# Intuitive Understanding of Throughput-Delay Tradeoff in Ad hoc Wireless Networks 

Term Project: EECS 557
Winter 2005

> by

Howard Anderson<br>Shrutivandana Sharma

## Outline

- Introduction
- Modeling of ad hoc networks
- Throughput-Delay tradeoff
- Fixed networks
- Mobile networks with one relay
- A scheme achieving optimal tradeoff


## Introduction

## Ad hoc Network

- Each node can be an S, D and $R$ simultaneously
- Challenges
- Interference
- Topology change
- Analysis
- Random configuration
- Steady state
- Orders are more important



## Definitions

- Delay: $D(n)$
- Throughput: $\lambda$
- Maximum delay constrained throughput : $T(n)$
- whp (With High Probability) : w.p. $\geq 1-1 / n$
- Transmission rate : $W$

Factors affecting throughput and delay

- Fixed networks
- Transmission range
- Number of hops



## Models for successful reception

- Relaxed Protocol model

$$
d(k, j) \geq(1+\Delta) d(i, j)
$$

- Physical model
$\mathrm{SNIR}=\frac{\frac{P_{i}}{|d(i, j)|^{\alpha}}}{N+\sum_{\substack{k \in I \\ k \neq i}} \frac{P_{k}}{|d(k, j)|^{\alpha}}} \geq \beta$
for $\alpha>2$, and $\quad P_{i}=P \quad \forall i \in P$
physical model is equivalent to Protocol model


## Network Topologies

- 2-Dimensional
- Square
- Circular disk

- 3-Dimensional
- Sphere
- Torus

> Avoid edge effects

$>$ Need to take into account curvature of sphere
> For torus, the analysis can be done by considering equivalent square


## Throughput-Delay Trade-off for Fixed Networks

## Assumptions

- Unit torus
- Slotted time
- Relaxed protocol model

$$
\begin{aligned}
& T(n)=\Theta\left(\frac{1}{n \sqrt{a(n)}}\right) \\
& D(n)=\Theta\left(\frac{1}{\sqrt{a(n)}}\right) \\
& T(n)=\Theta\left(\frac{D(n)}{n}\right)
\end{aligned}
$$



## Throughput

- $a(n) \geq 2 \log n / n$ ensures at least one node in each cell
- Maximum transmission range $\leq r=\sqrt{8 a(n)}$
- Successful transmission requires - no other transmission in range $\bar{r}=(1+\Delta) r$
- \# of interfering cells $=c_{1}=\Theta\left(\frac{\pi r^{2}}{a(n)}\right)=\Theta\left(\frac{(\sqrt{a(n)})^{2}}{a(n)}\right)=\Theta(1)$
- \# of SD lines passing through any cell $=c_{2}=\Theta(n \sqrt{a(n)})$
- Fraction of time an SD pair's packet transmitted through a cell:

$$
T(n)=\frac{1}{c_{1} c_{2}}=\Theta\left(\frac{1}{1 . n \sqrt{a(n)}}\right)
$$

## Delay

- Average distance of SD line $L=\Theta$ (1)
- Average length of a hop $h=\Theta(\sqrt{a(n)})$
- Delay per packet $\quad D(n)=\Theta\left(\frac{L}{h}\right)=\Theta\left(\frac{1}{\sqrt{a(n)}}\right)$
- Hence $T(n)=\Theta\left(\frac{D(n)}{n}\right)$


## Throughput Delay Tradeoff for Mobile Networks

Assumptions

- Unit torus with $n$ cells, each area $1 / n$
- $v(n)$ scales down as a function of $n$

$$
v(n)=\theta\left(\frac{1}{\sqrt{n}}\right)
$$

-Slotted Time

Results on throughput and delay

$$
D(n)=O\left(\frac{\sqrt{n}}{v(n)}\right)
$$

$$
T(n)=\theta(1)
$$

Network Layout of Scheme 2


0
$\sqrt{n}-1$

## TDMA for mobile networks

Packet transmission is broken up into slot A and $B$
Slot A
Source transmits to destination if in same cell OR source transmits to a relay in the cell

## Slot B

the relay randomly chooses a node in the same cell and transmits a packet that is destined to it

## Throughput

- $\#$ of cell time slots to avoid interference $=\left(1+c_{1}\right)$
- For $a(n)=1 / n$ probability of at least two nodes per cell $=1-1 / 2 e=0.26$
- Probability that a node has a packet for other node = fraction of time for which a node has a packet for other node $=C_{2}$
- Probability that a transmission takes place within a cell $=0.26 c_{2} /\left(1+c_{1}\right)$ $\Rightarrow$ throughput of each cell $=\Theta(1)$
- Combined throughput of all cells $=\Theta(n)$
- Throughput per SD pair

$$
T(n)=\Theta\left(\frac{1}{n} n\right)=\Theta(1)
$$

## Delay

- If $E[A]=\mu ; \quad E[S]=(1-\varepsilon) \mu$

$$
\operatorname{Var}[A]=\sigma_{a}^{2} ; \quad \operatorname{Var}[S]=\sigma_{s}^{2}
$$

then average delay,

$$
E[D] \leq \max \left\{\mu, \frac{\sigma_{a}^{2}+\sigma_{s}^{2}}{2 \mu \varepsilon}\right\}
$$



- Time in which a node crosses a cell $t(n)=\Theta\left(\frac{1 / \sqrt{n}}{v(n)}\right)$
- A GI-GI-1-FCFS queue can be defined with time step $t(n)$ and states $\left(X_{1}^{i j}(t), X_{2}{ }^{i j}(t)\right)$


## Delay

- The M.C. $\left(X_{1}^{i j}(t), X_{2}^{i j}(t)\right)$ spends equal time in all n states therefore, Avg. inter-meeting time of $S \& R=E[A]=n$
- From the M.C. model, $\operatorname{Var}\left[A^{2}\right]=\Theta\left(n^{2}\right)$
hence, $\quad E[D]=\Theta\left(\max \left\{n, \frac{n^{2}}{n}\right\}\right)=\Theta(n)$
- Actual delay $D(n)=\Theta(n t(n))=\Theta\left(\frac{n}{\sqrt{n} v(n)}\right)=\Theta\left(\frac{\sqrt{n}}{1 / \sqrt{n}}\right)=\Theta(n)$
- Hence $T(n)=\Theta\left(\frac{D(n)}{n}\right)$


## Optimal Throughput-Delay Trade-off for Mobile Networks

Scheme 3(a)

- For $v(n)=o(\sqrt{\log n / n})$

$$
\begin{aligned}
& T(n)=\mathrm{O}\left(\frac{1}{n \sqrt{a(n)}}\right) \\
& T(n)=\Theta\left(\frac{D(n)}{n}\right)
\end{aligned}
$$



## Justification for node velocity

- If initial distance between $\mathrm{S} \& \mathrm{D}=d$
- In a single hop, the distance will increase by at least $\sqrt{a(n)}$ and will decrease by at most $\left(1+c_{1}\right) v(n)$
- After $l$ hops, the distance will be less than $d-l\left(\sqrt{a(n)}-\left(1+c_{1}\right) v(n)\right)$
- For a packet to eventually reach the destination $v(n)=o(\sqrt{a(n)})=o(\sqrt{\log n / n})$
- Since velocity is very small compared to the edge length of the cell, Scheme 3(a) is essentially equivalent to that of Fixed Node Networks


## Scheme 3(b)

## Throughput

Scheme 3


- Throughput between SR \& RD and hence SD

$$
\begin{aligned}
& T(n)=\Theta\left(\frac{1}{m} \sqrt{d(n)}\right)=\Theta\left(\frac{1}{n a(n)} \sqrt{\frac{a(n)}{\log n / n}}\right)=\Theta\left(\frac{1}{\sqrt{n a(n) \log (n)}}\right) \\
& m=\Theta(n a(n))
\end{aligned}
$$

## Scheme 3(b)

## Delay

Two kinds of delay, hop delay, and mobile delay

- Because of the constraint on velocity, mobile delay dominates hop delay
- The derivation of delay is identical to scheme two, except the random walk is on an area of size $\sqrt{1 / a(n)}$ by $\sqrt{1 / a(n)}$, instead of $\sqrt{n}$ by $\sqrt{n}$
- The time for a node to move out of a cell is $t(n)=\Theta\left(\frac{\sqrt{a(n)}}{v(n)}\right)$
- The delay is hence $D(n)=\Theta\left(\frac{1}{\sqrt{a(n)} v(n)}\right)$


## Comments

- When a torus is unfolded to make a square, the minimum distance between the nodes changes
- Torus has been used to avoid edge effects but in the derivations, the factor corresponding to edge effects was included
- In the M.C. model (Scheme 2), the states $\left(X_{1}^{y}(t), X_{2}^{y}(t)\right)$ should be in $(0,1, \ldots, \sqrt{n} / 2-1) \times(0,1, \ldots, \sqrt{n} / 2-1)$ instead of $(0,1, \ldots, \sqrt{n}-1) \times(0,1, \ldots, \sqrt{n}-1)$
- In the random walk model,

$$
X_{k}^{i j}(t+1)=\left(X_{k}^{i j}(t)+K\right) \bmod \sqrt{n}, \quad \text { where } \quad K \in\{-1,+1\}
$$

but with random mobile nodes, it should be

$$
X_{k}^{i j}(t+1)=\left(X_{k}^{i j}(t)+K\right) \bmod (\sqrt{n} / 2), \quad \text { where } \quad K \in\{-2,-1,0,+1,+2\}
$$

- In Scheme 3(b), hop delay should be $\Theta\left(\sqrt{\frac{a(n)}{b(n)}}\right)$ instead of $\Theta\left(\frac{a(n)}{b(n)}\right)$


## Comments

- The packet size was scaled to $T(n)$ in the analysis, so the actual throughput in terms of bits will be of the order

$$
\Theta(T(n) \times T(n))
$$

- Orders do not give a clear picture $n=1,000$ and $n=20,000$ make a huge difference!

Thank you!

Questions?

