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Introduction

High-stakes decision making involves

• Recidivism prediction (Angwin et al., 2016);

• Housing advertisement (Angwin, Tobin and Varner, 2017);

• Resume screening (Jeffrey, 2018).

Who makes the decision?

Human
?
= Bias

Machine 6= No Bias
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Northpointe’s COMPAS Dataset

Correctional Offender Management Profiling for Alternative
Sanctions

Disparate impact on

• Minorities;

• Underprivileged groups.

Protected/Sensitive attributes include

• Race (black, white, · · · );

• Gender (female, male, · · · ).

These attributes are protected by federal anti-discrimination law.
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Northpointe’s COMPAS Dataset (Cont.)

Prediction fails differently for black defendants.

White Black

Labeled higher risk, but didn’t re-offend 23.5% 44.9%
Labeled lower risk, but did re-offend 47.7% 28.0%

(Source: Machine bias, by ProPublica.)

3/28



Algorithmic Fairness

Formal definitions of algorithmic fairness? YES.

• Dwork et al. (2012);

• Kleinberg, Mullainathan and Raghavan (2017);

• Chouldechova (2017);

• · · ·

Individual fairness + (statistically) inferential tools?

Lacking.

(This is what we wish to do.)
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Group Fairness

Group fairness is amenable to statistical analysis, ...

• Calibration: equal false discovery and non-discovery rates.

• Equalized odds: equal false positive and negative rates.

but fails under scrutiny.

• ML models that satisfy group fairness may be blatantly unfair
for individual users (Dwork et al., 2012).

• There are fundamental incompatibilities between common
notions of group fairness (Kleinberg et al., 2017;
Chouldechov, 2017).
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Individual Fairness

Main idea:

“Treat similar users similarly”.

Definition (Individual fairness, Dwork et al., 2012)

An ML model h : X → Y is individually fair if there exists L > 0
such that

dy(h(x1), h(x2)) ≤ Ldx(x1, x2) for any x1, x2 ∈ X ,

where dx : X × X → R+ (resp. dy : Y × Y → R+) measures
similarity between users (resp. outputs).
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What’s in the Pipeline?

1. Training individually fair ML models:
Yurochkin, Bower, Sun, ICLR 2020.

2. Testing whether an ML model is individually fair or not:
Xue, Yurochkin, Sun, AISTATS 2020.
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Benefits of Our Methods

Main benefits are

1. Black-box:

Observing the outputs of ML models is sufficient.

2. Computational efficiency:

The auditor solves a convex optimization problem.

3. Interpretability:

Specific metric leads to specific interpretation.
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Mathematical Preliminaries

• The sample space:
Z , X × Y

• The induced metric on Z:

dz((x1, y1), (x2, y2)) , dx(x1, x2) +∞× 1{y1 6= y2}

• The Wasserstein distance on ∆(Z):

W (P,Q) = inf
Π∈C(P,Q)

∫
Z×Z

c(z1, z2)dΠ(z1, z2),

where
• ∆(Z) is the set of probability distributions on Z;
• C(P,Q) is the set of couplings between P and Q;
• c(·, ·) = d2z(·, ·) is the transportation cost function.
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The Auditor’s Problem

Population version of the auditor’s problem:

max
P∈∆(Z)

EZ∼P [`h(Z)]− EZ∼P? [`h(Z)]

subject to W (P, P?) ≤ ε,

where ε ≥ 0 is a transportation budget parameter, `h : Z → R+ is
a loss function picked by the auditor.

Main idea: If there is (purely) no bias/unfairness in the ML model,
then it is not possible for the auditor to increase the risk by moving
(probability) mass to similar areas of the sample space.
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The Auditor’s Problem (Cont.)

Empirical version of the auditor’s problem:

max
P∈∆(Z)

EZ∼P [`h(Z)]− EZ∼Pn [`h(Z)]

subject to W (P, Pn) ≤ ε,

where Pn is the empirical distribution of the collected audit data
{(xi, yi)}ni=1, since P? is unknown in practice.

FaiTH statistic: We call the optimal value of this optimization
problem the Fair Transport Hypothesis test statistic.
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The Auditor’s Problem (Cont.)

Original problem:

max
W (P,Pn)≤ε

EZ∼P [`h(Z)].

Dual problem (Blanchet and Murthy, 2019):

max
W (P,Pn)≤ε

EZ∼P [`h(Z)] = min
λ≥0
{λε+ EZ∼Pn [`ch,λ(Z)]},

`ch,λ(xi, yi) = max
x∈X
{`h(x, yi)− λd2

x(x, xi)}.

Pros: univariate problem; amenable to stochastic optimization.
Cons: no global convergence guarantee; hard to establish limiting
distribution of test statistic.
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The Auditor’s Problem (Cont.)

Empirical version of the auditor’s problem on finite sample space:

max
Π∈R|Z|×|Z|+

l>(Π>1|Z| − f|Z|)

subject to 〈C,Π〉 ≤ ε
Π1|Z| = f|Z|,

where

• l ∈ R|Z| is the vector of losses;

• C ∈ R|Z|×|Z| is the matrix of transportation costs;

• f|Z| ∈ ∆|Z| is the empirical distribution of the data.
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Asymptotics of the FaiTH Statistic

Let

• K = |Z|, l ∈ RK+ and ε ≥ 0;

• f? ∈ ∆K and nfn ∼ Multinomial(n; f?);

• C ∈ RK×K+ and D ∈ {0, 1}K×K .

The FaiTH statistic is given by the value function

ψ(fn) ,



max
Π∈RK×K

+

l>(Π>1K − fn)

subject to 〈C,Π〉 ≤ ε
〈D,Π〉 = 0

Π1K = fn


.

The audit value is given by ψ(f?).
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Asymptotics of the FaiTH Statistic (Cont.)

Theorem (Asymptotic distribution of the FaiTH statistic)

The asymptotic distribution of ψ(fn) is the infimum of a Gaussian
process:

√
n{ψ(fn)− ψ(f?)}

d→ inf{(λ+ l)>Z : (ν, µ, λ) ∈ Λ},

where Z ∼ N (0K ,Σ(f?)), Σ is the multinomial covariance matrix
of f?, and

Λ = arg max
ν,µ≥0,λ∈RK

{εν + f>? λ : νC + µD + λ1>n �RK×K
+

−1nl>}.

Proof: Canonical perturbation theory =⇒ Hadamard directional
differentiability =⇒ Delta method.
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Asymptotics of the FaiTH Statistic (Cont.)

A non-Gaussian example:
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Boostrapping the Audit Value

Efron’s n-out-of-n bootstrap is not consistent because ψ is not
smooth enough. Instead, we use m-out-of-n bootstrap.

Theorem (Consistency of m-out-of-n bootstrap)

Let mf∗n,m ∼ Multinomial(m; fn). As long as m = m(n)→∞
and m/n→ 0, we have

sup
g∈BL1(R)

∣∣∣∣ E∗ [g (√m{ψ(f∗n,m)− ψ(fn)
})
|fn
]

−E [g (
√
n {ψ(fn)− ψ(f?)})]

∣∣∣∣ p→ 0,

where BL1(R) is the 1-Lipschitz function subset of the ‖ · ‖∞ ball.
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Boostrapping the Audit Value (Cont.)

A non-Gaussian example:
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Fair Transport Hypothesis Test

Definition (δ-fairness)

For a constant δ ≥ 0, an ML system is called δ–fair if ψ(f?) ≤ δ.

Fair Transport Hypothesis Test (FaiTH test):

H0 : ψ(f?) ≤ δ versus H1 : ψ(f?) > δ.

The auditor considers this hypothesis testing problem in order to
test whether or not an ML system is δ-fair.
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Inference for the Audit Value

Two-sided confidence interval for the audit value ψ(f?):

CItwo-sided =

[
ψ(fn)−

c∗1−α/2√
n

, ψ(fn)−
c∗α/2√
n

]
,

where c∗q be the q-th quantile of the bootstrap distribution.

Theorem (Asymptotic coverage of two-sided CI)

lim inf
n→∞

P (ψ(f?) ∈ CItwo-sided) ≥ 1− α.
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Inference for the Audit Value (Cont.)

One-sided confidence interval for the audit value ψ(f?):

CIone-sided =

[
ψ(fn)−

c∗1−α√
n
,∞
)
.

We reject the null hypothesis H0 if

δ 6∈
[
ψ(fn)−

c∗1−α√
n
,∞
)
.

Theorem (Asymptotic validity of test)

For any δ ≥ 0, we have

lim sup
n→∞

sup
f?∈∆K

+ :ψ(f?)≤δ
Pf? (δ 6∈CIone-sided) ≤ α.

If ψ(f?) > δ, then limn→∞ P (δ 6∈CIone-sided) = 1.
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COMPAS Results

Experiment setup:

• Total number of data points: 5278;

• 70% for training and 30% for auditing (n = 1584);

• Discrete space Z with |Z| = 144;

• Two samples which only differ in race or gender are free to
move;

• 0− 1 loss, and δ = 0.0365.

FaiTH value can be interpreted as misclassification rates induced
by the solution of the auditor’s problem.

3.65% is the midpoint of the proportion of innocent prisoners in the
United States. (Source: Miscarriage of justice, by B. A. Garner)
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COMPAS Results (Cont.)

Age from 25 to 45

Age greater than 45

Age less than 25

No prior crimes

1 to 3 prior crimes

More than 3 prior crimes

Felony charge

Misconduct charge

Recidivism

Black Female

White Female

Black Male

White Male

0.0 4.0 6.0 6.0 0.0 4.0 6.0 4.0

0.0 46.0 6.0 6.0 0.0 46.0 47.0 5.0

0.0 -31.0 -18.0 -18.0 0.0 -31.0 -44.0 -5.0

0.0 -19.0 6.0 6.0 0.0 -19.0 -9.0 -4.0 40

20

0

20

40 Total num
ber of individuals
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COMPAS Results (Cont.)

Age from 25 to 45

Age greater than 45

Age less than 25

No prior crimes

1 to 3 prior crimes

More than 3 prior crimes

Felony charge

Misconduct charge

Not Recidivism

Black Female

White Female

Black Male

White Male

0.0 0.0 -8.0 -8.0 0.0 0.0 -7.0 -1.0

0.0 -2.0 -7.0 -7.0 0.0 -2.0 -9.0 0.0

0.0 1.0 29.0 29.0 0.0 1.0 30.0 0.0

0.0 1.0 -14.0 -14.0 0.0 1.0 -13.0 0.0 40

20

0

20

40 Total num
ber of individuals
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COMPAS Results (Cont.)

0.00 0.02 0.04 0.06 0.08 0.10
1 / 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fa
iT

H 
st

at
ist

ic

FaiTH statistic
CI lower bound
Testing threshold

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

Va
lid

at
io

n 
er

ro
r

Validation error

25/28



COMPAS Results (Cont.)
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COMPAS Results (Cont.)

FaiTH CI
(2)
lower CI

(2)
upper CI

(1)
lower

LR .06± .02 .05± .02 .07± .03 .05± .02
ADB .18± .06 .16± .05 .20± .06 .16± .05
RWT .15± .02 .13± .02 .17± .02 .14± .02
LFR .07± .05 .06± .04 .08± .05 .06± .05
RLR .02± .02 .01± .02 .02± .02 .01± .02

Accuracy AOD EOD SPD

LR .67± .01 −.23± .04 −.19± .04 −.26± .03
ADB .65± .01 −.05± .13 −.01± .12 −.08± .13
RWT .66± .01 −.02± .04 .01± .04 −.06± .04
LFR .66± .01 −.09± .09 −.06± .07 −.13± .08
RLR .66± .01 −.19± .03 −.15± .03 −.22± .03

Fair classification techniques. ADB: adversarial debiasing; RWT: reweighting;
LFR: learning fair representation; RLR: regularized logistic regression.
Group fairness metrics. AOD: average odds difference; EOD: equal opportunity
difference; SPD: statistical parity difference.
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Summary and Discussion

Summaries:

• Individual fairness is a restricted form of robustness:
robustness to certain sensitive perturbations.

• Our inferential tools only require black-box access to the ML
model, are computationally efficient, and allow auditors to
control the false alarm rate and provide asymptotically exact
certificates of fairness.

Future directions:

• Continuous sample space X × Y;

• Scale invariant for losses.
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THE END

Email: sxue@umich.edu


