparent

that the ROA load in individual genomes is an important

genetic risk factor for numerous complex diseases and

contributing factor to variation in multiple complex traits.

Early studies using Wright’s inbreeding coefficient9 identi-
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fied associations between inbreeding and variation in

standing height, weight, blood pressure, and body mass

index,10–12 as well as increased risks for coronary artery dis-

ease, stroke, and cancer.13,14 The increasing availability of

dense genotype data on large disease cohorts enabled the

use of more accurate genomic inbreeding estimates based

upon ROAs, confirming previous associations with stand-

ing height15–18 and coronary artery disease (CAD),19 as

well as identifying new associations with thyroid20 and

colorectal21 cancer and multiple neurodegenerative disor-

ders: Alzheimer disease,22,23 Parkinson disease,24 and

amyotrophic lateral sclerosis25 (ALS). These associations

are consistent with the view that variants with individually

small effect sizes associated with complex diseases and

traits are more likely to be rare than to be common,26,27

distributed abundantly rather than sparsely in the

genome,28,29 and recessive rather than dominant.29,30 As

the fraction of the genome in ROAs increases as a conse-

quence of prescribed and unintentional inbreeding,31 the

number of deleterious alleles carried in homozygous

form would also be expected to increase,6,7 thereby

elevating the long-term probability of negative health

outcomes. However, for some complex diseases the

association between ROA load and genetic risk remains

unclear, with both positive and negative suggestions of

association reported for schizophrenia32,33 and cognitive

ability.17,34,35 These discrepancies highlight the genomic

complexities underlying observed associations between
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ROA load and genetic disease risk, where the population

and cultural backgrounds of study subjects would be ex-

pected to be important determining factors.

We previously hypothesized that long ROAs—being

comprised of younger haplotypes carrying more low-fre-

quency and rare alleles than older haplotypes—would

contain a larger fraction of all genome-wide damaging ho-

mozygotes compared to nondamaging homozygotes.6

While our results supported this hypothesis, their general-

izability was severely limited by small sample size and the

approaches available at that time to interrogate and

interpret alleles with apparent functional importance.

Here, we expand upon our original analyses examining

the relationship between genomic patterns in ROAs and

deleterious variation using the 2,436 unrelated individuals

from 26 populations included in Phase 3 of The 1000

Genomes Project36 on which previously reported whole-

genome sequence (WGS)-based genetic and ROA datasets

are available.5 These data provide us with �100-fold

more individuals (2,436 versus 27) and genetic data that

are not biased by the limitations of the exome capture plat-

form used in our original 2013 study.37We extend our orig-

inal analyses that were based upon the PolyPhen238 and

SIFT39 deleteriousness categorization methods to consider

a recently reported composite measure of potential func-

tional consequence, Combined Annotation Dependent

Depletion40 (CADD), that provides a deleteriousness score

rather than categorization for each nonreference allele,

enabling a more fine-grained investigation of the relation-

ship between ROAs and deleterious variation patterns. We

further analyze the relationship between ROAs and delete-

rious variation in specific sets of genes reported to cause

Mendelian disease, to contribute to complex diseases and

traits, or to encode Federal Drug Administration (FDA)-

approved drug targets, to provide a more focused assess-

ment of the involvement of ROAs in the determination

of genetic risk for disease through modification of the pat-

terns and properties of deleterious allele loads present in

individual genomes.
Subjects and Methods

Genetic and ROA Data
We examined autosomal single-nucleotide variants (SNV) in pub-

licly available phased genotypes for the 2,436 unrelated individ-

uals from 26 populations included in Phase 3 of The 1000

Genomes Project that were obtained through a combination

of low-coverage whole-genome sequencing (WGS) and high-

coverage whole-exome sequencing (WES) approaches.36 We used

the WGS dataset described in Blant et al.5 that had undergone

quality-control checks for relatedness and SNV quality, but

restricted our analyses to only the 40,637,503 SNVs located in

the transcribed regions of genes as defined in build hg19 of the

University of California, Santa Cruz (UCSC) human genome

database and that have a PHRED-scaled deleteriousness ‘‘C-score’’

(‘‘PSC score’’ henceforth) in the CADD database.40 We used the

WGS-based ROA dataset described in Blant et al.5 that was inferred
The Ame
using a weighted likelihood approach and classified into five

length-based classes with a Gaussian mixture model applied to

their genetic map lengths with the GARLIC software tool.41

Damaging Homozygote Comparisons
Comparisons of the rates of gain of damaging and nondamaging

homozygotes inside ROAs in individual genomes were performed

using Equation 10 of Szpiech et al.6 while comparisons of rates of

gain of damaging homozygotes among ROA classes and gene sets

were performed using Equation 13. Unless stated otherwise, we

considered a PSC score threshold of 15 to distinguish damaging

SNV (R15) from nondamaging SNV (<15).42

Disease Gene Sets
Lists of autosomal genes associated with autosomal-dominant and

autosomal-recessive Mendelian diseases in the Online Mendelian

Inheritance in Man43 (OMIM) database, associated with clinically

significant diseases in the ClinVar44 database, encoding FDA-

approved drug targets,45 and located nearest to reported

genome-wide association study (GWAS) hits46 were obtained

fromDaniel MacArthur’s group at Massachusetts General Hospital

(Boston, MA). The MacArthur OMIM lists represent the union of

two previously reported lists of genes associated with autosomal-

dominant (669) and autosomal-recessive (1,130) diseases in the

OMIM database,47,48 which were used to create a list containing

autosomal genes not associated with dominant or recessive dis-

eases (24,260; ‘‘non-OMIM’’ henceforth); genes associated with

both dominant and recessive disease were ignored. Similarly, we

used the lists of autosomal genes in the ClinVar database

(3,078), encoding FDA-approved drug targets (270), and located

nearest to reported GWAS hits (3,205) to create lists of non-

ClinVar (22,970), non-FDA-approved drug target (25,778), and

non-GWAS (22,843) autosomal genes.

The GWAS catalog49 was used to create lists of autosomal genes

associated with eight complex diseases and traits for which

ROA levels have been identified as a risk factor: standing

height (568 genes), CAD (327), ALS (262), Alzheimer disease

(375), Parkinson disease (186), schizophrenia (1,104), colorectal

cancer (181), and thyroid cancer (25). For each disease and

trait, we created a comparative gene set that contained all auto-

somal genes not associated with that disease or trait in the

GWAS catalog.

For each individual and for each ROA class, we calculated the

fraction of the total length of the transcribed regions of each

gene set that overlapped ROAs and tabulated howmany damaging

and nondamaging homozygotes are present inside and outside

ROAs in each gene set, based upon the genomic position of each

gene in build hg19 of the UCSC human genome database.
Results

Numbers of Damaging Homozygotes inside ROAs

At the worldwide scale, as the fraction of the genome

covered by ROAs increases, the number of damaging

homozygotes falling within ROAs also increases (Pearson’s

r ¼ 0.959, p < 10�16; Figure 1A), while the number of

damaging homozygotes falling outside of ROAs instead

decreases (r¼�0.952, p< 10�16). However, while numbers

of damaging homozygotes present inside and outside

ROAs are generally predicted well by the fraction of an
rican Journal of Human Genetics 102, 658–675, April 5, 2018 659
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Figure 1. Number of Damaging Homozygotes versus the Fraction of the Genome in ROAs
(A) Scatterplot depicting how the number of damaging nonreference homozygotes outside (gray) and inside (black) ROA changes with
the fraction of the genome in ROAs. Dashed lines depict the regression line for damaging homozygotes outside (gray; r ¼ �0.952,
p < 10�16) and inside (black; r ¼ 0.959, p < 10�16) ROAs with outlier individuals excluded.
(B) The baseline number of damaging homozygotes present in the genomes of noninbred individuals in each population.
(C) The net change in damaging homozygotes in each population with a 10% increase in the fraction of the genome covered by ROAs.
In (B) and (C), each bar is colored by the geographic region of the population it represents.
individual’s genome inROAs, a small number of individuals

at the upper end of observed ROA fractions deviate notice-

ably from this relationship (Figure 1A). Most of these indi-

viduals are from the Dai (CDX) population, with the rest

coming from assorted other populations (Figure S1). This

observation potentially reflects the combined effects of

the Dai’s small population size (�1.2 million in Yunnan

province,50 China, where The 1000 Genomes Project sam-

ples were collected), complex history,51,52 and practices of

endogamy (see entry for Dai inWebResources) and consan-

guinity.53 These have led to elevated ROA levels compared

with the other populations included in The 1000 Genomes

Project,5 creating an environment where increases in the

damaging homozygote load inside ROAs are not well

tolerated. In one possibility, by damaging alleles found in

homozygous form inside ROAs being more deleterious

than damaging alleles found outside ROAs, and therefore

having a greater cumulative detrimental effect on fitness.

Consequently, we observe fewer damaging homozygotes

insideROAs—both thoseofnewlyarisenstronglydamaging

alleles and of weaker damaging alleles segregating on the

haplotypes upon which they arise—since individuals

with elevated numbers tend not to exist in the extant pop-

ulation. In this view, higher numbers of damaging homozy-

gotes found outside ROAs could reflect an overall enrich-

ment of the Dai for older and weaker damaging alleles.

When we compare the linear relationship between the

fraction of the genome covered by ROAs and the rate of

change in numbers of damaging homozygotes inside and

outside ROAs, consistent with our original study,6 the

decreasing slope for non-autozygous regions is shallower

than the increasing slope for autozygous regions (Table 1).

Thus, the rise in damaging homozygotes inside ROAs out-

paces the decline of damaging homozygotes outside ROAs.

The fitted lines predict that an average noninbred individ-

ual carries �7,252 damaging homozygotes and that
660 The American Journal of Human Genetics 102, 658–675, April 5,
increasing genomic ROA coverage by 10% results in a net

increase of �246. These values are �40 times the baseline

number of damaging homozygotes and �6 times the

net increase reported in our original study (181 and 44,

respectively), likely reflecting significant improvements

in genomic coverage and in availability of deleteriousness

predictions in this study. TheWGS-based dataset used here

has �100-fold more individuals (2,436 versus 27) and pro-

vides a more comprehensive gene set than the exome-cap-

ture-based dataset used in our original study. Moreover, the

CADD deleteriousness prediction method40 used here pro-

vides a prediction for all observed SNVs, in contrast to the

PolyPhen238 and SIFT39 methods used in our original

study that only provide predictions for SNVs causing

amino acid substitutions, greatly increasing the number

of SNVs available for the calculations. Nevertheless,

these patterns highlight how cultural and population pro-

cesses that increase ROA levels in the genome can elevate

numbers of damaging homozygotes carried by the

general population, with potential negative consequences

for general health.

The larger sample sizes of The 1000 Genomes

Project populations—ranging between 55 and 109

individuals5—allow us to explore for the first time how

the net change in damaging homozygotes varies across

populations. Performing the linear regression analyses

separately in each population, we find appreciable

variability in baseline numbers of damaging homo-

zygotes in noninbred individuals (Figure 1B) and the net

change with a 10% increase in genomic ROA coverage

(Figure 1C). Across populations, baseline numbers are

greatest in East Asian populations and generally lowest in

admixed Amerindian-European populations, while net

changes are highest in Amerindian-European populations

and lowest in European and East Asian populations. The

highest net change is observed in Peruvians (568; PEL)
2018



Table 1. Net Change in Damaging Homozygotes with 10% Increase in Genomic ROA Coverage

C-score Category

Outside ROA Inside ROA 10% Increase in ROA Coverage

Slope Intercept Slope Intercept Outside Inside Net Change % Change

C R 15 �8,833.07 6,826.64 11,288.57 425.62 �883.31 1,128.86 245.55 3.39

15 % C < 20 �7779.32 5943.77 9663.67 355.21 �777.93 966.37 188.44 2.99

20 % C < 25 �1,001.53 822.78 1454.80 60.10 �100.15 145.48 45.33 5.13

C R 25 �52.22 60.09 170.10 10.30 �5.22 17.01 11.80 16.57
and lowest in the Luhya (�1; LWK), with 6 of the 26 pop-

ulations having a negative change: LWK, British (GBR),

Gujarati (GIH), Bengali (BEB), Southern Han (CHS), and

Afro-Caribbeans from Barbados (ACB). In general, net

change is inversely proportional to the baseline number

of damaging homozygotes in noninbred individuals

(Figure S2; r ¼ �0.651, p ¼ 1.58 3 10�4), indicating that

inbreeding will have the greatest effect on the number of

damaging homozygotes present in individual genomes in

populations where individuals generally possess fewer

damaging homozygotes. In one possibility, this might

reflect a ceiling effect, where any large increase in the

damaging homozygote burden of inbred individuals

from populations where individual burdens of damaging

homozygotes are generally high will have a significant

impact on their fitness and are thus not well tolerated.

Nevertheless, the observed variability across populations

in the damaging homozygote burden of noninbred indi-

viduals and in the net change with increasing genomic

ROA coverage emphasizes how associations between

ROA load and disease risk may be extremely sensitive to

population background and highlights how increased

ROA levels cannot always be used as an indicator for

increased numbers of damaging alleles carried in homozy-

gous form.

Unlike the PolyPhen238 and SIFT39 deleteriousness cate-

gorization methods used in our original study,6 the CADD
A B

Figure 2. Number of Damaging Homozygotes versus the Fraction
Scatterplots depicting how numbers of damaging nonreference hom
fraction of the genome in ROAs for different deleteriousness categor
(A) Variants with PSC scores between 15 and 20 (r ¼ �0.956 and r ¼
(B) Variants with PSC scores between 20 and 25 (r ¼ �0.926 and r ¼
(C) Variants with PSC scores greater than 25 (r ¼ �0.556 and r ¼ 0.8
All Pearson’s correlations have p < 10�16. Figure format follows Figu
ness category are provided in Table 1.

The Ame
deleteriousness prediction method used here provides a

numerical score, where larger scores indicate amore delete-

riousmutation.40 This enables us to ask the following ques-

tion: does the net increase in damaging homozygotes

inside ROAs influence numbers of strongly deleterious ho-

mozygotes to a greater extent than numbers of weakly

damaging homozygotes? We consider three deleterious-

ness categories—weak (PSC scores between 15 and 20),

moderate (PSC scores between 20 and 25), and strong

(PSC scores greater than 25)—and explore how numbers

of damaging homozygotes in each category inside and

outside ROAs change as the fraction of the genome

covered by ROAs increases. Numbers of damaging homo-

zygotes decrease outside ROAs and increase inside

ROAs with increasing genomic ROA coverage for each

deleteriousness category (Figure 2). Across populations,

the net change observed for each category with a 10%

increase in genomic ROA coverage (Figure S3A) generally

mirror those observed when all categories are combined

(Figure 1C). However, at a worldwide scale, individuals

with 10% of their genome covered by ROAs carry 16.57%

more strongly damaging homozygotes, 5.13% more

moderately damaging homozygotes, and 2.99% more

weakly damaging homozygotes than noninbred individ-

uals (Table 1); this pattern of a proportionally larger in-

crease in the number of strongly damaging homozygotes

relative to numbers of moderately and weakly damaging
C

of the Genome in ROAs
ozygotes outside (gray) and inside (black) ROAs changes with the
ies.
0.974, respectively).
0.952, respectively).
38, respectively).
re 1A. Net changes in damaging homozygotes in each deleterious-
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Figure 3. Fraction of Nonreference Homozygotes Falling in ROAs versus the Fraction of the Genome in ROAs
Scatterplots depicting how the fraction of nondamaging (gray) and damaging (in color) nonreference homozygotes in ROAs changes
with the fraction of the genome in ROAs.
(A) Class 1 ROAs (r ¼ 0.887 and r ¼ 0.818, respectively).
(B) Class 2 ROAs (r ¼ 0.942 and r ¼ 0.910, respectively).
(C) Class 3 ROAs (r ¼ 0.973 and r ¼ 0.963, respectively).
(D) Class 4 ROAs (r ¼ 0.980 and r ¼ 0.975, respectively).
(E) Class 5 ROAs (r ¼ 0.974 and r ¼ 0.959, respectively).
(A–E) All Pearson’s correlations have p< 10�16. A comparison of slopes and intercepts of the regressions for nondamaging and damaging
homozygotes are provided in Table 2.
(F) Regression lines for the fraction of damaging homozygotes in each ROA class taken from (A)–(E). A comparison between ROA classes
of the slopes and intercepts of the regressions for damaging homozygotes is provided in Table S1.
(A–F) The black dotted line depicts the identity line.
homozygotes also persists at the population level

(Figure S3B). These findings indicate that as the genome

is progressively covered by ROAs, the rate of gain of homo-

zygotes for strongly damaging alleles outpaces those for

less damaging alleles, providing a potential mechanism

by which increased ROA levels can elevate risk for disease.

Relationship between Damaging Homozygotes and

ROA Age

Our original study6 considered ROAs classified into three

classes based upon their physical map length. Here,

we instead consider five ROA classes that are defined

based upon their genetic rather than physical lengths,5

providing a more fine-scaled relationship between ROA

classification and age.54,55 Our choice of five classes was

motivated by the observation that the Bayesian Informa-

tion Criterion for the Gaussian Mixture Model used for

classification plateaued at five for all populations present

in ourWGS dataset.5 In this context, we consider long class

5 ROAs to likely arise from recent inbreeding, while inter-

mediate-length class 4 ROAs likely arise from population

processes that influence effective population size, and
662 The American Journal of Human Genetics 102, 658–675, April 5,
shorter class 1 to 3 ROAs likely arise from linkage disequi-

librium (LD) patterns on different evolutionary timescales.

That is, class 3 ROAs are formed from haplotypes that were

created through more recent events influencing genome-

wide LD patterns than shorter class 1 ROAs. These interpre-

tations are consistent with worldwide patterns in the total

lengths and numbers of each ROA class as well as correla-

tions observed between their genomic distributions and

spatially variable genomic properties such as recombina-

tion rate and signals of natural selection.2,5

First considering a single damaging category (PSC

score R 15), at the worldwide scale we find the rate

of gain of damaging homozygotes inside ROAs with

increasing genomic ROA coverage to significantly outpace

the rate of gain of nondamaging homozygotes (PSC

score < 15) in class 3 to 5 ROAs (Figure 3, Table 2).

Conversely, the rate of gain of damaging homozygotes in-

side class 1 ROAs is significantly lower than nondamaging

homozygotes (Figure 3A), while rates of gain of damaging

and nondamaging homozygotes are similar for class 2

ROAs (Figure 3B).When the rate of gain indamaginghomo-

zygotes inside each class of ROA are compared (Figure 3F,
2018



Table 2. Differences in Regression Slopes and Intercepts for
Damaging and Nondamaging Homozygotes inside ROAs

ROA Class

Difference in Intercept Difference in Slope

b2 p b3 p

1 0.0017 0.0123 �0.0931 1.03 3 10�9

2 0.0072 7.24 3 10�11 0.0061 0.6538

3 0.0079 <10�16 0.0375 7.31 3 10�5

4 0.0032 6.56 3 10�10 0.0492 1.36 3 10�9

5 1.83 3 10�4 0.5130 0.1490 <10�16

Reported b and p values were calculated with Equation 10 of Szpiech et al.6
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Figure 4. Relationship between Deleteriousness and Nonrefer-
ence Allele Frequency
A heatmap comparing PSC scores assigned to each nonreference
allele by the CADD method40 and the average frequency of the
nonreference allele in those populations in which it was observed.
Cells are colored by decile.
Table S1), the rate is highest for class 5 ROAs and lowest

for class 1 ROAs, generally decreasing inversely with ROA

class (i.e., expected haplotype age). This pattern is consis-

tent with the expectation that, relative to nondamaging

alleles, damaging alleles will be recent in origin since

purifying selection has not yet removed them from the

gene pool, and thus will appear in homozygous form

most often within longer ROAs that arise through recent

inbreeding. When considering homozygotes in general,

we find those made of low-frequency alleles (<5% in the

population) to decrease in number inside class 1 to 4

ROAs with increasing genomic ROA coverage (Figures

S4B–S4E), while numbers inside class 5 ROAs instead in-

crease (Figure S4F). The patterns with homozygotes made

of common alleles (frequencies R 5%; Figure S5) mirror

those observedwhenwe do not stratify alleles by frequency

(Figure 3).

The decreasing trends observed with low-frequency

allele homozygotes in class 1 to 4 ROAs that arise via back-

ground relatedness that is due to evolutionary history

within a population accords with the expected effects of

genetic drift on such alleles in the presence of inbreeding,

while the increasing trend with long class 5 ROAs instead

highlights how numbers of homozygotes for low-

frequency alleles can be amplified considerably in the

presence of recent inbreeding. Indeed, if we consider the

proportion of genome-wide homozygotes made of low-

frequency alleles that fall inside ROAs, we see almost no

change per unit increase in genomic coverage for class 1

to 3 ROAs made of older haplotypes (Figures S6A and

S6B), a moderate increase for class 4 ROAs made of haplo-

types of intermediate age (Figures S6C and S6D), and the

sharpest increase for class 5 ROAs made of young haplo-

types (Figure S6E). This is consistent with the expectation

that low-frequency alleles are unlikely to be found in

homozygous form genome-wide, but when they do form

they tend to be concentrated in autozygous regions that

arise through recent parental relatedness.

Alleles in our strongly damaging category are mostly pre-

sent at low frequencies (Figure 4), with PSC scores generally

decreasing as the frequency of the nonreference allele in-

creases. Focusing on alleles with PSC scores R15, 93.14%

have a mean frequency of <5% across the populations in
The Ame
which they are present, and 72.81%have amean frequency

of <1%. Within each deleteriousness category, 98.61%,

94.26%, and 92.25% of strongly, moderately, and weakly

damaging alleles have a mean frequency <5%, respec-

tively, while 86.40%, 75.22%, and 70.76% have a mean

frequency <1%. When we consider the rate of gain of

damaging homozygotes inside ROAs with increasing

genomic ROA coverage separately for eachof the three dele-

teriousness categories (Figure S7), several interesting pat-

terns emerge that generally accord with the observed

relationships of nonreference allele frequency with delete-

riousness (Figure 4) and numbers of homozygotes in each

ROA class (Figures S4 and S5). First, the rate of gain for

strongly damaging homozygotes is significantly greater

than for nondamaging homozygotes with long class 5

ROAs, while it is significantly lower with class 2 to 4 ROAs

(Table 3). Second, the rate of gain for moderately damaging

homozygotes is significantly greater than that for nonda-

maging homozygotes with long class 5, while it is signifi-

cantly lower with class 1 ROAs (Table 3). Third, the rate of

gain for weakly damaging homozygotes is significantly

greater than that for nondamaging homozygotes with

class 3 to 5 ROAs, while it is significantly lower with

class 1 ROAs (Table 3). Fourth, the rate of gain for strongly

damaging homozygotes significantly outpaces those

for moderately and weakly damaging homozygotes with

class 2 to 5 ROAs (Table S2), which themselves differ signif-

icantly only with class 2 to 4 ROAs.

At the population level, there was again great vari-

ability in the differential rates of gain of damaging and
rican Journal of Human Genetics 102, 658–675, April 5, 2018 663



Table 3. Differences in Regression Slopes and Intercepts for Damaging and Nondamaging Homozygotes in Each Deleteriousness Category

ROA Class Deleteriousness Category

Difference in Intercept Difference in Slope

b2 p b3 p

1 weak 0.0012 0.0864 �0.0975 1.43 3 10�10

moderate 0.0039 4.87 3 10�6 �0.0873 5.50 3 10�6

strong 0.0227 <10�16 �0.0205 0.6681

2 weak 0.0063 1.08 3 10�8 0.0078 0.5683

moderate 0.0111 <10�16 �0.0050 0.7578

strong 0.0374 <10�16 �0.1095 0.0015

3 weak 0.0066 2.37 3 10�15 0.0450 2.09 3 10�6

moderate 0.0132 <10�16 0.0030 0.7943

strong 0.0486 <10�16 �0.1897 1.30 3 10�14

4 weak 0.0018 2.80 3 10�7 0.0663 <10�16

moderate 0.0070 <10�16 �0.0016 0.8698

strong 0.0323 <10�16 �0.0881 0.0018

5 weak �2.60 3 10�4 0.2677 0.1505 <10�16

moderate 7.21 3 10�4 0.0252 0.1927 <10�16

strong 0.0060 3.24 3 10�11 0.8164 <10�16

Reported b and p values were calculated with Equation 10 of Szpiech et al.6
nondamaging homozygotes inside ROAs with increasing

genomic ROA coverage (Figure 5, Table S3). Rates of gain

for damaging homozygotes significantly outpace those for

nondamaging homozygotes in a majority of populations

for longer ROAs that arise due to recent parental related-

ness, whereas in shorter ROAs that arise due tomore distant

background parental relatedness only a few populations

show the same pattern of increased rates of gain for

damaging homozygotes. Indeed, significant increases in

rates of gain for damaging homozygotes were seen in

�69% (18 of 26) populations with long class 5 ROAs and

�92% (24 of 26) of populations with intermediate-length

class 4 ROAs. In contrast, among shorter class 1 to 3 ROAs,

significant increases in rates of gain for damaging homozy-

gotes were seen in�46% (12 of 26) populations with class 3

ROAs,�12% (3 of 26)with class 2ROAs, and�23% (6 of 26)

with class 1 ROAs. Notably, for all ROA classes, the rate of

gain for damaging homozygotes did not differ significantly

from the rate for nondamaging homozygotes in the Yoruba

(YRI) population. These observations again underscore the

potential confounding effects of population background

on potential associations between genomic ROA levels

and risk for complex disease due to differences in the rela-

tionship between damaging homozygote load and ROA

across populations that likely reflect the cumulative effects

of their distinct evolutionary and cultural histories.

Relationship between Damaging Homozygotes and

ROAs in Disease-Associated Gene Sets

The relationship between deleterious variation and ROAs

might be most apparent, and might be most important
664 The American Journal of Human Genetics 102, 658–675, April 5,
for understanding associations between ROAs and disease,

in genomic regions known to cause disease when disrup-

ted. We therefore investigated how ROA levels and their

relationship with damaging homozygotes differed be-

tween genes included in the OMIM43 and ClinVar44 data-

bases and genes not included in these databases, as well

as between sets of genes located nearest to reported

GWAS hits46 or encoding FDA-approved drug targets45

compared with genes not in these sets.

ROA Coverage

Strikingly, we find the fraction of each disease-associated

gene set in ROAs to be significantly lower than the fraction

for their comparative gene set (Figure 6; p < 10�16 for all

comparisons, Wilcoxon signed-rank test). The difference

is greatest for OMIM recessive (Figure 6A) and ClinVar

(Figure 6B) genes, and smallest for genes nearest reported

GWAS hits (Figure 6D). Moreover, despite their appreciably

lower overall ROA levels, rates of gain for damaging homo-

zygotes inside ROAs for each disease-associated gene set are

significantly greater than rates of gain for their compara-

tive gene set (Figure 7, Table 4). The difference is greatest

for OMIM recessive and ClinVar genes and smallest for

genes nearest to GWAS hits, while those of OMIM domi-

nant and FDA-approved drug target genes are intermediate

between these two extremes (Table 4). In general, observed

rates of gain in damaging homozygotes appear inversely

related to the degree of reduction in ROA levels around

genes. Relative to their comparative gene set, OMIM reces-

sive and ClinVar genes experience the greatest gain in

damaging homozygotes with increasing ROA coverage

while also exhibiting the greatest reduction in overall
2018
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Figure 5. Differences in the Rate of Gain of Damaging and Non-
damaging Homozygotes in Each Population
A bar plot showing for each population and ROA class the magni-
tudeof b3 from regressions comparing the rates of gainof damaging
and non-damaging nonreference homozygotes with increasing
genomic ROA coverage. Bars depicting b3 with p< 0.05 are shown
in color, while thosewith pR 0.05 are shown in gray. b3 values and
their associated p value can be found in Table S3.
ROA coverage. Conversely, genes nearest to GWAS hits

exhibit the smallest gain in damaging homozygotes and

reduction in overall ROA coverage.

Rates of Gain in Damaging Homozygotes

When we instead consider rates of gain in damaging ho-

mozygotes separately in each ROA class, a number of inter-
The Ame
esting patterns emerge. First, rates of gain of damaging

homozygotes with increasing ROA coverage in OMIM

recessive (Figure S8) and ClinVar (Figure S9) genes signifi-

cantly outpace those in non-OMIM and non-ClinVar

genes, respectively, with all ROA classes (Figure 8A,

Table S4). This pattern generally persists at the population

level with longer class 3 to 5 ROAs that arise via more

recent parental relatedness, but not with shorter class 1

and 2 ROAs that arise via more distant background

parental relatedness (Figures 9B and 9C, respectively;

Tables S5 and S6). Second, at the worldwide scale, OMIM

dominant genes are observed to have a significant deple-

tion of damaging homozygotes in long class 5 and short

class 1 ROAs relative to non-OMIM genes, while small

gains are instead observed with class 2 and 3 ROAs (Figures

8A and S8, Table S4). However, at the population-level, the

rates for OMIM dominant genes are rarely different from

those of non-OMIM genes (Figure 9A, Table S7), suggesting

that worldwide patterns are driven primarily by popula-

tion differences.

Third, rates of gain of damaging homozygotes in FDA-

approved drug target genes significantly outpace those of

genes that do not encode drug target genes with all ROA

classes. At the worldwide scale, themagnitude of the differ-

ence generally increases with increasing ROA class (Figures

8A and S10, Table S4), while at the population level, differ-

ences are observed most often with the shortest and

longest ROA classes (Figure 9D, Table S8). This suggests

that both weaker damaging alleles that persist on older

haplotypes segregating in the general population as well

as stronger damaging alleles that arise on younger haplo-

types that arise via recent inbreeding contribute to

damaging homozygote loads present in drug target genes.

Notably, we find much weaker support for a difference in

rates of gain in damaging homozygotes between FDA-

approved drug target genes and non-drug-target genes in

African Europeans as well as the Esan (ESN) and Sri Lankan

Tamil (STU) populations.

Fourth, while rates of gain of damaging homozygotes in

genes nearest to reported GWAS hits are significantly

higher than those of all other genes with class 3 and 4

ROAs at the worldwide scale, they are significantly lower

for short class 1 and long class 5 ROAs (Figures 8A and

S11, Table S4). In agreement with the generally weak pat-

terns observed at a worldwide scale, at the population

level, significant differences in rates of gain for damaging

homozygotes in genes nearest to reported GWAS hits and

in all other genes are only frequently observed with long

class 5 ROAs that arise through recent parental relatedness

(Figure 9E, Table S9), with 12 of the 26 populations

showing a significant depletion, and two populations

exhibiting an enrichment. Intriguingly, depletion of

damaging homozygotes is observed in most African and

South Asian populations in addition to the Iberian (IBS),

CHS, Colombian (CLM), and Puerto Rican (PUR) popula-

tions, while enrichment is observed in Utah Mormons

with Northern and Western European ancestry (CEU)
rican Journal of Human Genetics 102, 658–675, April 5, 2018 665
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Figure 6. Fraction of Disease Gene Sets
in ROAs Relative to Non-Disease Gene
Sets
Scatterplots comparing the fraction of the
total length of transcribed regions in any
size ROA for disease-associated gene sets
with the same fraction for genes not
in the disease-associated set in individual
genomes.
(A) OMIM autosomal dominant (red;
r ¼ 0.990, p < 10�16) and recessive (blue;
r ¼ 0.994, p < 10�16) genes against non-
OMIM genes.
(B) ClinVar against non-ClinVar genes
(r ¼ 0.996, p < 10�16).
(C) FDA-approved drug target against non-
drug-target genes (r ¼ 0.947, p < 10�16).
(D) Genes nearest to reported GWAS
hits against all other genes (r ¼ 0.995,
p < 10�16).
The identity line is shown in gray, while
trend lines of the linear regression fit for
each comparison is shown in black or in
color.
and the Toscani (TSI). These findings highlight the poten-

tial confounding effects of evolutionary and cultural his-

tories, which may be shared among populations from the

same country or geographic area, on the relationship be-

tween damaging homozygote load and ROAs that can

lead to differences in their contributions to general genetic

risk for complex disease across populations.

Relationship between Damaging Homozygotes and

ROAs in GWAS Gene Sets

Our findings, which used genes nearest to reported GWAS

hits as a surrogate for those that truly influence complexdis-

ease risk, are potentially confounded by variability in the

proportion of genetic risk attributable to ROA levels for

different diseases, as suggested by past studies investigating

ROA-phenotype associations in disease cohorts. Therefore,

we next used the GWAS catalog49 to create lists of genes

associated via GWAS with increased risk for eight complex

diseases and traits for which ROA levels have been identi-

fied as a risk factor: standing height (568 genes), CAD

(327), ALS (262), Alzheimer disease (375), Parkinsondisease

(186), schizophrenia (1,104), colorectal cancer (181), and

thyroid cancer (25). For each GWAS gene set, we compared

it to a set of genes not currently associatedwith that disease

in the GWAS catalog.

ROA Coverage

Intriguingly, while we find genes associated with ALS

(Figure S12C) and thyroid cancer (Figure S12G) to
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have significantly lower overall ROA

coverage than genes not associated

with these diseases (p < 10�16 in

both comparisons, Wilcoxon signed-

rank test), genes associated with

standing height (Figure S12A), CAD

(Figure S12B), Alzheimer disease
(Figure S12D), Parkinson disease (Figure S12E), and schizo-

phrenia (Figure S12F) instead had significantly higher

overall ROA coverage (p< 10�16 in all comparisons); genes

associated with colorectal cancer had similar overall ROA

coverage to genes not associated with colorectal cancer

(p ¼ 0.775; Figure S12H). The difference between disease

and non-disease gene sets was most apparent for schizo-

phrenia, but overall differences between GWAS and non-

GWAS gene sets are notably smaller than those observed

in the OMIM, ClinVar, and FDA-approved drug target com-

parisons (Figure 6), consistent with the expectation that

purifying selection acting on mutations in genes associ-

ated with largely single-gene disorders will exert a larger

effect on genetic diversity patterns than those in genes

associated with polygenic diseases and traits.

Rates of Gain in Damaging Homozygotes

Despite differences in overall ROA coverage levels among

GWAS gene sets, with the exception of thyroid cancer, all

were found to gain damaging homozygotes inside ROAs

at rates exceeding those of their comparative gene set per

unit increase in ROA coverage (Figure 8B, Table S10). How-

ever, differences were present in the rates of gain in each

ROA class across diseases and traits. The greatest differ-

ences were observed with genes associated with colorectal

cancer, where the magnitude of the difference from the

non-colorectal-cancer gene set increased as a function of

ROA class (Figures 8B and S13, Table S10). The rate of

gain of damaging homozygotes inside ROAs for Alzheimer



A B

DC

Figure 7. Fraction of Nonreference Ho-
mozygotes in ROAs versus the Fraction
of Transcribed Regions in ROAs
Scatterplots depicting how the fraction
of damaging nonreference homozygotes
within any size ROA changes with the frac-
tion of the transcribed regions in ROAs in
individual genomes shown separately for
each pair of disease-associated (black or
color) and non-disease-associated (gray)
gene sets.
(A) OMIM autosomal dominant (red;
r ¼ 0.901, p < 10�16) and recessive (blue;
r ¼ 0.926, p < 10�16) genes against non-
OMIM (r ¼ 0.960, p < 10�16) genes.
(B) ClinVar (r ¼ 0.950, p < 10�16) against
non-ClinVar (r ¼ 0.959, p < 10�16) genes.
(C) FDA-approved drug target (r ¼ 0.887,
p < 10�16) against non-drug-target
(r ¼ 0.959, p < 10�16) genes.
(D) Genes nearest to reported GWAS hits
(r ¼ 0.948, p < 10�16) against all other
genes (r ¼ 0.958, p < 10�16).
Trend lines of the linear regression fit for
each gene set is shown in the color of
that gene set. The black dotted line depicts
the identify line. A comparison of slopes
and intercepts of the regressions for the
disease-associated gene set and the non-
disease-associated gene set are provided
in Table 4.
disease (Figure S14), Parkinson disease (Figure S15), and

schizophrenia (Figure S16) were significantly higher than

their comparative gene sets with class 1 to 4 ROAs that

arise through background relatedness that is due to evolu-

tionary history within a population (Figure 8B, Table S10),

while rates of gain in class 5 ROAs that arise through

recent parental relatedness were instead generally signifi-

cantly lower. Rates of gain of damaging homozygotes

inside ROAs in genes associated with standing height

(Figure S17) and CAD (Figure S18) were significantly higher

than in non-height- and non-CAD-associated gene sets,

respectively, for class 2 to 4 ROAs, while rates in class 1

and 5 ROAs were generally significantly lower (Figure 8B,

Table S10). The ALS gene set experienced a significantly

higher rate of gain of damaging homozygotes in class 1,

4, and 5 ROAs than the non-ALS gene set (Figure S19),

while a significantly lower rate was observed for class 2

ROAs (Figure 8B, Table S10). Interestingly, the thyroid can-

cer gene set was observed to have significantly decreased

rates of gain of damaging homozygotes in shorter class 1

to 3 ROAs formed by older haplotypes underlying LD

patterns relative to the non-thyroid-cancer gene set (Fig-

ures 8A and S20, Table S10); rates were not significantly

different with longer class 4 and 5 ROAs that arise due to

parental relatedness.

In agreement with patterns observed at the world-

wide scale (Figure 8B, Table S10), at the population level

(Figure 10, Tables S11–S18) genes associated with colo-
The Ame
rectal cancer exhibited the greatest consistency across

populations, with rates of gain of damaging homozygotes

inside longer class 3 to 5 ROAs significantly greater in dis-

ease-associated than non-disease-associated genes in all

populations, while significant differences in rates with

shorter class 1 and 2 ROAs are less common (Figure 10G,

Table S11). Similarly, we find that rates of gain in genes

associated with thyroid cancer are rarely significantly

different from those for genes not associated with thyroid

cancer across ROA classes and populations (Figure 10H,

Table S12), with some ROA classes occasionally showing

significant increases while others show significant de-

creases across populations. Patterns observed with stand-

ing height (Figure 10A, Table S13) and schizophrenia

(Figure 10F, Table S14) generally accord with those at the

worldwide scale; however, with long class 5 ROAs that

arise via recent parental relatedness, significantly higher

rates of gain in damaging homozygotes in GWAS gene

sets relative to non-GWAS gene sets are observed in five

(CEU, TSI, BEB, CHB, and CDX) and three (CEU, TSI,

and CDX) of the 26 populations, respectively, while signif-

icantly lower rates are observed in 15 and 14 populations,

respectively. These observations highlight how the rela-

tionship between ROA levels and damaging variation in

sets of genes associated with complex diseases and traits

can vary appreciably across populations and phenotypes,

providing a potential explanation for observed inconsis-

tencies among studied GWAS cohorts and phenotypes in
rican Journal of Human Genetics 102, 658–675, April 5, 2018 667



Table 4. Differences in Regression Slopes and Intercepts for
Damaging Homozygotes in Disease Gene Sets and Non-Disease
Gene Sets

Disease
Gene Set

Difference in Intercept Difference in Slope

b2 p b3 p

OMIM
dominant

�0.0032 0.3587 0.1121 1.01 3 10�13

OMIM
recessive

0.0130 5.42 3 10�5 1.0175 <10�16

ClinVar �0.0062 0.0299 0.8715 <10�16

FDA-approved
drug targets

�0.0321 <10�16 0.2532 <10�16

GWAS (nearest
gene)

�0.0137 2.45 3 10�6 0.0398 6.34 3 10�4

Reported b and p values were calculated with Equation 13 of Szpiech et al.6

GWAS (nearest gene)

FDA drug targets

ClinVar

OMIM (recessive)

OMIM (dominant)

CAD

Height

−0.4 0 0.4 0.8 1.2
β₃
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the association between ROA levels and disease risk or trait

variability.
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Figure 8. Differences in the Rate of Gain of Damaging Homozy-
gotes in Disease and Non-Disease Gene Sets
A bar plots depicting for each disease gene set and ROA class the
magnitude of b3 from regressions comparing the rates of gain of
damaging nonreference homozygotes in disease-associated and
non-disease-associated gene sets with increasing genomic ROA
coverage at the worldwide scale.
(A) Genes included in the OMIM and ClinVar databases and
encoding FDA-approved drug targets, and genes located nearest
to reported GWAS signals.
(B) Eight complex diseases and traits for which ROA load has been
identified as a genetic risk factor.
Bars depicting b3 with p < 0.05 are shown in color, while those
with p R 0.05 are shown in gray. b3 values and their associated
p value can be found in Tables S4 and S10 for (A) and (B),
respectively.
Discussion

Our findings contribute to the emerging picture of the

variable roles of population, cultural, and genomic pro-

cesses in shaping patterns of ROAs and deleterious varia-

tion in the human genome.6,7 They are consistent with

processes acting to increase genomic ROA coverage lead-

ing to enrichment for homozygotes of alleles that are pre-

dicted to have a measurable impact on gene and protein

function, particularly in genes associated with phenotypic

variation and disease risk. However, they also suggest that

their baseline numbers in the genomes of noninbred indi-

viduals and their degree of enrichment in the genomes of

more inbred individuals may vary greatly across popula-

tions as well as among diseases and traits, potentially

reflecting differences in the levels and properties of delete-

rious variation across populations that have arisen due to

their distinct histories and cultural norms.56–58 While nat-

ural selection has no doubt contributed to the presence of

functionally important alleles on the long haplotypes un-

derlying ROAs, and to observed differences in enrichment

of ROAs for such alleles across populations, we have pre-

viously shown signals of natural selection to be only

weakly correlated with ROA patterns;2,5 thus, the histori-

cal actions of natural selection cannot wholly explain

the observed enrichment of ROAs for predicted damaging

alleles. Taken altogether, our findings provide important

new insights into how parental relatedness at different

genealogical depths contributes to the shaping of patterns

of harmful variation in individual genomes and popula-

tions that can lead to a general decrease in biological

fitness, or inbreeding depression,8 and increased genetic

risk for the development of Mendelian and complex

disease.59

Rates of gain in damaging homozygotes across ROA clas-

ses are consistent with recent parental inbreeding, the pri-
668 The American Journal of Human Genetics 102, 658–675, April 5,
mary force creating long class 5 ROAs, elevating numbers

of damaging homozygotes, and strongly damaging homo-

zygotes in particular, at a rate greater than would be ex-

pected based upon nondamaging homozygotes. The lower

numbers of damaging homozygotes in class 1 to 4 ROAs,

which arise via population and genomic processes, relative

to nondamaging homozygotes is consistent with purifying

selection acting to remove haplotypes with harmful alleles
2018
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Figure 9. Differences in the Rate of Gain of Damaging Homozygotes in Disease and Non-Disease Gene Sets in Each Population
Bar plots showing for each population and ROA class the magnitude of b3 from regressions comparing the rates of gain of damaging
nonreference homozygotes in disease-associated and non-disease-associated gene sets with increasing genomic ROA coverage.
(A) OMIM dominant genes.
(B) OMIM recessive genes.
(C) ClinVar genes.
(D) FDA-approved drug target genes.
(E) Genes located nearest to reported GWAS signals.
Bars depicting b3 with p < 0.05 are shown in color, while those with p R 0.05 are shown in gray. b3 values and their associated p value
can be found in Tables S5–S9.
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Figure 10. Differences in the Rate of Gain of Damaging Homozygotes in Complex Disease and Non-Disease Gene Sets in Each
Population
Bar plots showing for each population and ROA class the magnitude of b3 from regressions comparing the rates of gain of damaging
nonreference homozygotes in disease-associated and non-disease-associated gene sets with increasing genomic ROA coverage.
(A) Standing height.
(B) CAD.
(C) ALS.
(D) Alzheimer disease.
(E) Parkinson disease.
(F) Schizophrenia.

(legend continued on next page)
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from the general population. Consequently, damaging

alleles are generally present at low frequencies and are

most frequently found in homozygous form in long class 5

ROAs that commonly arise through recent inbreeding

since purifying selection will not yet have had time to re-

move these young haplotypes carrying damaging alleles

from the gene pool. Nevertheless, rates of gain in homozy-

gotes for damaging alleles in intermediate-length class 3

and 4 ROAs that outpace those for nondamaging alleles

are consistent with population processes that decrease

the effective size of populations or maintain a small effec-

tive size contributing to the enrichment of individual

genomes for deleterious variation carried in homozygous

form, albeit to a lesser extent than recent inbreeding.

Patterns in ROA coverage and rates of gain in damaging

homozygotes in different sets of genes associated with

Mendelian and complex disease are consistent with the

expectation that mutations in OMIM and ClinVar genes,

which commonly cause disease in a Mendelian manner,

have a greater chance of being damaging than mutations

in genes indirectly implicated in complex disease through

their proximity to GWAS signals. This leads to a more rapid

increase in numbers of damaging homozygotes observed

per unit increase in ROA coverage in OMIM and ClinVar

genes than in genes nearest reported GWAS hits. We would

also expect haplotypes harboring one or more damaging

alleles to experience stronger negative selection at OMIM

and ClinVar genes than at genes located near to GWAS sig-

nals due to their greater potential to significantly limit the

survival and reproductive potential of an individual. Since

damaging recessive alleles are removed from the gene

pool much less effectively than dominant damaging alleles

(because purifying selection acts only on their homozy-

gous form), they are able to reach nontrivial frequencies

in the general population, enabling them to occur in ho-

mozygous form through both population processes (class

1–4 ROAs) and recent inbreeding (class 5 ROAs) more

frequently than damaging dominant alleles, which given

their high deleteriousness are rarely observed in homozy-

gous form in the extant population. Therefore, for genes

where damaging recessive alleles play a significant role in

determining disease risk, we would expect to observe a

greater decrease in ROA levels relative to genes that do

not contribute to disease risk or where damaging domi-

nant alleles are more common since purifying selection

will act to remove damaging recessive homozygotes

much more frequently. Compatible with this view, we

observe a greater decrease in ROA levels in OMIM recessive

than in OMIM dominant genes relative to non-OMIM

genes. Moreover, while OMIM recessive genes show

enrichment for damaging homozygotes in longer class 4

and 5 ROAs relative to non-OMIM genes, OMIM dominant
(G) Colorectal cancer.
(H) Thyroid cancer.
Bars depicting b3 with p < 0.05 are shown in color, while those with
can be found in Tables S11–S18.
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genes instead show a depletion of damaging homozygotes

in long class 5 ROAs and no appreciable difference in inter-

mediate-length class 4 ROAs. This is consistent with the

expectation that strongly damaging dominant alleles will

be rarer in the extant population due to more efficient

removal by purifying selection.

The decreased ROA coverage and increased rate of gain

of damaging homozygotes observed in genes encoding

the targets of FDA-approved drugs relative to genes that

do not is compatible with an intriguing scenario. Some

of these damaging alleles may contribute meaningfully

to development of phenotypes that are severe enough to

elicit a purifying selection response when formed into ho-

mozygotes in ROAs generated through both recent and

more distant inbreeding. These findings are consistent

with the expectation that the targets of drugs used in the

treatment of disease most likely function in pathways

that contribute to disease development and progression,

and thus genetic changes that alter their structure or func-

tion have a high potential to contribute to the onset of

disease. However, the accumulation of mildly damaging

genetic variants, as might be expected with increasing

ROA coverage, could lead to subtle changes to protein

structure that impact the interaction of a drug with its pro-

tein target without leading to disease. These findings high-

light the need for pharmacogenomic investigations into

the possible consequences of elevated damaging allele

loads carried in ROAs on drug efficacy in populations

where demographic and cultural processes that elevate

ROA levels are known to exist.

We have uncovered differences in overall ROA coverage

and in rates of gain of damaging homozygotes with

increasing ROA coverage, between sets of genes associated

and not-associated with eight complex diseases and traits

for which ROA levels have been identified as a risk factor,

as well as variable patterns among diseases and traits.

These observations highlight potential differences in the

contribution of ROAs and the damaging homozygotes

they harbor to the determination of genetic risk across

complex diseases and traits. This is consistent with the

expectation that genetic determinants contributing to

risk for polygenic diseases and traits will be highly variable,

and the relative roles of dominant and recessive alleles

in determining overall risk will be decided by the genes

involved and their degree of influence on the phenotype

in question. Patterns in damaging homozygotes across

ROA classes are consistent with the idea that the primary

factors elevating genetic risk with increasing genomic

ROA load for complex diseases and traits are weakly

damaging alleles segregating on older haplotypes. Such

older haplotypes are most commonly paired IBD through

population processes that shape levels of background
p R 0.05 are shown in gray. b3 values and their associated p value
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relatedness within a population. They form class 1 to 4

ROAs that we observe to be frequently enriched for

damaging homozygotes located in genes associated with

standing height, CAD, Alzheimer disease, Parkinson dis-

ease, schizophrenia, and colorectal cancer. Interestingly,

while long class 5 ROAs that arise most frequently through

recent inbreeding are enriched for damaging homozygotes

located in genes associated with ALS and colorectal cancer,

a depletion was instead observed for genes associated with

standing height, Parkinson disease, and schizophrenia.

These observations underscore the variable contributions

of recent inbreeding to the determination of genetic risk

for complex diseases and traits, which is in contrast to

genes causing monogenic disorders for which class 5

ROAs were frequently found to be significantly enriched

for damaging homozygotes.

For the gene sets associated with standing height, CAD,

Alzheimer disease, Parkinson disease, and schizophrenia,

their higher overall ROA coverage and higher rates of

gain of damaging homozygotes in class 2 to 4 ROAs per

unit increase in ROA coverage than genes not associated

with these phenotypes would be compatible with a sub-

set of alleles classed as damaging by the CADD method

being instead beneficial. As such, CADD scores reflect

the probability that a given nonreference allele will

have a measurable impact on gene or protein function,

which is commonly assumed will be harmful in nature.

However, it is possible that such changes will in some in-

stances be beneficial. In this scenario, increased overall

ROA coverage is observed through the actions of positive

rather than purifying selection acting in numerous

trait-associated genes on beneficial alleles that act in

a recessive manner. Conversely, patterns with ALS and

thyroid cancer are consistent with homozygosity for

damaging alleles being a bigger driver of ROA patterns

in genomic regions harboring genes contributing to these

diseases.

Differences were observed in the relationship between

ROAs and damaging homozygotes in the Northern

(CHB) and Southern (CHS) Han, a surprising finding given

their recent shared ancestry.60 This includes a difference in

the net change with a 10% increase in ROA coverage,

where the CHB showed a positive change and the CHS

showed a negative change. It also includes a difference in

the rates of gain of damaging and nondamaging homozy-

gotes in long class 5 ROAs that arise through recent

parental relatedness, where the rate of gain of damaging

homozygotes outpaces that of nondamaging homozygotes

in the CHB but not in the CHS. These inconsistencies

potentially reflect differences in their frequencies of con-

sanguinity—1.16% in the CHB53,61,62 and 3.43% in the

CHS53,62—that have led to elevated ROA levels in the

CHS compared with the CHB5 as well as contributed to

the development of low but detectable genetic structure

between these two groups.36 Importantly, these differences

have likely contributed to the development of small but

noticeable dissimilarities in their rates of gain of damaging
672 The American Journal of Human Genetics 102, 658–675, April 5,
homozygotes in genes that are associated with Mendelian

and complex diseases and traits. This includes dissimilar-

ities in rates for long class 5 ROAs with genes associated

with standing height and encoding FDA-approved drug

targets. Such differences between the closely related CHB

and CHS populations, which are represented here by large

and similarly sized sets of individuals,5 highlight the com-

plex relationship between ROAs and deleterious variation

patterns and their joint contribution to genetic risk for

Mendelian and complex disease. Moreover, they suggest

that such contributions are sensitive to the effects of pop-

ulation and cultural processes that impact genetic diversity

patterns over relatively short timescales.

Future studies in disease cohorts with clearly defined

population backgrounds and available WGS data as well

as improved methods for predicting the relative effects of

observed alleles, both harmful and beneficial, will be

required to clarify the role of ROAs and the trait-influ-

encing alleles they contain in the determination of genetic

risk for complex disease and variability in complex traits.

Our finding that net gains in damaging homozygotes

with increasing genomic ROA coverage vary appreciably

across populations would suggest that ROA-phenotype as-

sociations may be most apparent, and most important, in

populations where ROA levels have the greatest impact on

damaging homozygote loads, such as admixed Amerin-

dian-European and South Asian populations. Altogether,

our findings highlight the need for studies to appropriately

control for population background when performing

investigations in large cohorts used to investigate ROA-

phenotype associations, particularly when undertaken in

a meta-analysis framework. Moreover, they draw attention

to the need to expand the diversity of populations and

diseases examined to disentangle and clarify the variable

roles of numerous population and cultural forces shaping

ROAs and deleterious variation patterns in the determina-

tion of population attributable risk for diseases of major

public health concern worldwide.
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