
Introduction CPU power allocation Summary

Decentralized allocation of CPU capacity for
clustered web services

Shrutivandana Sharma

University of Michigan, Ann Arbor

Asser Tantawi, Malgorzata Steinder, Michael Spreitzer

Service Management Middleware Group, IBM T. J. Watson Research Center

August 22, 2008, Hawthorne, NY, USA

Introduction CPU power allocation Summary

Outline

1 Introduction
Motivation

2 CPU power allocation
Model
Optimization problem
Decentralized algorithm
Numerical results

3 Summary

Introduction CPU power allocation Summary Motivation

WebSphere XD - a service management middleware

What is WebSphere XD
A middleware for quality control of web service provisioning

Why is it desirable
Web applications/services are of numerous types
Service users have different Quality of Service (QoS)
requirements
Service providers have limited resources

Goal
Given the available infrastructure,

satisfy maximum possible service demand
best meet the users’ QoS requirements

Introduction CPU power allocation Summary Motivation

Websphere XD model

Node 1

Node 2

Node 3

C
luster 1

C
luster 2

C
luster 1

C
luster 2

Tier 1

Request flow from clients to servers

Service Class: Platinum
Service Class: Silver

Clients

DB

DB

Tier 2

Classifier

Load B
alancer

Messaging Backbone

Admission
controller

Request flow
manager

Work load
manager

Placement
controller

Centralized
controllers

Various controllers for different tasks –
admission control, request flow control, workload balancing, placement control

All controllers are centralized

Introduction CPU power allocation Summary Motivation

Motivation for the project

Difficulties with centralized control
Requires global information of the system
Not scalable
One failure can lead to the breakdown of entire system

Decentralized control is desirable
Each controller would operate with little information
System size can be scaled
System is less vulnerable to failure

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

CPU power allocation: System model

Clusters Nodes

1,1ω

N,1ω

1,2ω

N,2ω

1,Dω

1

2

D
N

1

Figure: CPU power allocation for clusters on heterogeneous nodes

ωd,n – CPU power for cluster d on node n, d ∈ {1, 2, . . . , D}, n ∈ {1, 2, . . . , N}.
Each node has a CPU power capacity: Ωn, n ∈ {1, 2, . . . , N}.

Each cluster’s received QoS is represented by a utility: Ud (
PN

n=1 ωd,n)

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Queueing model for a flow

Clusters Nodes

1,1ω

N,1ω

1

N

1

Figure: Queueing model for deriving response time of requests resulting from resource allocation

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Queueing model for a flow

System
Think time z

Response time t

Throughput

λ

Clients M

Service time

Clusters Nodes

1,1ω

N,1ω

1

N

1

Figure: Queueing model for deriving response time of requests resulting from resource allocation

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Queueing model for a flow

System
Think time z

Response time t

Throughput

λ

Clients M

Service time

Clusters Nodes

1,1ω

N,1ω

1

N

1

Figure: Queueing model for deriving response time of requests resulting from resource allocation

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Queueing model for a flow

System
Think time z

Response time t

Throughput

λ

Clients M

Service time

Clusters Nodes

1,1ω

N,1ω

1

N

1

Figure: Queueing model for deriving response time of requests resulting from resource allocation

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Queueing model for a flow

System
Think time z

Response time t

Throughput

λ

Clients M

Service time

Clusters Nodes

1,1ω

N,1ω

1

N

1

τ
τ ttU −

=)(

τ is target response time

Utility of the flow

Figure: Queueing model for deriving response time of requests resulting from resource allocation

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Utility of a flow as a function of CPU power

The response time tf to guarantee utility U for flow f , f ∈ {1, 2, . . . , F} is,

tf = (1 − U)τf (1)

Corresponding throughput for flow f is,

λf =
Mf

(zf + tf)
(2)

CPU power required to sustain throughput λf for flow f is,

ωf = αf λf (3)

αf is the work factor for flow f

Total CPU power required by cluster d to guarantee utility U for each flow in
cluster d is,

ωd (U) =
FX

f=1

αf
Mf

(zf + (1 − U)τf)
(4)

Ud (ω) is obtained by inverting the function ωd (U).

Ud (ω) thus obtained is concave in ω.

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Optimization problem

Problem (P)

max
D∑

d=1

Ud

(N∑
n=1

ωd,n

)
(5)

s.t.
D∑

d=1

ωd,n ≤ Ωn, ∀ n ∈ {1, 2, . . . , N} (6)

0 ≤ ωd,n ≤ Ωd,n ∀ d ∈ {1, 2, . . . , D} (7)

Centralized solution of Problem (P) requires information of,

All capacity constraints in (6)
All individual cluster constraints in (7)
Utility functions of all the clusters in (5)

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Breaking up Problem (P)

Nodes

Clusters 1

1

n

d

D

N

nd ,ω
⎟
⎠

⎞
⎜
⎝

⎛∑
=

N

n
nddU

1
,ω

n

D

d
nd Ω≤∑

=1
,ω

c
nω

r
dω

Matrix W

Figure: Variables influencing the clusters and the nodes

W = [ωd,n]D×N , matrix of CPU power variables

R = [rd,n]D×N , row update matrix with rows r r
d – updated by clusters

C = [cd,n]D×N , column update matrix with columns cc
n – updated by nodes

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Decentralized algorithm for CPU power allocation

Step 0) Initialization: k = 0
Sequence of penalty parameters {τ (t)}∞t=1 is chosen s.t.

0 < τ(t + 1) ≤ τ(t), ∀ t ≥ 1 (8)

lim
t→∞

τ(t) = 0 (9)

lim
k→∞

σ
(k) = lim

k→∞

kX
t=1

τ(t) = ∞ (10)

W (k)
= [0]D×N

Step 1) Row and Column updates:

r r
d (k + 1) = arg max

ωr
d : 0≤ωr

d≤Ω
r
d

Ud

“ NX
n=1

ωd,n

”
−

1
τ (k+1)

‖ωr
d − ωr

d (k)‖2 (11)

cc
n(k + 1) = arg max

ωc
n : 0≤ωc

n ,
PD

d=1 ωd,n≤Ωn

0 −
1

τ (k+1)
‖ωc

n − ωc
n(k)‖2 (12)

(13)

Matrix R is sent to the nodes and matrix C is sent to the clusters.

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

An example with two clusters and two nodes

R C

(R+C)
2

W =rr2
cc2

rw1

cc1

cw2
cw1

rw2

rr1

Figure: Row and column updates by the clusters and the nodes

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Progression of decentralized algorithm

R(k)

C(k)

Satisfy individual cluster constraints

Satisfy node capacity constraints

Satisfy all constraints

Number of iterations

w
ei

gh
t

Cluster utility Penalty

(b)

(a)

Figure:

(a) Sequences R(k) and C(k) of row and column update matrices

(b) The weight of cluster utility and penalty terms in cluster optimization

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Decentralized algorithm for CPU power allocation (cont’)

Step 2) After receiving the updates from the nodes (respectively the clusters), the clusters
(respectively the nodes) calculate the following averages.

W (k + 1) =
1
2
[R(k + 1) + C(k + 1)] (14)

bR(k + 1) =
1Pk+1

t=1 τ(t)

k+1X
t=1

τ(t)R(t) (15)

bC(k + 1) =
1Pk+1

t=1 τ(t)

k+1X
t=1

τ(t)C(t) (16)

cW (k + 1) =
1Pk+1

t=1 τ(t)

kX
t=0

τ(t + 1)W (t) (17)

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Time averaging of row and column update matrices

Satisfy individual cluster constraints

Satisfy node capacity constraints

+
+

+ +
+

+
+

++

+

)(kτ

)(ˆ kC

)3(τ

Optimal solution of Problem (P)

)2(τ

)(ˆ kR

)1(τ)1(+kτ

Time average sequences lie in the respective convex and compact sets,
therefore obey the respective constraints.

Time average sequences converge to the same matrix

The matrix of convergence is a feasible solution of Problem (P).

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Result

Theorem

The sequences {bR(k)}∞k=1, {bC(k)}∞k=1, and {cW (k)}∞k=1 all converge to the optimum
solution of Problem (P).

The above theorem has been proved using convex analysis.

Convergence to the optimum solution of Problem P is guaranteed by the
decentralized algorithm.

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Numerical results

1 2 3 4 5 6 7 8 9 10

x 10
5

−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

50

 CPU power ω allocated to the cluster (in Hz)

 C
lu

st
er

 u
ti

lit
y

U
d(ω

)

Figure: Utility of a cluster consisting of three flows characterized by the parameters given below.

flow f – 1 2 3

Work factor αf (kc) – 5.648 4.252 4.600
Population Mf – 6 4 1

Think time Zf (ms) – 113.9 109.4 99.9
Target τf (ms) – 10 15 20

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Numerical results: effect of penalty parameter sequence

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

 k

 τ(
k)

 =
 1

/k
δ

 δ = 0.01
 δ = 0.1
 δ = 1

1 2 3 4 5 6 7 8 9 10

x 10
5

−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

50

 CPU power ω (in Hz)

 Utility − penalty
 Utility
 Penalty

1 2 3 4 5 6 7 8 9 10

x 10
5

−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

50

 CPU power ω (in Hz)

 Utility − penalty
 Utility
 Penalty

(a) τ(k) = 1/kδ vs. k for δ = 1, 0.1, 0.001 (b) Utility and penalty vs. ω for τ(k) = 109
k (c) Utility and penalty vs. ω for τ(k) = 109

k0.001

1 2 3 4 5 6 7 8 9 10

x 10
5

−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

50

 CPU power ω (in Hz)

 Utility − penalty
 Utility
 Penalty

1 2 3 4 5 6 7 8 9 10

x 10
5

−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

50

 CPU power ω (in Hz)

 Utility − penalty
 Utility
 Penalty

1 2 3 4 5 6 7 8 9 10

x 10
5

−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

50

 CPU power ω (in Hz)

 Utility − penalty
 Utility
 Penalty

(d) Utility and penalty vs. ω for τ(k) = 108

k0.1 (e) Utility and penalty vs. ω for τ(k) = 109

k0.1 (f) Utility and penalty vs. ω for τ(k) = 1010

k0.1

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Numerical results: Performance of decentralized algorithm

0 5 10 15 20 25
−10000

−9000

−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

 Number of iterations k

 Average cluster utility decentralized
 Average cluster utility centralized

0 5 10 15 20 25
−250

−200

−150

−100

−50

0

 Number of iterations k

 Average cluster utility decentralized
 Average cluster utility centralized

Average cluster utility, centralized and decentralized, Average cluster utility, centralized and decentralized,
vs. number of iterations, D = 5, N = 3, F = 3 vs. number of iterations, D = 5, N = 3, F = 3

0 5 10 15 20 25
−50

−45

−40

−35

−30

−25

−20

−15

−10

 Number of iterations k

 U1(k)

 U2(k)

 U3(k)

 U4k

 U5(k)

Individual cluster utilities from decentralized algorithm vs. number of iterations, D = 5, N = 3, F = 3

Introduction CPU power allocation Summary Model Optimization problem Decentralized algorithm Numerical results

Numerical results: Large system

0 5 10 15 20 25
−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

 Number of iterations k

 Average cluster utility decentralized
 Average cluster utility centralized

Average cluster utility, centralized and decentralized, vs. number of iterations

System size: D = 20, N = 12, F = 3.

Introduction CPU power allocation Summary

Summary

Decentralized algorithm is designed for CPU power allocation to multiple clusters
on heterogenous nodes.

The optimization/control task is spilt among the clusters and the nodes.

Each cluster needs to control only the variables that affect its own utility, and each
node needs to control only the variables that affect its own utilization.

The algorithm guarantees convergence to the optimum centralized solution.

For the test data with five clusters and three nodes, the decentralized algorithm
shows fast convergence.

The algorithm shows similar convergence results when the system size is
increased to twenty clusters and twelve nodes.

It provides a step forward towards scalability of WebSphere XD!

Introduction CPU power allocation Summary

Summary

Decentralized algorithm is designed for CPU power allocation to multiple clusters
on heterogenous nodes.

The optimization/control task is spilt among the clusters and the nodes.

Each cluster needs to control only the variables that affect its own utility, and each
node needs to control only the variables that affect its own utilization.

The algorithm guarantees convergence to the optimum centralized solution.

For the test data with five clusters and three nodes, the decentralized algorithm
shows fast convergence.

The algorithm shows similar convergence results when the system size is
increased to twenty clusters and twelve nodes.

It provides a step forward towards scalability of WebSphere XD!

Introduction CPU power allocation Summary

Extensions of work (in progress)

Designing decentralized algorithm for CPU power allocation to
clusters so as to achieve fair utility distribution.

Designing decentralized algorithm for CPU resource allocation to
clusters so as to achieve fair utility distribution as well as load
balancing.

Introduction CPU power allocation Summary

Acknowledgements

Abhishek Dubey, University of Vanderbilt/Summer Intern, IBM

Ian Whalley, IBM T. J. Watson Research

Rahul Jain, IBM T. J. Watson Research

Introduction CPU power allocation Summary

THANKS!

Introduction CPU power allocation Summary

Contact for further details:

email: svandana@umich.edu

Web: http ://www .umich.edu/∼svandana

	Introduction
	Motivation

	CPU power allocation
	Model
	Optimization problem
	Decentralized algorithm
	Numerical results

	Summary

