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Power allocation: A new perspective

Future wireless communication

High demand ⇒ high competition

Quality of Service (QoS) satisfaction

Interference control

More flexibility at users’ ends

Decentralized power control

In mesh networks centrally operated control adds on infrastructure and latency

Decentralized power control draws interest

Decentralized resource allocation - well studied in Mathematical Economics

Mathematical Economics - to study power allocation
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Literature survey
Classification of power allocation problem

Configuration of the network Application
Cellular uplink/downlink network Voice vs. data network
Mesh/Ad-hoc network Fixed rate vs. elastic data rate network

Interference control
Interference temperature constraint (ITC)

Cellular uplink Cellular downlink Mesh network

Shruti Sharma, Demos Teneketzis 4/34 EECS, University of Michigan, Ann Arbor



Introduction

Power
allocation
problem
Model

Optimization
problem

Solution
Externality
formulation

Externality
algorithm

Summary

Further
Scope

Contribution of our work

Main Contribution

Formulation of power allocation problem for wireless mesh networks as a
resource allocation problem with externalities

Characteristics of formulation

Philosophically similar to Laffont and St. Pierre’s formulation of Economies
with externalities

Allows us to appropriately modify an algorithm of Lions & Temam for static
decentralized optimization so as to obtain optimal power allocation
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The model

T1

R2

T2

T3

R3

R1

h21
h11

h31

p1 ∈ P1 = [0,Pmax
1 ]

p3 ∈ P3 = [0,Pmax
3 ]

p2 ∈ P2 = [0,Pmax
2 ]

M transmitter receiver pairs (Users), M := {1, 2, . . . , M}

Transmissions of a user create interference to other users
Interference depends on the transmission powers

Performance determined by utilities: Ui (p) = Ui (p1, p2, . . . , pM), i ∈M
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The model (cont’)
Interference Temperature Constraint (ITC)

T1

R2

T2

T3

R3

R1

h21
h11

h31

p1 ∈ P1 = [0,Pmax
1 ]

p3 ∈ P3 = [0,Pmax
3 ]

p2 ∈ P2 = [0,Pmax
2 ]

MC1
h301

h101

h201

Interference Temperature (IT): Net radio frequency (RF) power measured at a
receiving antenna per unit bandwidth

ITC: A measure to keep the RF noise floor below a safe threshold

MX
i=1

pi hi01 ≤ P1

Multiple ITCs: K measurement centers (MCs)/ Users 0K := {01, 02, . . . , 0K }
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Assumptions
Information available to the users

T1

R2

T2

T3

R3

R1

h21
h11

h31

p1 ∈ P1 = [0,Pmax
1 ]

p3 ∈ P3 = [0,Pmax
3 ]

p2 ∈ P2 = [0,Pmax
2 ]

MC1
h301

h101

h201

User i ∈M
• Pi = [0,Pmax

i ]

• Utility Ui

User 0k,k ∈ K
(MCk)

• Channel gains
hj0k

, j ∈M

Common knowledge

• P = [0,Pmax] ⊃ ∪i∈MPi

• # of active users M
M remains constant
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Assumptions (cont’)

Assumption on utility functions

For all i ∈ M, Ui (p) from RM into R is a non-negative, strictly concave,
continuous function of p.

Ui (p : pi = 0) = 0, ∀ i ∈ M

The utilities of the MCs are zero i.e. U0k (p) = 0, k ∈ K.

The utilities remain fixed throughout the power allocation period.
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The optimization problem

Objective

Allocate transmission powers to the users to maximize the social welfare function
for the wireless mesh network considered.

Optimization Problem (A)

max
p

X
i∈M∪0K

Ui (p) = max
p

U(p) (1)

subject to:
p ∈ S := {p |

MX
i=1

pi hi0k ≤ Pk , k ∈ K, pi ∈ Pi ∀ i ∈M} (2)

∗ For each i ∈ M the utility function Ui (·) is known only to user i . (3)

∗ Pi is known only to user i . (4)

∗ A set P = [0, Pmax ] ⊃ ∪i∈MPi is common knowledge. (5)

∗ For each k ∈ K, MCk knows the channel gains hj0k , j ∈ M. (6)

∗ ∀ i ∈ M , Ui (p) : RM → R is a non-negative, strictly concave,

continuous function of p and Ui (p : pi = 0) = 0 (7)

∗ U0k (p) = 0, ∀ k ∈ K (8)
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Corresponding centralized problem

Centralized Problem (AC)

max
p

X
i∈M∪0K

Ui (p) = max
p

U(p) (9)

subject to:

p ∈ S := {p |
MX

i=1

pi hi0k ≤ Pk , k ∈ K, pi ∈ Pi ∀ i ∈M} (10)

∗ ∀ i ∈M , Ui (p) : RM → R is a non-negative, strictly concave,

continuous function of p and Ui (p : pi = 0) = 0 (11)

∗ U0k (p) = 0, ∀ k ∈ K (12)

Note: Problem (AC) has a unique optimum.

Objective

To solve Problem (A) and obtain, if possible, the optimal solution of Problem (AC)

Satisfy the constraints imposed by the decentralized system

Shruti Sharma, Demos Teneketzis 11/34 EECS, University of Michigan, Ann Arbor



Introduction

Power
allocation
problem
Model

Optimization
problem

Solution
Externality
formulation

Externality
algorithm

Summary

Further
Scope

Corresponding centralized problem

Centralized Problem (AC)

max
p

X
i∈M∪0K

Ui (p) = max
p

U(p) (9)

subject to:

p ∈ S := {p |
MX

i=1

pi hi0k ≤ Pk , k ∈ K, pi ∈ Pi ∀ i ∈M} (10)

∗ ∀ i ∈M , Ui (p) : RM → R is a non-negative, strictly concave,

continuous function of p and Ui (p : pi = 0) = 0 (11)

∗ U0k (p) = 0, ∀ k ∈ K (12)

Note: Problem (AC) has a unique optimum.

Objective

To solve Problem (A) and obtain, if possible, the optimal solution of Problem (AC)

Satisfy the constraints imposed by the decentralized system

Shruti Sharma, Demos Teneketzis 11/34 EECS, University of Michigan, Ann Arbor



Introduction

Power
allocation
problem
Model

Optimization
problem

Solution
Externality
formulation

Externality
algorithm

Summary

Further
Scope

Formulation as an externality problem
The ingredients
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Formulation as an externality problem
The ingredients (cont’)

Technically possible power profiles Si := {p | pi ∈ Pi , p−i ∈ PM−1}, i ∈M
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Formulation as an externality problem
The ingredients (cont’)

Technically possible power profiles Si := {p | pi ∈ Pi , p−i ∈ PM−1}, i ∈M
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Formulation as an externality problem
The ingredients (cont’)

Technically possible power profiles Si := {p | pi ∈ Pi , p−i ∈ PM−1}, i ∈M
k – semi-feasible power profiles

S0k := {p |
PM

i=1 pi hi0k ≤ Pk , pi ∈ P ∀ i}, k ∈ K

Feasible power profiles

S =
T

i∈M∪0K
Si = {p |

PM
i=1 pi hi0k ≤ Pk , k ∈ K, pi ∈ Pi ∀ i ∈ M}
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The externality algorithm for decentralized power allocation
(A modification of Lions-Temam (1971) algorithm)

0) Initialization:

Users (including users 0K) agree upon a common power profile

p(0) ∈ {p | pi ∈ P ∀ i} (13)
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The externality algorithm (cont’)

0) Initialization (cont’):

A sequence of modification parameters {τ (n)}∞n=1 is chosen that satisfies,

0 < τ
(n+1) ≤ τ

(n)
, ∀ n ≥ 1 (14)

lim
n→∞

τ
(n) = 0 (15)

lim
N→∞

σ
(N) = lim

N→∞

NX
n=1

τ
(n) = ∞ (16)

The counter n is set to 0.

Example

τ (n) = 1
n or τ (n) = 1√

n
for real n satisfies (14) – (16).
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The externality algorithm (cont’)

1) n th iteration: (Individual optimization)
User i , i = 1, 2, . . . , M, solves

p̂(n+1)
i = argmaxp∈Si

Ui (p)−
1

τ (n+1)
‖p − p(n)‖2 (17)

MCi (user 0i ), i = {01, 02, . . . , 0K}, solves

p̂(n+1)
i = argmaxp∈S0k

−
1

τ (n+1)
‖p − p(n)‖2 (18)

Individual optimals p̂(n+1)
i ∀ i are broadcast to all the users.

Shruti Sharma, Demos Teneketzis 18/34 EECS, University of Michigan, Ann Arbor
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The externality algorithm (cont’)

2) Calculation of user and time averages

Upon receiving p̂(n+1)
i ∀ i , users compute for (n + 1)th iteration

p(n+1) =
1

M + K

X
i∈M∪0K

p̂(n+1)
i (19)

Shruti Sharma, Demos Teneketzis 19/34 EECS, University of Michigan, Ann Arbor
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The externality algorithm (cont’)

p(n+1) is used as a reference point in the (n + 1)th iteration.
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The externality algorithm (cont’)

2) (cont’)

User i, i ∈M∪ 0K, also computes the weighted averages

ŵ (N+1)
i =

1
σ(N+1)

N+1X
n=1

τ (n)p̂(n)
i , i ∈ M∪0K

=
1

σ(N+1)

“
σ(N)ŵ (N)

i + τ (N+1)p̂(N+1)
i

”
, (20)

where σ(N+1) =
N+1X
n=1

τ (n) = σ(N) + τ (N+1) (21)

The average calculated in (20) is stored in users’ memories.
The counter n is increased to n + 1 and the process repeats from Step 1).

For (n + 1)th iteration, τ (n+2) ≤ τ (n+1) is chosen from the predefined
sequence in Step 0).
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Convergence to optimal solution

Theorem

The externality algorithm results in a power allocation which is the unique
global optimum of the centralized problem (AC).

The optimal allocation is obtained as the limit of the sequences

{ŵ (N)
i }∞N=1, i ∈M∪ 0K, all of which converge to the same limit.

Shruti Sharma, Demos Teneketzis 22/34 EECS, University of Michigan, Ann Arbor
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Summary

Investigated the decentralized power allocation problem for a wireless mesh
network with multiple ITCs.

Formulated the power allocation problem from an externality perspective.

Proposed a decentralized algorithm for solving it.

The proposed algorithm obtains a globally optimal power allocation.

It provides a guaranteed convergence to the optimum solution.

It satisfies the informational constraints of the problem.
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Further Scope

Modifying the present algorithm to make it applicable for more general class of
utility functions.

Extending the analysis for time-varying channels.

Designing mechanisms that implement optimal centralized power allocations in
Nash Equilibria.
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THANK YOU!
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Questions and Comments?

Reference
S. Sharma and D. Teneketzis, “An externality based decentralized optimal power allocation
scheme for wireless mesh networks”, Control Group Report CGR-07-02, Department of
EECS, University of Michigan, Ann Arbor.

(Submitted for IEEE journal publication.)

Contact
svandana@umich.edu

Shruti Sharma, Demos Teneketzis 26/34 EECS, University of Michigan, Ann Arbor



Proof of
Theorem

Proof of Theorem

For simplicity, we prove the Theorem only for a single ITC.
We call the single MC in this case as user 0 and associate with it,
a semi-feasible set S0

S0 := {p |
MX

i=1

pi hi0 ≤ P, pi ∈ P ∀ i} (22)

Since p̂(n+1)
i is the optimal solution of,

p̂(n+1)
i = argmaxp∈Si

Ui (p)−
1

τ (n+1)
‖p − p(n)‖2, i ∈M∪{0} (23)

it follows that, ∀ p ∈ Si , i ∈ M∪{0},

τ (n+1)Ui (p̂
(n+1)
i )− ‖p̂(n+1)

i − p‖2 + ‖p(n) − p‖2 − ‖p̂(n+1)
i − p(n)‖2

≥ τ (n+1)Ui (p) (24)

Adding (24) over all i gives, ∀ p ∈ S = ∩i∈M∪{0}Si ,

τ (n+1)
MX

i=0

Ui (p̂
(n+1)
i )−

MX
i=0

‖p̂(n+1)
i − p‖2 + (M + 1)‖p(n) − p‖2

−
MX

i=0

‖p̂(n+1)
i − p(n)‖2 ≥ τ (n+1)

MX
i=0

Ui (p) = τ (n+1)U(p) (25)
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Proof of Theorem (cont’)

Since ‖ · ‖2 is a convex function,

‖p(n+1) − p‖2 ≤
1

M + 1

MX
i=0

‖p̂(n+1)
i − p‖2 (26)

Replacing the second term in (25) using (26), adding over n = 0, 1, . . . , N − 1,
and dividing by M + 1 we obtain, ∀ p ∈ S,

1
M + 1

N−1X
n=0

τ (n+1)
MX

i=0

Ui (p̂
(n+1)
i )− ‖p(N) − p‖2

−
1

M + 1

MX
i=0

N−1X
n=0

‖p̂(n+1)
i − p(n)‖2 ≥

σ(N)

M + 1
U(p)− ‖p(0) − p‖2 (27)

By concavity of Ui (p) in p,

1
M + 1

MX
i=0

N−1X
n=0

τ (n+1)Ui (p̂
(n+1)
i ) ≤

σ(N)

M + 1

MX
i=0

Ui (ŵ
(N)
i ), i ∈M∪{0} (28)

Since Si , i ∈ M∪ {0}, is a convex set and p̂(n+1)
i ∈ Si ∀ n, it follows that

ŵ (N)
i = 1

σ(N)

PN
k=1 τ (k)p̂(k)

i ∈ Si , i ∈ M∪ {0}.
Shruti Sharma, Demos Teneketzis 28/34 EECS, University of Michigan, Ann Arbor
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Proof of Theorem (cont’)

Substituting (28) in (27) and multiplying by (M + 1)/σ(N) we get, ∀ p ∈ S,
MX

i=0

Ui (ŵ
(N)
i )−

M + 1
σ(N)

‖p(N) − p‖2 −
MX

i=0

1
σ(N)

N−1X
n=0

‖p̂(n+1)
i − p(n)‖2

≥ U(p)−
M + 1
σ(N)

‖p(0) − p‖2 (29)

∵ Si , i ∈ M∪ {0}, and S are compact,
numerators of the 2nd terms on both LHS and RHS of (29) are bounded.

The 2nd terms go to zero as N →∞, ∵ 1/σ(N) → 0 as N →∞.

Numerator of the 3rd term on the LHS of (29) grows with N.

∵ Si , i ∈ M∪ {0}, is compact, ŵ (N)
i ∈ Si , and Ui (·) is a continuous

function on Si , ∃ C0, C1 : ∀ N,

‖ŵ (N)
i ‖ ≤ C0, i ∈ M∪ {0}

Ui (ŵ
(N)
i ) ≤ C1, i ∈ M∪ {0} (30)

∴ the 1st terms on both the LHS and the RHS of (29) are bounded,
and so the third term on the LHS.
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Proof of Theorem (cont’)

∃ C2 : ∀ N
1

σ(N)

N−1X
n=0

‖p̂(n+1)
i − p(n)‖2 ≤ C2 (31)

∵ Si is compact, (30) ⇒ ∃ a subsequence {ŵ (N′)
i }∞N′=1 of ŵ (N)

i ,

such that ŵ (N′)
i → ŵ∗i ∈ Si , i ∈ M∪ {0}.

Next we show that,

1 The subsequence {w (N′−1)}∞N′=1 of w (N) converges to a limit w∗.

2 ŵ∗i = ŵ∗j = w∗ ∀ i, j ∈M∪ {0}.

Lemma

lim
N′→∞

‖ŵ (N′)
i − w (N′−1)‖2 = ‖ŵ∗i − w∗‖2 = 0, ∀ i

Shruti Sharma, Demos Teneketzis 30/34 EECS, University of Michigan, Ann Arbor
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Proof of Theorem (cont’)
Proof of Lemma

We must show that, ∀ i ,

∀ ε > 0, ∃N
′
0 : ∀ N′ ≥ N

′
0, ‖ŵ (N′)

i − w (N′−1)‖2 ≤ ε, (32)

∵ τ (n) → 0, we can find an n0 such that,

τ (n0) ≤
ε

2C2
(33)

Knowing n0 we can compute the finite quantity,

A0i =

n0−1X
n=0

‖p̂(n+1)
i − p(n)‖2 (34)

∵ σ(N) →∞ as N →∞, ∃ N
′
0i

large enough such that,

σ
(N
′
0i

) ≥
2τ (1)A0i

ε
(35)

∵ σ(N) is increasing in N,

∀ N′ ≥ N
′
0 = max

i
N
′
0i

, σ(N′) ≥ σ(N
′
0 ) ≥ σ

(N
′
0i

) ∀i (36)
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Proof of Theorem (cont’)
Proof of Lemma (cont’)

∵ τ (n+1) ≤ τ (n) ∀ n,

1
σ(N′)

N′−1X
n=0

τ (n+1)‖p̂(n+1)
i − p(n)‖2

≤
τ (1)

σ(N′)

n0−1X
n=0

‖p̂(n+1)
i − p(n)‖2 +

τ (n0)

σ(N′)

N′−1X
n=n0

‖p̂(n+1)
i − p(n)‖2 (37)

Substituting (31) and (34) in (37) and using (36) we get,

‖ŵ (N′)
i − w (N′−1)‖2 ≤

1

σ(N′0 )
τ (1)A0i + τ (n0)C2

≤
ε

2
+

ε

2
= ε (38)

The second inequality in (38) follows from (33) and (35).

This proves the Lemma.
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Proof of Theorem (cont’)

Subsequences ŵ (N′)
i , i ∈ M∪{0}, converge to the same limit ŵ∗i = w∗.

∵ ŵ∗i ∈ Si , i ∈ M∪{0}, ⇒ w∗ ∈ S =
T

i∈M∪{01,02,...,0K } Si .

⇒ w∗ is a feasible solution for Problem (A).

Next we show that,

w∗ is an optimal solution of Problem (A).

Since ‖ · ‖2 is a convex function, for i ∈ M∪{0},

‖ŵ (N′)
i − w (N′−1)‖2 ≤

1
σ(N′)

N′−1X
n=0

τ (n+1)‖p̂(n+1)
i − p(n)‖2

≤
1

σ(N′)

N′−1X
n=0

‖p̂(n+1)
i − p(n)‖2 for τ (n+1) ≤ 1 (39)

Substituting (39) in (29) and taking the limit as N′ →∞,
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Proof of
Theorem

Proof of Theorem (cont’)

lim
N′→∞

{−
MX

i=0

‖ŵ (N′)
i − w (N′−1)‖2 +

MX
i=0

Ui (ŵ
(N′)
i )} ≥ U(p)

or
MX

i=0

Ui (w∗) ≥ U(p) (40)

The inequality in (40) follows from (38).

This proves the optimality of w∗ and the optimality of
the externality algorithm for decentralized power allocation.
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