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Abstract

In this paper we study local public goods provision in decentralized infor-

mation networks. Local public goods are network users’ actions that directly

affect the utilities of arbitrary subsets of network users. We consider networks

where each user knows only that part of the network that either affects it

or is affected by it. Furthermore, each user’s utility and action space are its

private information, and each user is a self utility maximizer. For such a net-

work we formulate a local public goods provision problem in the framework

of implementation theory. For this problem we develop a game form that,

(i) results in optimum centralized local public goods provision at all Nash

equilibria of the induced game (Nash implementation); (ii) leads to voluntary

participation by all users (individual rationality); and (iii) results in budget
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balance at all Nash equilibria and off equilibrium.
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1. Introduction

In networks individuals’ actions often influence the performance of their

directly connected neighbors. Such an influence of individuals’ actions on

their neighbors’ performance can propagate in the entire network through

various paths. Thus it can affect the performance of the entire network.

Examples include several local public good networks. For instance, when

a jurisdiction institutes a pollution abatement program, the benefits also

accrue to nearby communities. Or, when a university builds a new library,

the nearby colleges also benefit from the subscription to the new library.

The local public good nature is also seen in the spread of information and

innovation in social and research networks. The influence of neighbors can

also be observed in online advertising where the utility (users’ attention) that

an advertiser gets may be increased or decreased by the presence of other

advertisers on a webpage.

A local public good network differs from a typical public good system as

a local public good (alternatively, the action of an individual) is accessible to

and influences the utilities of individuals in a particular locality (neighbor-

hood) within a big network. On the other hand a public good is accessible to

and influences the utilities of all individuals in the system (Mas-Colell et al.,
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2002, Chapter 11). Because of the localized interactions of individuals, in

local public good networks (such as ones described above) the information

about the network is often localized; i.e., the individuals are usually aware of

only their neighborhoods and not the entire network. In many situations the

individuals also have some private information about the network or their

own characteristics that are not known to anybody else in the network. Fur-

thermore, the individuals may also be selfish, i.e. they care only about their

own benefit in the network. Such a decentralized information local public

good network with selfish users gives rise to several research issues. In the

next section we provide a literature survey on prior research in local public

good networks.

1.1. Literature survey

There exists a large literature on local public goods within the context of

local public good provision by various municipalities that follows the seminal

work of Tiebout (1956). These works mainly consider network formation

problems in which individuals choose where to locate based on their knowl-

edge of the revenue and expenditure patterns (on local public goods) of vari-

ous municipalities. In this paper we consider the problem of determining the

levels of local public goods (actions of network users) for a given network;

thus, the problem addressed in this paper is distinctly different from those

in the above literature. Recently, Bramoull and Kranton (2007) and Yuan

(Preprint) analyzed the influence of selfish users’ behavior on the provision

of local public goods in networks with fixed links among the users. Bramoull

and Kranton (2007) study a network model in which each user’s payoff equals

its benefit from the sum of efforts (treated as local public goods) of its neigh-
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bors less a cost for exerting its own effort. For concave benefit and linear

costs, the authors analyze Nash equilibria (NE) of the game where each user’s

strategy is to choose its effort level that maximizes its own payoff from the

provision of local public goods. The authors show that at such NE, special-

ization can occur in local public goods provision. Specialization means that

only a subset of individuals contribute to the local public goods and others

free ride. The authors further show that specialization can benefit the soci-

ety as a whole because among all NE, the ones that are “specialized” result

in the highest social welfare (sum of all users’ payoffs). However, Bramoull

and Kranton (2007) also show that none of the NE of abovementioned game

can result in a local public goods provision that achieves the maximum pos-

sible social welfare. In Yuan (Preprint) the work of Bramoull and Kranton

(2007) is extended to directed networks where the externality effects of users’

efforts on each others’ payoffs can be unidirectional or bidirectional. Yuan

(Preprint) investigates the relation between the structure of directed net-

works and the existence and nature of Nash equilibria of users’ effort levels

in those networks. For that matter they introduce a notion of ergodic sta-

bility to study the influence of perturbation of users’ equilibrium efforts on

the stability of NE. However, none of the NE of the game analyzed in Yuan

(Preprint) result in a local public goods provision that achieves optimum

social welfare.

In this paper we consider a generalization of the network models investi-

gated in Bramoull and Kranton (2007) and Yuan (Preprint). Specifically, we

consider a fixed network where the actions of each user directly affect the util-

ities of an arbitrary subset of network users. In our model, each user’s utility
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from its neighbors’ actions is an arbitrary concave function of its neighbors’

action profile. Each user in our model knows only that part of the network

that either affects it or is affected by it. Furthermore, each user’s utility

and action space are its private information, and each user is a self utility

maximizer. Even though the network model we consider has similarities with

those investigated in Bramoull and Kranton (2007) and Yuan (Preprint), the

problem of local public goods provision we formulate in this paper is different

from those in both the above works. Specifically, we formulate a problem of

local public goods provision in the framework of implementation theory 2

and address questions such as – How should the network users communicate

so as to preserve their private information, yet make it possible to determine

actions that achieve optimum social welfare? How to provide incentives to

the selfish users to take actions that optimize the social welfare? How to

make the selfish users voluntarily participate in any action determination

mechanism that aims to optimize the social welfare? In a nutshell, our work

focuses on designing a mechanism that can implement the optimum social

welfare in NE and thus it follows the philosophy of Chen (2002); Groves

and Ledyard (1977); Hurwicz (1979); Walker (1981) in the context of local

public goods provision. To the best of our knowledge the resource allocation

problem and its solution that we present in this paper is the first attempt to

analyze a local public goods network model in the framework of implemen-

tation theory. In the next section we state our contributions in the problem

formulation and solution presented in this paper.

2Refer to Jackson (2001); (Sharma, 2009, Chapter 3); Sharma and Teneketzis (2010);

Stoenescu and Teneketzis (2005) for an introduction to implementation theory.
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1.2. Contribution of the paper

The key contributions of this paper are:

• The formulation of a problem of local public goods provision in the

framework of implementation theory.

• The specification of a game form 3 (decentralized allocation mechanism)

for the above problem that, (i) implements in Nash equilibria 4 the

optimal solution of the corresponding centralized local public goods

provision problem; (ii) is individually rational; 5 and (iii) results in

budget balance at all Nash equilibria and off equilibrium.

The rest of the paper is organized as follows. In Section 2.1 we present

the model of a local public good network. In Section 2.2 we discuss two

motivating applications. In Section 2.3 we formulate the local public goods

provision problem. In Section 3.1 we discuss how the problem formulated in

Section 2.3 can be addressed with an implementation theory approach. In

Section 3.2 we develop ideas for the construction of a game form for the above

problem and follow that with the specification of a game form in Section 3.3.

We discuss the properties of the proposed game form in Section 3.4 and

we present their proofs in Appendices Appendix A and Appendix B. We

3The definition of a game form is given in Section 3.1. See Jackson (2001); (Sharma,

2009, Chapter 3); Sharma and Teneketzis (2010); Stoenescu and Teneketzis (2005) for

more detailed definitions.
4Refer to (Sharma, 2009, Chapter 3) and Sharma and Teneketzis (2010) for the defini-

tion of “implementation in Nash equilibria.”
5Refer to (Sharma, 2009, Chapter 3) and Sharma and Teneketzis (2010) for the defini-

tion of “individual rationality.”
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comment on implementation aspects of the proposed game form in Section 3.5

and conclude with a discussion on future directions in Section 4.

Before we present the model of local public good network in Section 2,

we describe the notation that we will use throughout the paper.

Notation:

We use bold font to represent vectors and normal font for scalars. We use

bold uppercase letters to represent matrices. We represent the element of a

vector by a subscript on the vector symbol, and the element of a matrix by

double subscript on the matrix symbol. To denote the vector whose elements

are all xi such that i ∈ S for some set S, we use the notation (xi)i∈S and

we abbreviate it as xS . We treat bold 0 as a zero vector of appropriate

size which is determined by the context. We use the notation (xi,x
∗/i) to

represent a vector of dimension same as that of x∗, whose ith element is xi

and all other elements are the same as the corresponding elements of x∗.

We represent a diagonal matrix of size N × N whose diagonal entries are

elements of the vector x ∈ RN by diag(x).

2. The network resource allocation problem

In this section we present a model of local public good network and formu-

late a resource allocation problem for it. We first describe the components

of the model and the assumptions we make on the properties of the net-

work. We then present the resource allocation problem and formulate it as

an optimization problem.
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2.1. The model (M)

We consider a network consisting of N users and one network operator.

We denote the set of users by N := {1, 2, . . . , N}. Each user i ∈ N has

to take an action ai ∈ Ai where Ai is the set that specifies user i’s feasible

actions. In a real network, a user’s actions can be consumption/generation

of resources or decisions regarding various tasks. We assume that,

Assumption 1. For all i ∈ N , Ai is a convex and compact set in R that

includes 0. 6 Furthermore, for each user i ∈ N , the set Ai is its private

information, i.e. Ai is known only to user i and nobody else in the network.

Because of the users’ interactions in the network, the actions taken by

a user directly affect the performance of other users in the network. Thus,

the performance of the network is determined by the collective actions of all

users. We assume that the network is large-scale, thus, every user’s actions

directly affect only a subset of network users in N . We depict the above

feature by a directed graph as shown in Fig. 1. In the graph, an arrow from

j to i indicates that user j affects user i; we represent the same in the text

as j → i. We assume that i→ i for all i ∈ N .

Mathematically, we denote the set of users that affect user i by Ri :=

{k ∈ N | k → i}. Similarly, we denote the set of users that are affected

by user j by Cj := {k ∈ N | j → k}. We represent the interactions of all

6In this paper we assume the sets Ai, i ∈ N , to be in R for simplicity. However, the

decentralized mechanism and the results we present in this paper can be easily generalized

to the scenario where for each i ∈ N , Ai ⊂ Rni is a convex and compact set in higher

dimensional space Rni . Furthermore, each space Rni can be of a different dimension ni

for different i ∈ N .
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Set Ri

Set Cj

i
j

Figure 1: A large scale network depicting the neighbor sets Ri and Cj of users i

and j respectively.

network users together by a graph matrix G := [Gij]N×N . The matrix G

consists of 0’s and 1’s, where Gij = 1 represents that user i is affected by

user j, i.e. j ∈ Ri and Gij = 0 represents no influence of user j on user i,

i.e. j /∈ Ri. Note that G is not necessarily a symmetric matrix. However,

Gii = 1 for all i ∈ N because i→ i. We assume that,

Assumption 2. The sets Ri, Ci, i ∈ N , are independent of the users’ action

profile aN := (ak)k∈N ∈
∏

k∈N Ak. Furthermore, for each i ∈ N , |Ci| ≥ 3.

Assumption 2 implies that the graph matrix G does not depend on the users’

actions. There are applications (for example see (Jackson, 2008, Chapter 6))

where this assumption does not hold; we do not consider such scenarios in this

paper. Examples of applications where Assumption 2 is valid are discussed

in Section 2.2. Other such examples can be found in Bramoull and Kranton

(2007); (Sharma, 2009, Chapter 5); Yuan (Preprint).

The performance of a user that results from actions taken by the users

affecting it is quantified by a utility function. We denote the utility of user

i ∈ N resulting from the action profile aRi
:= (ak)k∈Ri

by ui(aRi
). We
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assume that,

Assumption 3. For all i ∈ N , the utility function ui : R|Ri| → R is concave

in aRi
and ui(aRi

) = 0 for ai /∈ Ai.
7 The function ui is user i’s private

information.

The assumptions that ui is concave and is user i’s private information are

reasonable as evidenced by the applications described in Bramoull and Kran-

ton (2007); (Sharma, 2009, Chapter 5); Yuan (Preprint). The assumption,

ui(aRi
) = 0 for ai /∈ Ai, is made for the following reason. Because Ai is the

set of user i’s feasible actions and user i knows this set (Assumption 1), it

also knows that any action profile aRi
in which ai /∈ Ai, is not possible to

occur. Therefore, such an action profile aRi
does not provide any utility to

user i.

We assume that,

Assumption 4. Each network user i ∈ N is strategic and non-cooperative/selfish.

Assumption 4 implies that the users have an incentive to misrepresent their

private information, e.g. a user i ∈ N may not want to report to other users

or to the network operator its true preference for the users’ actions, if this

results in an action profile in its own favor.

Each user i ∈ N pays a tax ti ∈ R to the network operator. This tax

can be imposed for the following reasons: (i) For the use of the network by

the users. (ii) To provide incentives to the users to take actions that achieve

a network-wide performance objective. The tax is set according to the rules

7Note that ai is always an element of aRi
because i→ i and hence i ∈ Ri.
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specified by a mechanism and it can be either positive or negative for a user.

With the flexibility of either charging a user (positive tax) or paying compen-

sation/subsidy (negative tax) to a user, it is possible to induce the users to

behave in a way such that a network-wide performance objective is achieved.

For example, in a network with limited resources, we can set “positive tax”

for the users that receive resources close to the amounts requested by them

and we can pay “compensation” to the users that receive resources that are

not close to their desirable ones.

Thus, with the available resources, we can satisfy all the users and induce

them to behave in a way that leads to a resource allocation that is optimal

according to a network-wide performance criterion. We assume that,

Assumption 5. The network operator does not have any utility associated

with the users’ actions or taxes. It does not derive any profit from the users’

taxes and acts like an accountant that redistributes the tax among the users

according to the specifications of the allocation mechanism.

Assumption 5 implies that the tax is charged in a way such that∑
i∈N

ti = 0. (1)

To describe the “overall satisfaction” of a user from the performance it

receives from all users’ actions and the tax (subsidy) it pays (receives) for it,

we define an “aggregate utility function” uAi (aRi
, ti) : R|Ri|+1 → R ∪ {−∞}

for each user i ∈ N as follows:

uAi (aRi
, ti) :=

 −ti + ui(aRi
), if ai ∈ Ai, aj ∈ R, j ∈ Ri\{i},

−∞, otherwise.
(2)
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The definition of uAi indicates that an allocation (aRi
, ti) is of no significance

to user i if ai /∈ Ai. This is because, as mentioned earlier, user i knows

that an allocation (aRi
, ti) in which ai /∈ Ai is not possible to occur as i

cannot take an action outside Ai. Because ui and Ai are user i’s private

information (Assumptions 1 and 3), the aggregate utility uAi is also user i’s

private information. As stated in Assumption 4, users are non-cooperative

and selfish. Therefore, the users are self aggregate utility maximizers.

In this paper we restrict attention to static problems. Specifically, we

make the following assumption:

Assumption 6. The set N of users, the graph G, users’ action spaces

Ai, i ∈ N , and their utility functions ui, i ∈ N , are fixed in advance and

they do not change during the time period of interest.

Assumption 6 is restrictive. Ideally, we would like to address dynamic prob-

lems where N , G, Ai, i ∈ N , and ui, i ∈ N , change over time. At this point

we are unable to handle dynamic problems, and for this reason we restrict

attention to static problems.

We also assume that,

Assumption 7. Every user i ∈ N knows the set Ri of users that affect it

as well as the set Ci of users that are affected by it. The network operator

knows Ri and Ci for all i ∈ N .

In networks where the sets Ri and Ci are not known to the users beforehand,

Assumption 7 is still reasonable because of the following reason. As the

graph G does not change during the time period of interest (Assumption 6),

the information about the neighbor sets Ri and Ci, i ∈ N , can be passed to
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the respective users by the network operator before the users determine their

actions. Alternatively, the users can themselves determine the set of their

neighbors before determining their actions. 8

Thus, Assumption 7 can hold true for the rest of the action determination

process.

In the next section we present some applications that motivate Model (M).

2.2. Applications

2.2.1. Application A: Online advertising

Consider an online guaranteed display (GD) ad system. In existing GD

systems, individual advertisers sign contracts with web-publishers in which

web-publishers agree to serve (within some given time period) a fixed number

of impressions 9 of each ad for a lump sum payment. Here we consider

an extension of current GD systems in which multiple advertisers can form

clusters as shown in Fig. 2 and contracts can be signed for the number of

impressions of each cluster. Figure 2 shows three display ad clusters. In each

Ad 1

Ad 2 Ad 3

Ad 2

Ad 1 Ad 4

Ad 4

Ad 2 Ad 3

(i) (ii) (iii)

Figure 2: Three display ad clusters, each consisting of one main ad and two sub

ads.

8The exact method by which the users get information about their neighbor sets in a

real network depends on the network characteristics.
9A display instance of an ad
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ad cluster there is one main ad and two sub ads. For example in Fig. 2-(i),

ad 1 is the main ad and ad 2 and ad 3 are the two sub ads. Suppose that

the ad clusters are formed in a way so that in each cluster, the main ad

creates a positive externality 10 to the sub ads. For example, ad 1 can be a

Honda ad, whereas ad 2 and ad 3 can be ads of local Honda dealer and local

Honda mechanic. We call the ad cluster in which ad i appears as the main

ad as cluster i. 11 The arrangements of ads in clusters can be described by

a graph similar to one shown in Fig. 1. In this graph an arrow from j to i

would represent that ad i appears in cluster j. For each impression of cluster

i, i ∈ {1, 2, 4}, advertiser i pays some fixed prespecified amount of money

(bid) bi ∈ R+ to the web publisher. Suppose the bid bi is known only to

advertiser i and the web publisher. Let ai, i ∈ {1, 2, 4}, denote the number

of impressions of clusters i delivered to the users. Furthermore, let Amax
i

be the maximum number of impressions advertiser i can request for cluster

i, i.e. 0 ≤ ai ≤ Amax
i . The constraint Amax

i may arise due to the budget

constraint of advertiser i, or due to the restrictions imposed by the web

publisher. For these reasons Amax
i may be private information of advertiser i

(similar to Assumption 1) or private knowledge between advertiser i and the

web publisher. Note that in the ad network, the number of impressions ai, i ∈
{1, 2, 4}, can take only natural number values; therefore, the assumption of

convex action sets Ai, i ∈ N , in Assumption 1 can be thought of as an

approximation to this case. Note also that in the above ad network example,

10See (Mas-Colell et al., 2002, Chapter 11) for the definition of externality.
11We assume that there is at most one ad cluster in which ad i appears as the main ad;

hence such a notation is well defined.
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no cluster is associated with advertiser 3 or the web publisher (i.e. there is no

cluster with main ad 3 or an ad of the web publisher). Such a scenario can be

captured by Model (M) by associating dummy action variables a3 and a0 with

advertiser 3 and web publisher respectively, and assuming Amax
3 = Amax

0 = 0.

Because of the way clusters are formed, each advertiser obtains a non-

negative utility from the impressions of the clusters that it is part of. Thus

we can represent the utilities of the four advertisers in the ad network of

Fig. 2 as follows:

u1(a1, a2) = c11a1 + c12a2 − b1a1
u2(a1, a2, a4) = c21a1 + c22a2 + c24a4 − b2a2

u3(a1, a4) = c31a1 + c34a4

u4(a2, a4) = c42a2 + c44a4 − b4a4.

(3)

In (3) cij ∈ R+, i, j ∈ {1, 2, 3, 4} are non negative real valued constants. The

constant cij represents the value obtained by advertiser i from each impres-

sion of cluster j. Suppose that for each j, cij is advertiser i’s private infor-

mation. The term −biai, i ∈ {1, 2, 4} represents the loss in utility/monetary

value incurred by advertiser i due to the prespecified payment it makes to

the web publisher. Because the web publisher receives payments from the

advertisers, it also obtains a utility as follows:

u0(a1, a2, a4) = b1a1 + b2a2 + b4a4. (4)

Since each bid bi, i ∈ {1, 2, 4}, is known to the web publisher, and none of the

advertisers know all of these bids, the utility function u0 is web publisher’s

private information. Similarly, since cij for each j and the bid bi are private
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information of advertiser i, for each i ∈ {1, 2, 4} the utility function ui is

advertiser i’s private information. These properties of utility functions along

with their linearity given by (3) and (4) are modeled by Assumption 3 in

Model (M). If we assume that the arrangements of ads in clusters and the

bids bi, i ∈ {1, 2, 4}, of advertisers are predetermined, and do not change with

any decision regarding the impressions delivery of various clusters, then this

leads to assumptions 2 and 6 in Model (M).

As represented by (3), each advertiser benefits from a number of other

advertisers by being part of their ad clusters. For this reason, in addition

to making a direct payment to the web publisher, each advertiser should

also make a payment to those advertisers that create positive externalities

to it. Furthermore, because of their mutual payments the web publisher

may offer discounts to the advertisers in their direct payments to her. These

discounts can indirectly encourage advertisers to participate in the clustered

GD ad scheme. However, one problem in the implementation of above type

of payments/discounts is that in a big network, the advertisers may not have

direct contracts with all their cluster sharing advertisers. Furthermore, if the

advertisers and the web publisher are strategic and self utility maximizers,

they would try to negotiate payments so as to get cluster impressions that

maximize their respective utilities. In such a scenario, the abovementioned

distribution of money among advertisers and the web publisher can be facil-

itated through a third party ad agency to which all advertisers and the web

publisher can subscribe. The role of an ad agency can be mapped to that of

the network operator in Model (M) described by Assumption 5.
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2.2.2. Application B: Power allocation in cellular networks

Consider a single cell downlink wireless data network consisting of a Base

Station (BS) and N mobile users as shown in Fig. 3. The BS uses Code

BS

1

2

N

aNa1
a2h01

h02

h0N
a1h01

a2h02

aNh0N

1

N

Figure 3: A downlink network with N mobile users and one base station

Division Multiple Access technology (CDMA) to transmit data to the users

and each mobile user uses Minimum Mean Square Error Multi-User Detector

(MMSE-MUD) receiver to decode its data. The signature codes used by the

BS are not completely orthogonal as this helps increase the capacity of the

network. Because of non-orthogonal codes, each user experiences interference

due to the BS transmissions intended for other users. However, as the users

in the cell are at different distances from the BS, and the power transmitted

by the BS undergoes propagation loss, not all transmissions by the BS create

interference to every user. For example, let us look at arcs 1 and N shown in

Fig. 3 that are centered at the BS. Suppose the radius of arc 1 is much smaller

than that of arc N . Then, the signal transmitted by the BS for users inside

circle 1 (that corresponds to arc 1) will become negligible when it reaches

outside users such as user N or user 2. On the other hand, the BS signals

17



transmitted for user N and user 2 will be received with significant power by

the users inside circle 1. This asymmetric interference relation between the

mobile users can be depicted in a graph similar to one shown in Fig. 1. In

the graph an arrow from j to i would represent that the signal transmitted

for user j also affects user i. Note that since the signal transmitted for user

i must reach i, the assumption i→ i made in Section 2.1 holds in this case.

If the users do not move very fast in the network, the network topology

can be assumed to be fixed for small time periods. Therefore, if the BS

transmits some pilot signals to all network users, the users can figure out

which signals are creating interference to their signal reception. Thus, each

user would know its (interfering) neighbor set as assumed in Assumption 7.

Note that if the power transmitted by the BS to the users change, it may

result in a change in the set of interfering neighbors of each user. This

is different from Assumption 2 in Model (M). However, if the transmission

power fluctuations resulting from a power allocation mechanism are not large,

the set of interfering neighbors can be assumed to be fixed, and this can be

approximated by Assumption 2.

The Quality of Service (QoS) that a user receives from decoding its data

is quantified by a utility function. Due to interference the utility ui(·) of user

i, i ∈ N , is a function of the vector aRi
, where aj is the transmission power

used by the BS to transmit signals to user j, j ∈ N , and Ri is the set of users

such that the signals transmitted by the BS to users in Ri also reach user i.

Note that in this case all transmissions, in other words the actions ai, i ∈ N ,
are carried out by the BS unlike Model (M) where each user i ∈ N takes its

own action ai. However, as we discuss below, the BS is only an agent which
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executes the outcome of the mechanism that determines these transmission

powers. Thus, we can embed the downlink network scenario into Model (M)

by treating each ai as a decision “corresponding” to user i, i ∈ N , which is

executed by the BS for i. Since each user uses an MMSE-MUD receiver, a

measure of user i’s (i ∈ N ) utility can be the negative of the MMSE at the

output of its receiver, 12 i.e.,

ui(aRi
) = −MMSEi

= − min
zTi ∈R1×N

E[‖bi − zTi yi‖2]

= −
[
(I +

2

N0i

SiXRi
Si)
−1]

ii
, i ∈ N .

(5)

In (5) bi is the transmitted data symbol for user i, yi is the output of user i’s

matched filter generated from its received data, I is the identity matrix of size

N×N , N0i/2 is the two sided power spectral density (PSD) of thermal noise,

XRi
is the cross-correlation matrix of signature waveforms corresponding to

the users j ∈ Ri, and Si := diag((Sij)j∈Ri
) is the diagonal matrix consisting

of the signal amplitudes Sij, j ∈ Ri, received by user i. Sij is related to

aj as S2
ij = ajh0i, j ∈ Ri, where h0i is the channel gain from the BS to

user i which represents the power loss along this path. As shown in Sharma

and Teneketzis (2009, 2010), the utility function given by (5) is close to

concave in aRi
. Thus, Assumption 3 in Model (M) can be thought of as an

approximation to the downlink network scenario.

Note that to compute user i’s utility given in (5), knowledge of N0i,

XRi
, and h0i is required. The BS knows XRi

for each i ∈ N as it selects

the signature waveform for each user. On the other hand, user i, i ∈ N ,

12See Verdu (2003) for the derivation of (5).
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knows the PSD N0i of thermal noise and the channel gain h0i as these can

be measured only at the respective receiver. Consider a network where the

mobile users are selfish and non cooperative. Then, these users may not want

to reveal their measured values N0i and h0i. On the other hand if the network

operator that owns the BS does not have a utility and is not selfish, then, the

BS can announce the signature waveforms it uses for each user. Thus, each

user i ∈ N would know its corresponding cross correlation matrix XRi
and

consequently, its utility function ui. However, since N0i and h0i are user i’s

private information, the utility function ui is private information of i which

is similar to Assumption 3 in Model (M). If the wireless channel conditions

vary slowly compared to the time period of interest, the channel gains and

hence the users’ utility functions can be assumed to be fixed. As mentioned

earlier, for slowly moving users the network topology and hence the set of

interfering neighbors can also be assumed to be fixed. These features are

captured by Assumption 6 in Model (M).

In the presence of limited resources, the provision of desired QoS to all

network users may not be possible. To manage the provision of QoS under

such a situation the network operator (BS) can charge tax to the users and

offer them the following tradeoff. It charges positive tax to the users that

obtain a QoS close to their desirable one, and compensates the loss in the

QoS of other users by providing a subsidy to them. Such a redistribution

of money among users through the BS is possible under Assumption 5 in

Model (M).

Having discussed various applications that motivate Model (M), we now

go back to the generic model (M) and formulate a resource allocation problem
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for it.

2.3. The resource allocation problem (PD)

For the network model (M) we wish to develop a mechanism to de-

termine the users’ action profile aN := (a1, a2, . . . , aN) and tax profile

tN := (t1, t2, . . . , tN). We want the mechanism to work under the decentral-

ized information constraints imposed by the model and to lead to a solution

to the following centralized problem.

Problem (PC)

max
(aN ,tN )

∑
i∈N

uAi (aRi
, ti)

s.t.
∑
i∈N

ti = 0
(6)

≡ max
(aN ,tN )∈D

∑
i∈N

ui(aRi
)

where, D := {(aN , tN ) ∈ R2N | ai ∈ Ai ∀ i ∈ N ;
∑
i∈N

ti = 0}
(7)

The centralized optimization problem (6) is equivalent to (7) because for

(aN , tN ) /∈ D, the objective function in (6) is negative infinity by (2). Thus

D is the set of feasible solutions of Problem (PC). Since by Assumption 3, the

objective function in (7) is concave in aN and the sets Ai, i ∈ N , are convex

and compact, there exists an optimal action profile a∗N for Problem (PC).

Furthermore, since the objective function in (7) does not explicitly depend

on tN , an optimal solution of Problem (PC) must be of the form (a∗N , tN ),

where tN is any feasible tax profile for Problem (PC), i.e. a tax profile that

satisfies (1).

21



The solutions of Problem (PC) are ideal action and tax profiles that we

would like to obtain. If there exists an entity that has centralized informa-

tion about the network, i.e. it knows all the utility functions ui, i ∈ N ,

and all action spaces Ai, i ∈ N , then that entity can compute the above

ideal profiles by solving Problem (PC). Therefore, we call the solutions of

Problem (PC) optimal centralized allocations. In the network described by

Model (M), there is no entity that knows perfectly all the parameters that

describe Problem (PC) (Assumptions 1 and 3). Therefore, we need to develop

a mechanism that allows the network users to communicate with one another

and that leads to optimal solutions of Problem (PC). Since a key assumption

in Model (M) is that the users are strategic and non-cooperative, the mecha-

nism we develop must take into account the users’ strategic behavior in their

communication with one another. To address all of these issues we take the

approach of implementation theory Jackson (2001) for the solution of the de-

centralized allocation problem for Model (M). Henceforth we call the above

decentralized resource allocation problem for Model (M) as Problem (PD).

In the next section we formulate Problem (PD) in the framework of imple-

mentation theory, and present a decentralized resource allocation mechanism

(game form) that works under the constraints imposed by Model (M) and

achieves optimal centralized allocations.

3. A decentralized resource allocation mechanism

We begin this section by stating Problem (PD) in the language of imple-

mentation theory. We then discuss an approach on how to construct a game

form for this problem and follow that discussion with the specification of the
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proposed game form. We conclude the section by stating the properties of

the proposed game form. These properties are summarized in Theorems 1

and 2 the proofs of which appear in the appendices.

3.1. Embedding Problem (PD) in implementation theory framework

In the implementation theory framework a resource allocation problem is

described by specifying a triple (E ,D, γ). 13 The environment space E and the

action space D characterize the problem model, and the goal correspondence

γ : E → D characterizes the desirable centralized allocations for the problem.

There are N users in the network model (M); therefore the environment

space E of Problem (PD) is a product space of N environment spaces (Ei, i ∈
N ), one corresponding to each user. The environment ei of user i, i ∈ N ,

consists of the set Ai×R of its feasible actions and taxes, its utility function

ui, its information about its neighbor sets Ri and Ci, and its (common)

knowledge 14 about the facts described by Assumptions 2, 4, 5, 6 and 7. The

environment space Ei of user i is the space of all possible environments ei,

i.e., it consists of the following: the space of all sets Ai × R ⊂ R2 such that

Ai ⊂ R is convex and compact and 0 ∈ Ai, the space of all concave functions

ui : R|Ri| → R such that ui(aRi
) = 0 for ai /∈ Ai, the space of all finite

subsets Ri and Ci of the set of natural numbers, and the common knowledge

mentioned above.

The action space D of Problem (PD) is the space of all feasible action and

tax profiles (aN , tN ) as defined in (7).

13Refer to (Sharma, 2009, Chapter 3) and Sharma and Teneketzis (2010).
14See Aumann (1976); Washburn and Teneketzis (1984) for the definition of common

knowledge.
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The goal correspondence γ for Problem (PD) maps each environment

e ∈ E to the set of action and tax profiles (aN , tN ) ∈ D that are solutions

to Problem (PC).

Having described Problem (PD) in the framework of implementation the-

ory, we now look at the specification of a decentralized mechanism from

the implementation theory perspective. In implementation theory a de-

centralized resource allocation mechanism is specified in terms of a game

form (M, f), where M :=
∏

i∈NMi is the message/strategy space and

f :M→D is the outcome function.

Therefore, our objective of designing a decentralized allocation mecha-

nism for model (M) transforms into designing a game form. For our problem,

we want to develop a game form (M, f) that is individually rational, budget

balanced, and that implements in Nash equilibria

the goal correspondence γ. Individual rationality guarantees voluntary

participation of the users in the allocation process specified by the game

form, budget balance guarantees that there is no money left unclaimed/not

allocated at the end of the allocation process (i.e. it ensures (1)), and im-

plementation in NE guarantees that the allocations corresponding to the set

of NE of the game (M, f, {uAi }i∈N ) are a subset of the optimal centralized

allocations (solutions of Problem (PC)).

We would like to clarify at this point the definition of individual ratio-

nality/voluntary participation condition in the context of our problem. Note

that in network model (M), the participation/non-participation of each user

determines the network structure and the set of local public goods (users’

actions) accessible to the participating users. To define individual rational-
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ity in this setting we consider our mechanism to be consisting of two stages

as discussed in (Fudenberg and Tirole, 1991, Chapter 7). In the first stage,

knowing the game form, each user makes a decision whether to participate in

the game form or not. The users who decide not to participate are considered

out of the system. Those who decide to participate follow the game form to

determine the levels of local public goods in the network formed by them. 15

In such a two stage mechanism, individual rationality implies the following.

If the network formed by the participating users satisfies all the properties of

Model (M), 16 then, at all NE of the game (among the participating users)

induced by the game form, the utility of each participating user will be at

least as much as the utility it obtains without participation (i.e. if the user is

out of the system). This in turn implies that, if there are at least two other

participating users that are affected by the actions of a user, then such a user

voluntarily participates in the game form.

We would also like to clarify the rationale behind choosing NE as the so-

lution concept for our problem. Note that because of assumptions 1 and 3 in

Model (M), the environment of our problem is one of incomplete information.

Therefore one may speculate the use of Bayesian Nash or dominant strategy

as appropriate solution concepts for our problem. However, since the users

15This network is a subgraph obtained by removing the nodes corresponding to non-

participating users from the original graph (directed network) constructed by all the users

in the system.
16In particular, the network formed by the participating users must satisfy Assumption 2

that there are at least three users affected by each local public good in this network. Note

that all other assumptions of Model (M) automatically carry over to the network formed

by any subset of the users in Model (M).
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in Model (M) do not possess any prior beliefs about the utility functions and

action sets of other users, we cannot use Bayesian Nash as a solution concept

for Model (M). Furthermore, because of impossibility results for the exis-

tence of non-parametric efficient dominant strategy mechanisms in classical

public good environments Groves and Ledyard (1987), we do not know if it is

possible to design such mechanisms for the local public good environment of

Model (M). The well known Vickrey-Clarke-Groves (VCG) mechanisms that

achieve incentive compatibility and efficiency with respect to non-numeraire

goods, do not guarantee budget balance Groves and Ledyard (1987). Hence

they are inappropriate for our problem as budget balance is one of the de-

sirable properties in our problem. VCG mechanisms are also unsuitable for

our problem because they are direct mechanisms and any direct mechanism

would require infinite message space to communicate the generic continu-

ous (and concave) utility functions of users in Model (M). Because of all of

above reasons, and the known existence results for non-parametric, individu-

ally rational, budget-balanced Nash implementation mechanisms for classical

private and public goods environments Groves and Ledyard (1987), we choose

Nash as the solution concept for our problem. We interpret the complete in-

formation Nash game equilibria in the incomplete information environment

of Model (M) in the same way as suggested by (Groves and Ledyard, 1987,

Section 4, page 69) and (Reichelstein and Reiter, 1988, page 664). We present

the definition and detailed interpretation of NE for our current problem at

the end of Section 3.3. In the next section we construct a game form for

the resource allocation problem (PD) that achieves the abovementioned de-

sirable properties – Nash implementation, individual rationality, and budget
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balance.

3.2. Constructing game form for Problem (PD)

As discussed in the previous section, we are interested in determining

a game form that has the following properties: (i) It implements in NE

the optimal solution of Problem (PC); (ii) It is individually rational; and

(iii) It is budget balanced. In this section we first develop a conceptual

framework that must guide the construction of game forms which possess

the above properties. We then present a game form that is designed within

the developed framework.

We begin with a discussion on the construction of the message space.

Since an allocation for Problem (PD) consists of the action profile and the

tax profile of the users, the message exchange among the users should contain

information that is helpful in determining the optimal values of these profiles.

Since each user’s utility is affected by the actions of a subset of network

users, each user should have a contribution in determining the actions of

all its neighbors that affect its utility. Furthermore, a user should make a

payment for the actions of all these neighbors because they all contribute

to its utility. Since each neighbor’s action makes a different contribution to

the user’s utility, the user may make different payments for each neighbor’s

actions. One way to take into account the above two factors is to let each

user communicate as its message/strategy a proposal that consists of two

components: one that indicates what actions the user wants its neighbors to

take; and the other that indicates the price the user wants to pay for the

actions of each of its neighbors.

We next discuss the construction of the outcome function. The specifica-
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tion of the outcome function is arguably the most important and challenging

task in the construction of a game form/decentralized resource allocation

mechanism. Since the designer of the mechanism cannot alter the users’

utility functions ui, i ∈ N , the only way it can achieve the objectives of

Nash implementation, individual rationality, and budget balance is through

the provision of appropriate tax functions/incentives that induce strategic

users to follow the mechanism’s operational rules. Below we develop the

guidelines for the construction of outcome functions that achieve each of the

above objectives.

To achieve implementation in NE, the outcome function must make sure

that all NE of the message exchange (that is done according to the discussion

presented above) lead to optimal centralized allocations. This suggests that

the outcome function must induce price taking behavior for all users at all

NE. If price taking behavior is achieved, then, through NE price control,

the mechanism can induce users to take actions that are optimal for their

own objective and for the centralized problem (PC). As discussed in the

previous paragraph, a user should make a payment for the actions of each

of its neighbors that affect its utility. In order for the mechanism to induce

price taking behavior, the NE price that a user i ∈ N pays for its neighbors’

actions must depend only on the messages/proposals of users other than i.

Thus, the NE tax of user i, i ∈ N , must be of the form
∑

j∈Ri
l∗ij â
∗
j where â∗j

is the NE action of user j and l∗ij is the NE price of this action for user i that

is independent of user i’s message. With the NE tax form
∑

j∈Ri
l∗ij â
∗
j , each

user i ∈ N can influence its NE aggregate utility only through the actions

â∗j , j ∈ Ri. Since each user’s utility is its private information, the utility

28



maximizing actions of a user are known only to that user. Therefore, to

allow each user to obtain its utility maximizing actions at given NE prices,

the outcome function must provide each user i ∈ N an independent control,

through its action proposal, over each of the actions â∗j , j ∈ Ri. In other

words, each action â∗j , j ∈ N , must be independently controlled by each of

the users i ∈ Cj and this fact should be reflected in the form of the outcome

function.

To achieve budget balance, the NE prices l∗ij, j ∈ Ri, i ∈ N , must satisfy∑
i∈N

∑
j∈Ri

l∗ij â
∗
j = 0,

or, equivalently, 17 ∑
j∈N

∑
i∈Cj

l∗ij â
∗
j = 0. (8)

One way to satisfy the requirement in (8) is to set for each j ∈ N ,
∑

i∈Cj l
∗
ij =

0.

The features of the outcome function discussed so far could lead to price

taking behavior and budget balance. However, the construction of an out-

come function with the above features only may lead to the following diffi-

culty. Since each user knows that its price proposal does not affect its own

tax and hence, its aggregate utility, it may propose arbitrary prices for its

neighbors in its price proposal. One way to overcome this difficulty with-

out altering price taking behavior and budget balance is to add a penalty

to the tax form of each user. To preserve the price taking behavior of the

17From the construction of the graph matrix G and the sets Ri and Cj , i, j ∈ N , the

sum
∑

i∈N
∑

j∈Ri
(·) is equivalent to the sum

∑
j∈N

∑
i∈Cj (·).
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users at NE, this penalty should be imposed only at off NE messages. The

penalty should depend on each user’s own price proposal and it should in-

crease with the user’s price proposal. However, to avoid unnecessary penal-

ties, the penalty of a user should be reduced if its action proposal for its

neighbors is in agreement with other users’ action proposals. Adding to the

tax form a penalty term with the above characteristics may result in an un-

balanced budget. To preserve budget balance a third term should be added

to the tax of each user. This term must balance the net flow of the money

due to the penalty term. Since the penalty is imposed on the users only at off

NE messages, this balancing term should be included in the users’ tax only

at off NE messages. To prevent the balancing term from altering a user’s

strategic behavior that is governed by the first two terms in the user’s tax,

the balancing term should be independent of the user’s own message.

To achieve individual rationality the outcome function must make sure

that at all NE, the utility of each user is at least as much as its initial utility.

This property is achieved if the outcome function has the following features

discussed earlier in this section: (i) It induces price taking behavior; and (ii) It

gives each user an independent control over the actions that affect its utility.

Since each user can control the actions that affect its NE utility, for any set of

NE prices l∗ij, j ∈ Ri, a user i ∈ N can force all the actions â∗j , j ∈ Ri, to be 0,

thereby also making its NE payment
∑

j∈Ri
l∗ij â
∗
j = 0. Thus, with the above

features of the outcome function, each user can independently guarantee a

minimum of zero utility for itself which is its initial utility.

With the guidelines developed above, we proceed with the construction

of a game form in the next section.
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3.3. A game form

In this section we present a game form for the resource allocation prob-

lem presented in Section 2.3. We provide explicit expressions of each of the

components of the game form, the message space and the outcome function.

The construction of these components is motivated by the arguments pre-

sented in the previous section. We assume that the game form is common

knowledge among the users and the network operator.

The message space:

We let each user i ∈ N send to the network operator a message mi ∈
Mi := R|Ri| × R|Ri|

+ that has the following form:

mi := ( ai Ri
, πi Ri

); ai Ri
∈ R|Ri|, πi Ri

∈ R|Ri|
+ , (9)

where,

ai Ri
:= ( ai k)k∈Ri

and πi Ri
:= ( πi k)k∈Ri

, i ∈ N . (10)

User i also sends the component ( ai k, π
i

k), k ∈ Ri, of its message to its

neighbor k ∈ Ri. In this message, ai k is the action proposal for user k, k ∈ Ri,

by user i, i ∈ N . Similarly, πi k is the price that user i, i ∈ N , proposes to pay

for the action of user k, k ∈ Ri. A detailed interpretation of these message

elements is given in Section 3.4.

The outcome function:

After the users communicate their messages to the network operator,

their actions and taxes are determined as follows. For each user i ∈ N ,

the network operator determines the action âi of user i from the messages
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communicated by its neighbors that are affected by it (set Ci), i.e. from the

message profile mCi := (mk)k∈Ci :

âi(mCi) =
1

|Ci|
∑
k∈Ci

ak i, i ∈ N . (11)

To determine the users’ taxes the network operator considers each set Cj,
j ∈ N , and assigns indices 1, 2, . . . , |Cj| in a cyclic order to the users in Cj.
Each index 1, 2, . . . , |Cj| is assigned to an arbitrary but unique user i ∈ Cj.
Once the indices are assigned to the users in each set Cj, j ∈ N , they remain

fixed throughout the time period of interest. We denote the index of user

i ∈ N associated with set Cj, j ∈ N , by Iij. The index Iij ∈ {1, 2, . . . , |Cj|}
if i ∈ Cj, and Iij = 0 if i /∈ Cj. Since each index 1, 2, . . . , |Cj| is assigned

to a unique user i ∈ Cj, for each Cj, j ∈ N , Iij 6= Ikj ∀ i, k ∈ Cj; i 6= k.

Note also that for any user i ∈ N , and any j, k ∈ Ri, the indices Iij and Iik
are not necessarily the same and are independent of each other. We denote

the user with index k ∈ {1, 2, . . . , |Cj|} in set Cj by Cj(k). Thus, Cj(Iij) = i

for i ∈ Cj, j ∈ N . The cyclic order indexing means that, if Iij = |Cj|, then

Cj(Iij+1) = Cj(1), Cj(Iij+2) = Cj(2), and so on. In Fig. 4 we illustrate the above

indexing rule for the set Cj shown in Fig. 1.

Based on the indexing described above, the users’ taxes are determined

as follows. For each i ∈ N , the tax t̂i is determined from the message profile

(mCj)j∈Ri
as,

t̂i((mCj)j∈Ri
) =

∑
j∈Ri

lij(mCj) âj(mCj) +
∑
j∈Ri

πi j

(
ai j − a

Cj(Iij+1)

j

)2
−
∑
j∈Ri

π
Cj(Iij+1)

j

(
a

Cj(Iij+1)

j − a
Cj(Iij+2)

j

)2
, i ∈ N ,

(12)
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Set Cj

i
j

h

k

l

p

1

2

3

4

5

0

Ilj = 3
Cj(3) = l

Ijj = 4
Cj(4) = j

Iij = 5
Cj(5) = i

Ikj = 2
Cj(2) = k

Ihj = 1 = Iij + 1
Cj(1) = h

Ipj = 0

Figure 4: Illustration of indexing rule for set Cj shown in Fig. 1. The index Irj of each

user r ∈ Cj is indicated on the arrow directed from user j to user r. The notation to

denote these indices and to denote the user with a particular index is shown outside the

dashed boundary demarcating the set Cj .

where,

lij(mCj) = π
Cj(Iij+1)

j − π
Cj(Iij+2)

j, j ∈ Ri, i ∈ N . (13)

The game form given by (9)–(13) and the users’ aggregate utility functions

in (2) induce a game (M, f, {uAi }i∈N ). We define a NE of this game as a

message profile m∗N that has the following property:

uAi

((
âj(m

∗
Cj)
)
j∈Ri

, t̂i
(
(m∗Cj)j∈Ri

))
≥

uAi

((
âj(mi,m

∗
Cj/i)

)
j∈Ri

, t̂i
(
(mi,m

∗
Cj/i)j∈Ri

))
, ∀mi ∈Mi, ∀ i ∈ N .

(14)

We interpret the NE defined in (14) in the way of (Groves and Ledyard,

1987, Section 4, page 69) and (Reichelstein and Reiter, 1988, page 664) as

described below. NE in general describe strategic behavior of users in games

of complete information. This can be seen from (14) where, to define the

NE, it requires complete information of all users’ aggregate utility functions.
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However, the users in Model (M) do not know each other’s utilities; there-

fore, the game (M, f, {uAi }i∈N ) induced by the game form given in (9)–(13)

and the users’ aggregate utility functions in (2) is not one of complete in-

formation. We can create a game of complete information by increasing the

message/strategy space following Maskin’s approach Maskin. However, such

an approach would result in an infinite dimensional message/strategy space

for the corresponding game. We do not follow Maskin’s approach; instead,

we adopt the interpretation of Groves and Ledyard (1987) and Reichelstein

and Reiter (1988). Specifically, by quoting Reichelstein and Reiter (1988),

“we interpret our analysis as applying to an unspecified (message exchange)

process in which users grope their way to a stationary message and in which

the Nash property (14) is a necessary condition for stationarity.” Alterna-

tively, by quoting Groves and Ledyard (1987), “we do not suggest that each

user knows all of system environment when it computes its message. We do

suggest, however, that the complete information Nash game-theoretic equi-

librium messages may be the possible stationary messages of some unspecified

dynamic message exchange process”.

In the next section we show that the allocations obtained by the game

form presented in (9)–(13) at all NE message profiles (satisfying (14)), are

optimal centralized allocations.

3.4. Properties of the game form

We begin this section with an intuitive discussion on how the game form

presented in Section 3.3 achieves optimal centralized allocations. We then

formalize the results in Theorems 1 and 2.

To understand how the proposed game form achieves optimal centralized
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allocations, let us look at the properties of NE allocations corresponding

to this game form. A NE of the game induced by the game form (9)–(13)

and the users’ utility functions (2) can be interpreted as follows: Given the

users’ messages mk, k ∈ Ci, the outcome function computes user i’s action as

1/|Ci|
(∑

k∈Ci ak i

)
. Therefore, user i’s action proposal ai i can be interpreted

as the increment over the sum of other users’ action proposals for i that i

desires so as to bring its allocated action âi to its own desired value. Thus, if

the computed action for i based on the neighbors’ proposals does not lie in

Ai, user i can propose an appropriate action ai i and bring its allocated action

within Ai. The flexibility of proposing any action ai i ∈ R gives each user

i ∈ N the capability to bring its allocation âi within its feasible set Ai by

unilateral deviation. Therefore, at any NE, âi ∈ Ai, ∀ i ∈ N . By taking the

sum of taxes in (12) it can further be seen, after some computations, that the

allocated tax profile (t̂i)i∈N satisfies (1) (even at off-NE messages). 18 Thus,

all NE allocations
(

(âi(m
∗
Ci))i∈N , (t̂i((m

∗
Cj)j∈Ri

))i∈N

)
lie in D and hence are

feasible solutions of Problem (PC).

To see further properties of NE allocations, let us look at the tax function

in (12). The tax of user i consists of three types of terms. The type-1 term is∑
j∈Ri

lij(mCj) âj(mCj); it depends on all action proposals for each of user i’s

neighbors j ∈ Ri, and the price proposals for each of these neighbors by users

other than user i. The type-2 term is
∑

j∈Ri
πi j

(
ai j − a

Cj(Iij+1)

j

)2
; this term

depends on ai Ri
as well as πi Ri

. Finally, the type-3 term is the following:

−∑j∈Ri
π

Cj(Iij+1)

j

(
a

Cj(Iij+1)

j − a
Cj(Iij+2)

j

)2
; this term depends only on the

18For details refer to Appendix Appendix A.
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messages of users other than i. Since πi Ri
does not affect the determination

of user i’s action, and affects only the type-2 term in t̂i, the NE strategy of

user i, i ∈ N , that minimizes its tax is to propose for each j ∈ Ri, π
i

j = 0

unless at the NE, ai j = a
Cj(Iij+1)

j. Since the type-2 and type-3 terms in the

users’ tax are similar across users, for each i ∈ N and j ∈ Ri, all the users

k ∈ Cj choose the above strategy at NE. Therefore, the type-2 and type-3

terms vanish from every users’ tax t̂i, i ∈ N , at all NE. Thus, the tax that

each user i ∈ N pays at a NE m∗N is of the form
∑

j∈Ri
lij(m

∗
Cj) âj(m

∗
Cj).

The NE term lij(m
∗
Cj), i ∈ N , j ∈ Ri, can therefore be interpreted as the

“personalized price” for user i for the NE action âj(m
∗
Cj) of its neighbor

j. Note that at a NE, the personalized price for user i is not controlled

by i’s own message. The reduction of the users’ NE taxes into the form∑
j∈Ri

lij(m
∗
Cj) âj(m

∗
Cj) implies that at a NE, each user i ∈ N has a control

over its aggregate utility only through its action proposal. 19 If all other users’

messages are fixed, each user has the capability of shifting the allocated action

profile âRi
to its desired value by proposing an appropriate ai Ri

∈ R|Ri| (See

the discussion in the previous paragraph). Therefore, the NE strategy of each

user i ∈ N is to propose an action profile ai Ri
that results in an allocation

âRi
that maximizes its aggregate utility. Thus, at a NE, each user maximizes

its aggregate utility for its given personalized prices. By the construction of

the tax function, the sum of the users’ tax is zero at all NE and off equilibria.

Thus, the individual aggregate utility maximization of the users also result

in the maximization of the sum of users’ aggregate utilities subject to the

19Note that user i’s action proposal determines the actions of all the users j ∈ Ri; thus,

it affects user i’s utility ui

((
âj(m

∗
Cj )
)
j∈Ri

)
as well as its tax

∑
j∈Ri

lij(m
∗
Cj ) âj(m

∗
Cj ).
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budget balance constraint which is the objective of Problem (PC).

It is worth mentioning at this point the significance of type-2 and type-3

terms in the users’ tax. As explained above, these two terms vanish at NE.

However, if for some user i ∈ N these terms are not present in its tax t̂i, then,

the price proposal πi Ri
of user i will not affect its tax and hence, its aggregate

utility. In such a case, user i can propose arbitrary prices πi Ri
because they

would affect only other users’ NE prices. The presence of type-2 and type-3

terms in user i’s tax prevent such a behavior as they impose a penalty on user

i if it proposes a high value of πi Ri
or if its action proposal for its neighbors

deviates too much from other users’ proposals. Even though the presence of

type-2 and type-3 terms in user i’s tax is necessary as explained above, it is

important that the NE price lij(m
∗
Cj), j ∈ Ri of user i ∈ N is not affected by

i’s own proposal πi Ri
. This is because, in such a case, user i may influence

its own NE price in an unfair manner and may not behave as a price taker.

To avoid such a situation, the type-2 and type-3 terms are designed in a

way so that they vanish at NE. Thus, this construction induces price taking

behavior in the users at NE and leads to optimal allocations.

From all of above discussion it can be seen that the proposed message

space, the action function, and the tax function (with three types of terms)

satisfy the features, discussed in Section 3.2, that are required to achieve

the properties of Nash implementation, individual rationality, and budget

balance.

The results that formally establish the above properties of the game form

are summarized in Theorems 1 and 2 below.

Theorem 1. Let m∗N be a NE of the game induced by the game form pre-
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sented in Section 3.3 and the users’ utility functions (2). Let (â∗N , t̂
∗
N ) :=

(âN (m∗N ), t̂N (m∗N )) :=
(

(âi(m
∗
Ci))i∈N , (t̂i((m

∗
Cj)j∈Ri

))i∈N

)
be the action

and tax profiles at m∗N determined by the game form. Then,

(a) Each user i ∈ N weakly prefers its allocation (â∗Ri
, t̂∗i ) to the initial

allocation (0, 0). Mathematically,

uAi

(
â∗Ri

, t̂∗i

)
≥ uAi

(
0, 0

)
, ∀ i ∈ N .

(b) (â∗N , t̂
∗
N ) is an optimal solution of Problem (PC).

�

Theorem 2. Let â∗N be an optimum action profile corresponding to Prob-

lem (PC). Then,

(a) There exist a set of personalized prices l∗ij, j ∈ Ri, i ∈ N , such that

â∗Ri
= arg max

âi∈Ai
âj∈R, j∈Ri\{i}

−
∑
j∈Ri

l∗ij âj + ui(âRi
), ∀ i ∈ N .

(b) There exists at least one NE m∗N of the game induced by the game

form presented in Section 3.3 and the users’ utility functions (2) such

that, âN (m∗N ) = â∗N . Furthermore, if t̂∗i :=
∑

j∈Ri
l∗ij â
∗
j , i ∈ N , the

set of all NE m∗N = (m∗i )i∈N = ( ai ∗Ri
, πi ∗Ri

) that result in (â∗N , t̂
∗
N ) is

characterized by the solution of the following set of conditions:

1

|Ci|
∑
k∈Ci

ak ∗i = â∗i , i ∈ N ,

Cj(Iij+1)π∗j − Cj(Iij+2)π∗j = l∗ij, j ∈ Ri, i ∈ N ,

πi ∗j

(
ai ∗j − Cj(Iij+1)a∗j

)2
= 0, j ∈ Ri, i ∈ N ,

πi ∗j ≥ 0, j ∈ Ri, i ∈ N .
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Because Theorem 1 is stated for an arbitrary NEm∗N of the game induced

by the game form presented in Section 3.3 and the users’ utility functions

(2), the assertion of the theorem holds for all NE of this game.

Part (a) of Theorem 1 establishes that the game form presented in Sec-

tion 3.3 is individually rational, i.e., at any NE allocation, the aggregate

utility of each user is at least as much as its aggregate utility before partici-

pating in the game/allocation process. Because of this property of the game

form, each user voluntarily participates in the allocation process.

Part (b) of Theorem 1 asserts that all NE of the game induced by the

game form presented in Section 3.3 and the users’ utility functions (2) result

in optimal centralized allocations (solutions of Problem (PC)). Thus the

set of NE allocations is a subset of the set of centralized allocations. This

establishes that the game form presented in Section 3.3 implements in NE the

goal correspondence γ defined by Problem (PC) (see Section 3.1). Because of

this property, the game form guarantees to provide a centralized allocation

irrespective of which NE is achieved in the game induced by the game form.

The assertion of Theorem 1 that establishes the above two properties of

the game form is based on the assumption that there exists a NE of the game

induced by the game form of Section 3.3 and the users’ utility functions (2).

However, Theorem 1 does not say anything about the existence of NE.

Theorem 2 asserts that NE exist in the above game, and provides con-

ditions that characterize the set of all NE that result in optimal centralized

allocations of the form (â∗N , t̂
∗
N ) = (â∗N , (

∑
j∈Ri

l∗ij â
∗
j)i∈N ), where â∗N is any

optimal centralized action profile.
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Theorem 2 also establishes the following property of the game form. Since

the optimal action profile â∗N in the statement of Theorem 2 is arbitrary, the

theorem implies that the game form of Section 3.3 can obtain each of the

optimum action profiles of Problem (PC) through at least one of the NE of

the induced game. This establishes that the above game form is not biased

towards any particular optimal centralized action profile.

We present the proofs of Theorem 1 and Theorem 2 in Appendices Ap-

pendix A and Appendix B respectively.

In the next section we present a discussion on how the game form of

Section 3.3 can be implemented in a real system and we also discuss the

limitations associated with it.

3.5. Implementation of the game form

In this section we discuss two aspects of implementation of the decentral-

ized mechanism specified by the game form of Section 3.3. First we discuss

how the game form itself can be implemented, i.e., how the message commu-

nication and the determination of allocations specified by the game form can

be carried out in a real system. We then discuss how NE can be achieved in

the game induced by the above game form.

We will show below that the presence of a network operator is important

for the implementation of the game form. To see this let us first suppose

that the network operator is not present in the network. As discussed in

Section 3.3 the outcome function specifies the allocation (âi, t̂i) for a user

i ∈ N based on its neighbors’ messages. Since the game form is common

knowledge among the users, if each user announces its messages to all its

neighbors, every user can have the required set of messages to compute its

40



own allocations. However, with this kind of local communication, the mes-

sages required to compute user i’s allocation are not necessarily known to

users other than i. Therefore, even though the other users know the outcome

function for user i, no other user can check if the allocation determined by

user i corresponds to its neighbors’ messages. Since each user i ∈ N is selfish,

it cannot be relied upon for the determination of its allocation. Therefore, in

large-scale systems such as one represented by Model (M), where each user

does not hear all other users’ messages, the presence of a network operator is

extremely important. The network operator’s role is twofold. First, accord-

ing to the specification of the game form (of Section 3.3) each user announces

its messages to its neighbors as well as to the network operator. The net-

work operator knows the network structure (Assumption 7) and the outcome

function for each user. Thus, it can compute all the allocations based on the

messages it receives, and then it can tell each user its corresponding allo-

cation (or it can check whether the allocation (a∗i , t
∗
i ) implemented by user

i, i ∈ N , is the same as that specified by the mechanism). The other role of

the network operator that facilitates implementation of the game form is the

following. Note that the game form specifies redistribution of money among

the users by charging each user an appropriate positive or negative tax (see

(1)). This means that the tax money must go from one subset of the users

to the other subset of users. Since the users do not have complete network

information, nor do they know the allocations of other users in the network,

they cannot determine the appropriate flow of money in the network. The

network operator implements this redistribution of money by acting as an

accountant that collects money from the users who must pay positive tax
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according to the game form and gives the money back to the users who must

receive subsidies (negative tax).

The discussion presented above shows how the game form of Section 3.3

can be implemented in the presence of a network operator. However, to

achieve the properties of the game form described by Theorems 1 and 2, we

need a method to obtain NE of the game induced by this game form. Even

though the above game form achieves implementation in NE, at present we

do not have an algorithm for the computation of these equilibria. For our

problem, best response dynamics do not guarantee convergence to NE be-

cause the games induced by the proposed game form are not, in general,

supermodular. For this reason, in this paper we restricted our focus to equi-

librium analysis of the proposed mechanism. In Section 4 we discuss a few

approaches for the development of efficient mechanisms that can compute

NE.

4. Future directions

The problem formulation and the solution of the resource allocation prob-

lem for local public good networks presented in this paper open up several

new directions for future research. First, as discussed in the previous sec-

tion, the development of efficient mechanisms that can compute NE is an

important open problem. To address this problem there can be two different

directions for future research. (i) The development of algorithms that con-

verge to NE of game forms that implement the social welfare correspondence

of the local public goods provision problem. (ii) The development of alterna-

tive mechanisms/game forms that lead to supermodular games. Second, the
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network model we studied in this paper assumed a given set of users and a

given network topology. In many local public good networks such as social or

research networks, the set of network users and the network topology must

be determined as part of network objective maximization. These situations

give rise to interesting admission control and network formation problems

many of which are open research problems. Finally, in this paper we focused

on static resource allocation problem where the system characteristics do not

change with time. The development of implementation mechanisms for local

public good networks under dynamic situations, where the system character-

istics change during the determination of resource allocation, are important

research problems. Resource allocation mechanisms for these systems must

take into account the dynamics of the system and can be addressed using

dynamic game theory and dynamic mechanism design.

In the appendices that follow, we present the proof of Theorems 1 and 2.

We divide the proof into several claims to organize the presentation.

Appendix A. Proof of Theorem 1

We prove Theorem 1 in four claims. In Claims 2 and 3 we show that all

users weakly prefer a NE allocation (corresponding to the game form pre-

sented in Section 3.3) to their initial allocations; these claims prove part (a)

of Theorem 1. In Claim 1 we show that a NE allocation is a feasible solution

of Problem (PC). In Claim 4 we show that a NE action profile is an optimal

action profile for Problem (PC). Thus, Claim 1 and Claim 4 establish that a

NE allocation is an optimal solution of Problem (PC) and prove part (b) of

Theorem 1.
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Claim 1. If m∗N is a NE of the game induced by the game form presented in

Section 3.3 and the users’ utility functions (2), then the action and tax profile

(â∗N , t̂
∗
N ) := (âN (m∗N ), t̂N (m∗N )) is a feasible solution of Problem (PC), i.e.

(â∗N , t̂
∗
N ) ∈ D.

Proof:

We prove the feasibility of the NE action and tax profiles in two steps.

First we prove the feasibility of the NE tax profile, then we prove the feasi-

bility of the NE action profile.

To prove the feasibility of NE tax profile, we need to show that it satisfies

(1). For this, we first take the sum of second and third terms on the Right

Hand Side (RHS) of (12) over all i ∈ N , i.e.∑
i∈N

∑
j∈Ri

[
πi j

(
ai j − a

Cj(Iij+1)

j

)2
− π
Cj(Iij+1)

j

(
a

Cj(Iij+1)

j − a
Cj(Iij+2)

j

)2 ]
.

(A.1)

From the construction of the graph matrix G and the setsRi and Cj, i, j ∈ N ,

the sum
∑

i∈N
∑

j∈Ri
(·) is equal to the sum

∑
j∈N

∑
i∈Cj(·). Therefore, we

can rewrite (A.1) as∑
j∈N

[∑
i∈Cj

πi j

(
ai j − a

Cj(Iij+1)

j

)2
−
∑
i∈Cj

π
Cj(Iij+1)

j

(
a

Cj(Iij+1)

j − a
Cj(Iij+2)

j

)2 ]
.

(A.2)

Note that both the sums inside the square brackets in (A.2) are over all

i ∈ Cj. Because of the cyclic indexing of the users in each set Cj, j ∈ N ,

these two sums are equal. Therefore the overall sum in (A.2) evaluates to

zero. Thus, the sum of taxes in (12) reduces to∑
i∈N

t̂i((mCj)j∈Ri
) =

∑
i∈N

∑
j∈Ri

lij(mCj) âj(mCj). (A.3)
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Combining (13) and (A.3) we obtain

∑
i∈N

t̂i((mCj)j∈Ri
) =

∑
j∈N

[∑
i∈Cj

π
Cj(Iij+1)

j −
∑
i∈Cj

π
Cj(Iij+2)

j

]
âj(mCj) = 0. (A.4)

The second equality in (A.4) follows because of the cyclic indexing of the users

in each set Cj, j ∈ N , which makes the two sums inside the square brackets

in (A.4) equal. Because (A.4) holds for any arbitrary message profile mN , it

follows that at NE m∗N , ∑
i∈N

t̂i((m
∗
Cj)j∈Ri

) = 0. (A.5)

To complete the proof of Claim 1, we have to prove that for all i ∈ N ,

âi(m
∗
Ci) ∈ Ai. We prove this by contradiction. Suppose â∗i /∈ Ai for some i ∈

N . Then, from (2), uAi (â∗Ri
, t̂∗i ) = −∞. Consider m̃i = (( ãi i, a

i ∗
Ri
/i), πi ∗Ri

)

where ai ∗k, k ∈ Ri\{i}, and πi ∗Ri
are respectively the NE action and price

proposals of user i and ãi i is such that

âi(m̃i,m
∗
Ci/i) =

1

|Ci|
(
ãi i +

∑
k∈Ci
k 6=i

ak ∗i

)
∈ Ai. (A.6)

Note that the flexibility of user i in choosing any message ai Ri
∈ R|Ri| (see

(9)) allows it to choose an appropriate ãi i that satisfies the condition in (A.6).

For the message m̃i constructed above,

uAi

((
âk(m̃i,m

∗
Ck/i)

)
k∈Ri

, t̂i
(
(m̃i, m

∗
Cj/i)j∈Ri

))
=− t̂i

(
(m̃i, m

∗
Cj/i)j∈Ri

)
+ ui

((
âk(m̃i,m

∗
Ck/i)

)
k∈Ri

)
>−∞ = uAi (â∗Ri

, t̂∗i ).

(A.7)

Thus if âi(m
∗
Ci) /∈ Ai user i finds it profitable to deviate to m̃i. Inequal-

ity (A.7) implies that m∗N cannot be a NE, which is a contradiction. There-
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fore, at any NE m∗N , we must have âi(m
∗
Ci) ∈ Ai ∀ i ∈ N . This along with

(A.5) implies that, (â∗N , t̂
∗
N ) ∈ D. �

Claim 2. If m∗N is a NE of the game induced by the game form presented in

Section 3.3 and the users’ utility functions (2), then, the tax t̂i((m
∗
Cj)j∈Ri

) =:

t̂∗i paid by user i, i ∈ N , at the NE m∗N is of the form t̂∗i =
∑

j∈Ri
l∗ij â

∗
j , where

l∗ij = lij(m
∗
Cj) and â∗j = âj(m

∗
Cj).

Proof:

Let m∗N be the NE specified in the statement of Claim 2. Then, for each

i ∈ N ,

uAi

((
âk(mi,m

∗
Ck/i)

)
k∈Ri

, t̂i
(
(mi, m

∗
Cj/i)j∈Ri

))
≤ uAi

(
â∗Ri

, t̂∗i

)
, ∀mi ∈Mi.

(A.8)

Substituting mi = ( ai ∗Ri
, πi Ri

), πi Ri
∈ R|Ri|

+ , in (A.8) and using (11) implies

that

uAi

(
â∗Ri

, t̂i
(
(( ai ∗Ri

, πi Ri
), m∗Cj/i)j∈Ri

))
≤ uAi

(
â∗Ri

, t̂∗i

)
, ∀ πi Ri

∈ R|Ri|
+ .

(A.9)

Since uAi decreases in ti (see (2)), (A.9) implies that

t̂i

((
( ai ∗Ri

, πi Ri
), m∗Cj/i

)
j∈Ri

)
≥ t̂∗i , ∀ πi Ri

∈ R|Ri|
+ . (A.10)

Substituting (12) in (A.10) results in∑
j∈Ri

[
l∗ij â
∗
j + πi j

(
ai ∗j − Cj(Iij+1)a∗j

)2
− Cj(Iij+1)π∗j

(
Cj(Iij+1)a∗j − Cj(Iij+2)a∗j

)2 ]
≥
∑
j∈Ri

[
l∗ij â
∗
j + πi ∗j

(
ai ∗j − Cj(Iij+1)a∗j

)2
− Cj(Iij+1)π∗j

(
Cj(Iij+1)a∗j − Cj(Iij+2)a∗j

)2 ]
,

∀ πi Ri
∈ R|Ri|

+ .

(A.11)
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Canceling the common terms in (A.11) gives∑
j∈Ri

( πi j − πi ∗j )
(
ai ∗j − Cj(Iij+1)a∗j

)2
≥ 0, ∀ πi Ri

∈ R|Ri|
+ . (A.12)

Since (A.12) must hold for all πi Ri
∈ R|Ri|

+ , we must have that

for each j ∈ Ri, either πi ∗j = 0 or ai ∗j =
Cj(Iij+1)a∗j . (A.13)

From (A.13) it follows that at any NE m∗N ,

πi ∗j

(
ai ∗j − Cj(Iij+1)a∗j

)2
= 0, ∀ j ∈ Ri, ∀ i ∈ N . (A.14)

Note that (A.14) also implies that ∀ i ∈ N and ∀ j ∈ Ri,

Cj(Iij+1)π∗j

(
Cj(Iij+1)a∗j − Cj(Iij+2)a∗j

)2
= 0. (A.15)

(A.15) follows from (A.14) because for each i ∈ N , j ∈ Ri also implies that

j ∈ RCj(Iij+1)
. Using (A.14) and (A.15) in (12) we obtain that any NE tax

profile must be of the form

t̂∗i =
∑
j∈Ri

l∗ij â
∗
j , ∀ i ∈ N . (A.16)

�

Claim 3. The game form given in Section 3.3 is individually rational, i.e. at

every NE m∗N of the game induced by this game form and the users’ utilities

in (2), each user i ∈ N weakly prefers the allocation (â∗Ri
, t̂∗i ) to the initial

allocation (0, 0). Mathematically,

uAi

(
0, 0

)
≤ uAi

(
â∗Ri

, t̂∗i

)
, ∀ i ∈ N . (A.17)
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Proof:

Suppose m∗N is a NE of the game induced by the game form presented

in Section 3.3 and the users’ utility functions (2). From Claim 2 we know

the form of users’ tax at m∗N . Substituting that from (A.16) into (A.8) we

obtain that for each i ∈ N ,

uAi

((
âk(mi,m

∗
Ck/i)

)
k∈Ri

, t̂i
(
(mi, m

∗
Cj/i)j∈Ri

))
≤ uAi

(
â∗Ri

,
∑
j∈Ri

l∗ij â
∗
j

)
,

∀mi = ( ai Ri
, πi Ri

) ∈Mi.

(A.18)

Substituting for t̂i in (A.18) from (12) and using (A.15) we obtain,

uAi

((
âk
(
( ai Ri

, πi Ri
),m∗Ck/i

))
k∈Ri

,∑
j∈Ri

(
l∗ij âj

(
( ai Ri

, πi Ri
),m∗Cj/i

)
+ πi j

(
ai j − a

Cj(Iij+1)

j

)2))
≤ uAi

(
â∗Ri

,
∑
j∈Ri

l∗ij â
∗
j

)
, ∀ ai Ri

∈ R|Ri|, ∀ πi Ri
∈ R|Ri|

+ .

(A.19)

In particular, πi Ri
= 0 in (A.19) implies that

uAi

((
âk
(
( ai Ri

,0),m∗Ck/i
))

k∈Ri

,
∑
j∈Ri

(
l∗ij âj

(
( ai Ri

,0),m∗Cj/i
)))

≤ uAi

(
â∗Ri

,
∑
j∈Ri

l∗ij â
∗
j

)
, ∀ ai Ri

∈ R|Ri|.

(A.20)

Since (A.20) holds for all ai Ri
∈ R|Ri|, substituting 1

|Cj |( a
i

j +
∑

k∈Cj\{i} ak j) =

aj for all j ∈ Ri in (A.20) gives

uAi

((
aj
)
j∈Ri

,
∑
j∈Ri

(
l∗ij aj

))
≤ uAi

(
â∗Ri

,
∑
j∈Ri

l∗ij â
∗
j

)
, ∀ aRi

:= (aj)j∈Ri
∈ R|Ri|.

(A.21)

48



For aRi
= 0, (A.21) implies further that

uAi

(
0, 0

)
≤ uAi

(
â∗Ri

,
∑
j∈Ri

l∗ij â
∗
j

)
, ∀ i ∈ N . (A.22)

�

Claim 4. A NE allocation (â∗N , t̂
∗
N ) is an optimal solution of the centralized

problem (PC).

Proof:

For each i ∈ N , (A.21) can be equivalently written as

â∗Ri
∈ arg max
aRi
∈R|Ri|

uAi

(
aRi

,
∑
j∈Ri

l∗ij aj

)
= arg max

ai∈Ai
aj∈R, j∈Ri\{i}

{
−
∑
j∈Ri

l∗ij aj + ui(aRi
)

} (A.23)

Let for each i ∈ N , fAi
(ai) be a convex function that characterizes the set

Ai as, ai ∈ Ai ⇔ fAi
(ai) ≤ 0. 20

Since for each i ∈ N , ui(aRi
) is assumed to be concave in aRi

and the

set Ai is convex, the Karush Kuhn Tucker (KKT) conditions (Boyd and

Vandenberghe, 2004, Chapter 11) are necessary and sufficient for â∗Ri
to be

a maximizer in (A.23). Thus, for each i ∈ N ∃ λi ∈ R+ such that, â∗Ri
and

λi satisfy the KKT conditions given below:

∀ j ∈ Ri\{i}, l∗ij −∇ajui(aRi
) |aRi

=â∗Ri
= 0,

l∗ii −∇aiui(aRi
) |aRi

=â∗Ri
+λi∇aifAi

(ai) |ai=â∗i
= 0,

λifAi
(â∗i ) = 0.

(A.24)

20By Boyd and Vandenberghe (2004) we can always find a convex function that charac-

terizes a convex set.
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For each i ∈ N , adding the KKT condition equations in (A.24) over k ∈ Ci
results in∑

k∈Ci

l∗ki −∇ai

∑
k∈Ci

uk(aRk
) |aRk

=â∗Rk
+λi∇aifAi

(ai) |ai=â∗i
= 0. (A.25)

From (13) we have,∑
k∈Ci

l∗ki =
∑
k∈Ci

(Ci(Iki+1)π∗i − Ci(Iki+2)π∗i
)

= 0. (A.26)

Substituting (A.26) in (A.25) we obtain 21 ∀ i ∈ N ,

−∇ai

∑
k∈Ci

uk(aRk
) |aRk

=â∗Rk
+λi∇aifAi

(ai) |ai=â∗i
= 0,

λifAi
(â∗i ) = 0.

(A.27)

The conditions in (A.27) along with the non-negativity of λi, i ∈ N , specify

the KKT conditions (for variable âN ) for Problem (PC). Since (PC) is a

concave optimization problem, KKT conditions are necessary and sufficient

for optimality. As shown in (A.27), the action profile â∗N satisfies these opti-

mality conditions. Furthermore, the tax profile t̂∗N satisfies, by its definition,∑
i∈N t̂

∗
i = 0. Therefore, the NE allocation (â∗N , t̂

∗
N ) is an optimal solution

of Problem (PC). This completes the proof of Claim 4 and hence, the proof

of Theorem 1. �

Claims 1–4 (Theorem 1) establish the properties of NE allocations based

on the assumption that there exists a NE of the game induced by the game

form of Section 3.3 and users’ utility functions (2). However, these claims do

not guarantee the existence of a NE. This is guaranteed by Theorem 2 which

is proved next in Claims 5 and 6.

21The second equality in (A.27) is one of the KKT conditions from (A.24).
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Appendix B. Proof of Theorem 2

We prove Theorem 2 in two steps. In the first step we show that if the

centralized problem (PC) has an optimal action profile â∗N , there exist a set

of personalized prices, one for each user i ∈ N , such that when each i ∈ N
individually maximizes its own utility taking these prices as given, it obtains

â∗Ri
as an optimal action profile. In the second step we show that the optimal

action profile â∗N and the corresponding personalized prices can be used to

construct message profiles that are NE of the game induced by the game

form of Section 3.3 and users’ utility functions in (2).

Claim 5. If Problem (PC) has an optimal action profile â∗N , there exist a

set of personalized prices l∗ij, j ∈ Ri, i ∈ N , such that

â∗Ri
∈ arg max

âi∈Ai
âj∈R, j∈Ri\{i}

−
∑
j∈Ri

l∗ij âj + ui(âRi
), ∀ i ∈ N . (B.1)

Proof:

Suppose â∗N is an optimal action profile corresponding to Problem (PC).

Writing the optimization problem (PC) only in terms of variable âN gives

â∗N ∈ arg max
âN

∑
i∈N

ui(âRi
)

s.t. âi ∈ Ai, ∀ i ∈ N .
(B.2)

As stated earlier, an optimal solution of Problem (PC) is of the form (â∗N , t̂N ),

where â∗N is a solution of (B.2) and t̂N ∈ RN is any tax profile that satisfies

(1). Because KKT conditions are necessary for optimality, the optimal solu-

tion in (B.2) must satisfy the KKT conditions. This implies that there exist
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λi ∈ R+, i ∈ N , such that for each i ∈ N , λi and â∗N satisfy

−∇âi

∑
k∈Ci

uk(âRk
) |âRk

=â∗Rk
+λi∇âifAi

(âi) |âi=â∗i
= 0,

λifAi
(â∗i ) = 0,

(B.3)

where fAi
(·) is the convex function defined in Claim 4. Defining for each

i ∈ N ,

l∗ij := ∇âjui(âRi
) |âRi

=â∗Ri
, j ∈ Ri\{i},

l∗ii := ∇âiui(âRi
) |âRi

=â∗Ri
−λi∇âifAi

(âi) |âi=â∗i
,

(B.4)

we get ∀ i ∈ N ,∑
k∈Ci

l∗ki = ∇âi

∑
k∈Ci

uk(âRk
) |âRk

=â∗Rk
−λi∇âifAi

(âi) |âi=â∗i
= 0. (B.5)

The second equality in (B.5) follows from (B.3). Furthermore, (B.4) implies

that ∀ i ∈ N ,

∀ j ∈ Ri\{i}, l∗ij −∇âjui(âRi
) |âRi

=â∗Ri
= 0,

l∗ii −∇âiui(âRi
) |âRi

=â∗Ri
+λi∇âifAi

(âi) |âi=â∗i
= 0.

(B.6)

The equations in (B.6) along with the second equality in (B.3) imply that

for each i ∈ N , â∗Ri
and λi satisfy the KKT conditions for the following

maximization problem:

max
âi∈Ai

âj∈R, j∈Ri\{i}

−
∑
j∈Ri

l∗ij âj + ui(âRi
) (B.7)

Because the objective function in (B.7) is concave (Assumption 3), KKT

conditions are necessary and sufficient for optimality. Therefore, we conclude

from (B.6) and (B.3) that,

â∗Ri
∈ arg max

âi∈Ai
âj∈R, j∈Ri\{i}

−
∑
j∈Ri

l∗ij âj + ui(âRi
), ∀ i ∈ N .
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Claim 6. Let â∗N be an optimal action profile for Problem (PC), let l∗ij, j ∈
Ri, i ∈ N , be the personalized prices corresponding to â∗N as defined in

Claim 5, and let t̂∗i :=
∑

j∈Ri
l∗ij â
∗
j , i ∈ N . Let m∗i := ( ai ∗Ri

, πi ∗Ri
), i ∈ N , be

a solution to the following set of relations:

1

|Ci|
∑
k∈Ci

ak ∗i = â∗i , i ∈ N , (B.8)

Cj(Iij+1)π∗j − Cj(Iij+2)π∗j = l∗ij, j ∈ Ri, i ∈ N , (B.9)

πi ∗j

(
ai ∗j − Cj(Iij+1)a∗j

)2
= 0, j ∈ Ri, i ∈ N , (B.10)

πi ∗j ≥ 0, j ∈ Ri, i ∈ N . (B.11)

Then, m∗N := (m∗1,m
∗
2, . . . ,m

∗
N) is a NE of the game induced by the game

form of Section 3.3 and the users’ utility functions (2). Furthermore, for

each i ∈ N , âi(m
∗
Ci) = â∗i , lij(m

∗
Cj) = l∗ij, j ∈ Ri, and t̂i((m

∗
Cj)j∈Ri

) = t̂∗i .

Proof:

Note that, the conditions in (B.8)–(B.11) are necessary for any NE m∗N

of the game induced by the game form of Section 3.3 and users’ utilities (2),

to result in the allocation (â∗N , t̂
∗
N ) (see (11), (13) and (A.14)). Therefore,

the set of solutions of (B.8)–(B.11), if such a set exists, is a superset of the

set of all NE corresponding to the above game that result in (â∗N , t̂
∗
N ). Below

we show that the solution set of (B.8)–(B.11) is in fact exactly the set of all

NE that result in (â∗N , t̂
∗
N ).

To prove this, we first show that the set of relations in (B.8)–(B.11) do

have a solution. Notice that (B.8) and (B.10) are satisfied by setting for each

i ∈ N , ak ∗i = â∗i ∀ k ∈ Ci. Notice also that for each j ∈ N , the sum over
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i ∈ Cj of the right hand side of (B.9) is 0. Therefore, for each j ∈ N , (B.9)

has a solution in iπ∗j , i ∈ Cj. Furthermore, for any solution iπ∗j , i ∈ Cj, j ∈ N ,

of (B.9), iπ∗j + c, i ∈ Cj, j ∈ N , where c is some constant, is also a solution of

(B.9). Consequently, by appropriately choosing c, we can select a solution of

(B.9) such that (B.11) is satisfied.

It is clear from the above discussion that (B.8)–(B.11) have multiple so-

lutions. We now show that the set of solutions m∗N of (B.8)–(B.11) is the

set of NE that result in (â∗N , t̂
∗
N ). From Claim 5, (B.1) can be equivalently

written as

â∗Ri
∈ arg max
âRi
∈R|Ri|

uAi

(
âRi

,
∑
j∈Ri

l∗ij âj

)
, i ∈ N . (B.12)

Substituting âj|Cj| −
∑

k∈Cj\{i}
ka∗j = iaj for each j ∈ Ri, i ∈ N , in (B.12)

we obtain

ai ∗Ri
∈ arg max

ai Ri
∈R|Ri|

uAi

(( 1

|Cj|
(
iaj +

∑
k∈Cj\{i}

ka∗j
))

j∈Ri

,

∑
j∈Ri

l∗ij
1

|Cj|
(
iaj +

∑
k∈Cj\{i}

ka∗j
))
, i ∈ N .

(B.13)

Because of (B.10), (B.13) also implies that

( ai ∗Ri
, πi ∗Ri

) ∈ arg max
( ai Ri

, πi Ri
)∈R|Ri|×R|Ri|

+

uAi

((
âj
(
(iaRi

, iπRi
), m∗Cj/i

))
j∈Ri

,

∑
j∈Ri

l∗ij âj
(
(iaRi

, iπRi
), m∗Cj/i

)
−
∑
j∈Ri

Cj(Iij+1)π∗j

(
Cj(Iij+1)a∗j − Cj(Iij+2)a∗j

)2)
,

i ∈ N .
(B.14)
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Furthermore, since uAi is strictly decreasing in the tax (see (2)), (B.14) also

implies the following:

( ai ∗Ri
, πi ∗Ri

) ∈ arg max
( ai Ri

, πi Ri
)∈R|Ri|×R|Ri|

+

uAi

((
âj
(
(iaRi

, iπRi
),m∗Cj/i

))
j∈Ri

,

∑
j∈Ri

l∗ij âj
(
(iaRi

, iπRi
),m∗Cj/i

)
+
∑
j∈Ri

iπj

(
iaj − Cj(Iij+1)a∗j

)2
−
∑
j∈Ri

Cj(Iij+1)π∗j

(
Cj(Iij+1)a∗j − Cj(Iij+2)a∗j

)2)
, i ∈ N .

(B.15)

Eq. (B.15) implies that, if the message exchange and allocation is done ac-

cording to the game form presented in Section 3.3, then user i, i ∈ N , maxi-

mizes its utility atm∗i when all other users j ∈ N\{i} choose their respective

messages m∗j , j ∈ N\{i}. This, in turn, implies that a message profile m∗N

that is a solution to (B.8)–(B.11) is a NE of the game induced by the afore-

mentioned game form and the users’ utilities (2). Furthermore, it follows

from (B.8)–(B.11) that the allocation at m∗N is

âi(m
∗
Ci) =

1

|Ci|
∑
k∈Ci

ak ∗i = â∗i , i ∈ N ,

lij(m
∗
Cj) =

Cj(Iij+1)π∗j − Cj(Iij+2)π∗j = l∗ij, j ∈ Ri, i ∈ N ,

t̂i
(
(m∗Cj)j∈Ri

)
=
∑
j∈Ri

lij(m
∗
Cj)âj(m

∗
Cj) + πi ∗j

(
ai ∗j − Cj(Iij+1)a∗j

)2
− Cj(Iij+1)π∗j

(
Cj(Iij+1)a∗j − Cj(Iij+2)a∗j

)2
=
∑
j∈Ri

l∗ij â
∗
i = t̂∗i , i ∈ N .

(B.16)

From (B.16) it follows that the set of solutions m∗N of (B.8)–(B.11) is exactly

the set of NE that result in (â∗N , t̂
∗
N ). This completes the proof of Claim 6

and hence the proof of Theorem 2. �
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