Statistical Inference for Individual Fairness

¹Subha Maity, ¹Songkai Xue, ²Mikhail Yurochkin, ¹Yuekai Sun

¹Department of Statistics, University of Michigan ²IBM Research, MIT-IBM Watson AI Lab

IBM Research

ProPublica and Gender Shades studies show violations of group fairness by ML systems deployed in practice.

Goal: Assess individual fairness (IF) of ML systems.

Contributions:

- a gradient flow algorithm to identify IF violations
- a statistically calibrated tool for detecting individual bias

Individual Fairness

In supervised learning it means similar individuals (inputs to a model) should be treated (outputs of a model) similarly (Dwork et al. 2012).

Similarity:

- fair metric $d_{\mathcal{X}}$ for individuals (input)
- prediction loss ℓ for outputs

IF Violation? Look at

$$\hat{\mu}_n = \mathbb{E}_n(\text{loss-ratio})_i = \mathbb{E}_n\left[\frac{\ell(f(x_i(T), y_i))}{\ell(f(x_i), y_i)}\right],$$

where $x_i(T)$ is IF-violated and similar to x_i .

Idea: Measure individual bias with average loss ratio between pairs with IF violations, i.e.,

$$\ell(f(x'), y)/\ell(f(x), y).$$

Problem: Similar individuals with fairness violation are hard to come by in the data.

Solution: Generate fairness violated individual by finding maximal loss among similar individuals in terms of fair metric.

$$\max_{x' \in \mathcal{X}} \left\{ \ell \left(f(x'), y \right) - \lambda d_{\mathcal{X}}^2(x, x') \right\}$$

Measuring Individual Bias

Problems:

- difficult to solve for non-convex model f
- limiting distribution of the test statistics is difficult to characterize

Solution: Generate IF-violated individuals by early stopping with gradient ascent.

$$\partial_t x(t) = \nabla_{x(t)} \left\{ \ell\left(f(x(t)), y\right) - \lambda d_{\mathcal{X}}^2(x, x(t)) \right\} \text{ with } x(0) = x;$$

IF-violated individual $\triangleq x(T)$

Advantages: (1) computationally tractable; (2) $x \mapsto x(T)$ is smooth w.r.t. x.

• Finally, We measure IF violation with

$$\hat{\mu}_n = \mathbb{E}_n(\text{loss-ratio})_i = \mathbb{E}_n\left[\frac{\ell(f(x_i(T)), y_i)}{\ell(f(x_i), y_i)}\right]$$

Detecting Individual Bias

The (population) average loss ratio should not be much larger than one for an individually fair algorithm.

False alarm controlled tool? Statistically test

 $H_0: \mathbb{E}[\text{loss-ratio}] \le 1 + \varepsilon \quad \text{vs} \quad H_1: \mathbb{E}[\text{loss-ratio}] > 1 + \varepsilon$

Theorem (Asymptotic distribution) The central limit convergence holds for average loss ratio, i.e.,

$$\sqrt{n}\left(\frac{\hat{\mu}_n - \mathbb{E}\left[\text{loss-ratio}\right]}{\widehat{\text{sd}}(\text{loss-ratio})}\right) \stackrel{d}{\to} \mathcal{N}(0, 1)$$

Detection tool with ≈ 0.05 false alarm rate:

individually biased if
$$T_n = \hat{\mu}_n - 1.645 \times \frac{\widehat{\mathrm{sd}}(\mathrm{loss-ratio})}{\sqrt{n}} > 1 + \varepsilon.$$

Idea: measure individual bias by comparing (sample) prediction errors for fairness violated and original individuals.

error-ratio(
$$\mathbb{P}_n$$
) = $\frac{\text{proportion of } \{\hat{f}(x_i(T)) \neq y_i\}}{\text{proportion of } \{\hat{f}(x_i) \neq y_i\}}$

Pros: easy to interpret

Cons: harder to detect IF violation

Case Study: Adult

Task: predict if earning \geq \$50k with age, education, working hours per week, etc.

Sensitive attributes: sex and race

				Entropy loss		0-1 loss	
	balanced acc	AOD_{gen}	AOD_{race}	T_n	reject prop	\widetilde{T}_n	reject prop
Baseline	0.817	-0.151	-0.061	3.676	1.0	2.262	1.0
Project	0.825	-0.147	-0.053	1.660	0.9	1.800	0.8
Reduction	0.800	0.001	-0.027	5.712	1.0	3.275	1.0
SenSR	0.765	-0.074	-0.048	1.021	0.0	1.081	0.0

Table 1. Results over 10 iterations

Reduction enforces group fairness by sacrificing individual fairness. On the contrary SenSR shows improvement in both individual and group fairness.

Key takeaway: Our detection tool correctly identifies individual bias in an ML system.

Poster ID: #1665

Poster Session: #5 (May 4, 2021, 9:00 – 11:00 a.m. PDT)

Contact Information:

- Subha Maity, smaity@umich.edu
- Songkai Xue, sxue@umich.edu
- Mikhail Yurochkin, mikhail.yurochkin@ibm.com
- Yuekai Sun, yuekai@umich.edu