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Abstract. This is the final project for Prof. Bhargav Bhatt’s Math 613 in the Winter of 2015 at

the University of Michigan. The purpose of this paper is to prove a result of Grothendieck [Gro66]

showing, for a smooth scheme locally of finite type over C, the algebraic de Rham cohomology is
isomorphic to the singular cohomology (with C-coefficients) of its analytification. Our proof follows

the exposition in [EC14, Chapter 2], and it is heavily-influenced by [Gro66] and [Gil].

1. Introduction

On a smooth manifold X of real dimension n, the sheaves ΩkC∞,X of smooth k-forms on X give rise
to the smooth de Rham complex Ω•C∞,X , where the differential of the complex is the exterior derivative
d. Taking the global sections of the smooth de Rham complex gives the complex of abelian groups
Γ(X,Ω•C∞,X), and the k-th cohomology group Hk

dR(X/R) := Hk(Γ(X,Ω•C∞,X)) is called the de Rham
cohomology of X. The “classical” de Rham theorem provides an isomorphism between the de Rham
cohomology groups of X and the singular cohomology groups of X.

Theorem 1. Let X be a smooth manifold, then H∗dR(X/R)
'−→ H∗sing(X,R).

This isomorphism associates a cohomology class [ω] ∈ Hk
dR(X/R) with the functional Hk(X,R) → R

given by

[γ] 7→
∫
γ

ω.

Moreover, the complex of sheaves Ω•C∞,X is a resolution of the sheaf RX of locally constant R-valued
functions on X:

0→ RX → Ω0
C∞,X

d−→ Ω1
C∞,X

d−→ . . .
d−→ ΩnC∞,X → 0.

The Poincaré lemma implies that the ΩpC∞,X are acyclic (the key here is that, in this context, there

are partitions of unity). Therefore, the sheaf cohomology of X with coefficients in the constant sheaf
RX can be computed from the cohomologies of the complex Γ(X,Ω•C∞,X). This result is known as the
de Rham theorem.

Theorem 2. (Classical de Rham Theorem) Let X be a smooth manifold, then H∗(X,RX) ' H∗dR(X/R).

When one considers instead a complex manifold X of (complex) dimension n, we still have an iso-
morphism between sheaf cohomology H∗(X,CX) of the constant sheaf CX and the singular cohomology
H∗(X,C) with C-coefficients. However, the rest of the story becomes more complicated. As before, the
sheaves Ωpholo,X of holomorphic p-forms on X give rise to the holomorphic de Rham complex Ω•holo,X ,
where the differential of the complex is the ∂-operator. The holomorphic Poincaré lemma implies that
the holomorphic de Rham complex is a resolution of the sheaf CX of locally constant C-valued functions
by coherent analytic sheaves:

0→ CX → Ω0
holo,X

∂−→ Ω1
holo,X

∂−→ . . .
∂−→ Ωnholo,X → 0.
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In general1, the sheaves Ωpholo,X are not acyclic (this corresponds to the fact that there are no holomor-

phic partitions of unity on a complex manifold). Therefore, we cannot necessarily conclude that the
sheaf cohomology groups H∗(X,CX) coincide with the cohomology groups of the complex Γ(X,Ω•holo,X)
of global holomorphic forms. This problem disappears if we consider instead the hypercohomology
H∗(X,Ω•holo,X) of the holomorphic de Rham complex, which does indeed calculate H∗(X,CX); this in

turn is isomorphic to the singular cohomology group H∗(X,C) with C-coefficients.

Theorem 3. (Analytic de Rham Theorem) Let X be a complex manifold, then

H∗(X,Ω•holo,X) ' H∗(X,C).

In [Ser56], Serre provided a dictionary linking the world of complex manifolds with that of smooth
projective schemes over C. One may ask: what is the right notion of de Rham cohomology in the
latter context, and do we get analogues of the de Rham theorems? As before, the “right” de Rham
cohomology for a smooth scheme over C is the hypercohomology of the complex of sheaves of differ-
entials, where now the differentials are algebraic instead of holomorphic. In fact, [Ser56] provides a
natural map between this algebraic de Rham cohomology and the hypercohomology of the holomorphic
de Rham complex on the associated analytic space. For a projective scheme, we show that this is an
isomorphism (this is our Theorem 7).

The questions with which we are concerned in this paper is, when the smooth scheme over C is no
longer assumed to be projective, is there still an isomorphism between the algebraic de Rham coho-
mology and the singular cohomology of the analytification? The goal of this paper is to describe the
relationship between these two hypercohomologies, and ultimately to explain Grothendieck’s proof from
[Gro66] of this isomorphism. This will be an “algebraic” de Rham theorem, which we call Grothendieck’s
theorem.

2. Preliminaries

2.1. Complex Analytic Spaces. Let U ⊂ Cn be an open subset, and let OU be the sheaf of holo-
morphic functions on U . Take f1, . . . , fm ∈ OU (U), then the zero locus Z := {z ∈ U : f1(z) = . . . =
fm(z) = 0} carries a natural structure sheaf OZ := OU/IZ , where IZ is the corresponding sheaf of
ideals of Z. We say that (Z,OZ) is a complex analytic variety.

Just as a scheme over C can be viewed as a locally ringed space that locally looks like a complex
algebraic variety, a complex analytic space is a locally ringed space that locally looks like a complex
analytic variety. These will be one of our main objects of study. The relationships between schemes
over C and complex analytic spaces are detailed in e.g. [Ser56] or [sga71], but we will discuss briefly
some results that are needed for our purposes.

Definition 1. A complex analytic space (X,OX) is a locally ringed space in which every point has
an open neighbourhood that is isomorphic (as a locally ringed space) to a complex analytic variety.
That is, for any x ∈ X, there exists an open neighbourhood U of X so that (U,OU ) is isomorphic to a
complex analytic variety as locally ringed spaces. This isomorphism is called a local model at the point
x.

Often, the complex analytic space (X,OX) is denoted just by X, omitting the structure sheaf. When
referring to the sheaves of holomorphic differential forms on a complex analytic space X, we will denote
it by Ω∗X instead of Ω∗holo,X when it is clear from context that X is analytic.

1If X is a Stein manifold, then Cartan’s theorem B [EC14, Theorem 2.3.10] says that all coherent analytic sheaves
on X are acyclic. In particular, the sheaves of holomorphic differentials Ω∗

holo,X are acyclic, so the analytic de Rham

cohomology H∗(X,Ω•
holo,X) coincides with H∗(Γ(X,Ω•

holo,X)), which is analogous to the de Rham cohomology of the

real case.
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In the sequel, a scheme will refer to a scheme locally of finite type. Given a scheme X over C, there
is a natural way to construct an associated analytic space, denoted by Xan, which is called the ana-
lytification of X. We first construct the analytification when X is an affine scheme, and then proceed
to the general case.

Consider the affine scheme X = Spec C[x1, . . . , xn]/(f1, . . . , fm). The points of the analytification
Xan are the C-points of X, which is to say Xan = X(C) = {z ∈ Cn : f1(z) = . . . = fm(z) = 0}. The
structure sheaf OXan of Xan is precisely the sheaf of holomorphic functions on X(C), when viewed as
an analytic subset of Cn. Now, for an arbitrary scheme X, take any cover {Ui} of X by open affine
subsets and glue the locally ringed spaces {Uani } to produce the analytification Xan of X.

Example 1. Let X be an elliptic curve over C, i.e. the projective closure of an affine scheme of the
form Spec C[x, y]/(y2−f(x)) for some cubic polynomial f(x) ∈ C[x]. The analytification of the elliptic
curve

Xan =
{

[x : y : z] ∈ P2(C) : y2z = F (x, z)
}
,

where F (x, z) is the homogenization of f(x). This is a closed Riemann surface of genus 1, hence
diffeomorphic to a torus.

Furthermore, there is a natural morphism φ : Xan → X of locally ringed spaces, which induces a
pullback functor on sheaves. For a sheaf F on X, we will denote the pull-back by

Fan := φ∗F = φ−1F ⊗φ−1OX
OXan .

Results relating a scheme and its analytification, as well those discussing how sheaves behave under
this analytification procedure, are generally known as Serre’s GAGA theorems, referring to [Ser56].
Two such results will be useful for our purposes.

Theorem 4. Let X be a smooth projective scheme over C. The functor φ∗ is an equivalence between the
category of coherent sheaves of OX-modules on X and the category of coherent sheaves of OXan-modules
on Xan.

Proof. See [Ser56, Theorem 2, Theorem 3] �

Even better, there is a relationship between the cohomology of the coherent sheaf and the cohomology
of its pullback by the analytification functor.

Theorem 5. Let X be a smooth projective scheme over C and let F be a coherent sheaf on X, then
for any q ≥ 0, there is a natural isomorphism εq : Hq(X,F) −→ Hq(Xan,Fan).

Proof. See [Ser56, Theorem 1]. �

When X is a smooth projective scheme over C, the above theorem, along with the Hodge-to-de
Rham degeneration , will suffice to show that the algebraic and the analytic de Rham cohomologies
coincide. This is our Theorem 7.

2.2. Sheaves of differentials.

Definition 2. Let A be a finitely-generated reduced C-algebra. The module of Kähler differentials
Ω1
A/C is the A-module generated by the symbols {da : a ∈ A} module and the following relations:

(1) dc = 0 for c ∈ C.
(2) d(ab) = a · db+ b · da for a, b ∈ A.

There is a C-linear derivation d : A → Ω1
A/C with the universal property that any other C-linear

derivation A → M , where M is some A-module, factors through d : A → Ω1
A/C in a unique way. Let

ΩiA/C :=
∧i

Ω1
A/C, then the universal property shows that there are maps d : ΩiA/C → Ωi+1

A/C so that they

form a complex

A
d−→ Ω1

A/C
d−→ Ω2

A/C
d−→ Ω3

A/C
d−→ . . . (1)
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Definition 3. On the affine scheme X = Spec A, the sheaf of Kähler differentials is ΩX :=
(

Ω1
A/C

)∼
.

For a general scheme X, take any open affine cover and glue the sheaves of Kähler differentials on the
open affines to produce the sheaf Ω1

X . (See [Har77, Section 2.8] for a more intrinsic description of Ω1
X

on a general scheme.) Moreover, the complex of modules Eq. (1) induces a complex of sheaves (of
abelian groups, whose terms are coherent OX -modules2)

OX
d−→ Ω1

X
d−→ Ω2

X
d−→ Ω3

X
d−→ . . . , (2)

which is called the algebraic de Rham complex of X.

There are some important properties of the sheaf of Kähler differentials on a smooth scheme X: first,
Ω1
X is locally free of finite rank, hence coherent. Consequently, we can consider its analytification, along

with the analytification of its exterior powers. In fact, the analytification of the sheaf ΩqX/C =
∧q

Ω1
X/C

of Kähler q-forms is the sheaf ΩqXan of holomorphic q-forms on the analytic space Xan. See [Har77,
Section 2.8] for a careful discussion.

In Section 3, we will define the algebraic de Rham cohomology H∗dR(X/C) of a smooth scheme X
over C to be the hypercohomology of the algebraic de Rham complex. When X is an affine scheme, this
definition reduces to the cohomology of the complex Eq. (1). In the following example, we see that the
algebraic de Rham cohomology of an affine hyperelliptic curve coincides with the singular cohomology
with C-coefficients of its analytification.

Example 2. Let q(x) ∈ C[x] be any monic polynomial of degree e with no multiple roots, and let
A = C[x, y]/(y2 − q(x)). Then, X = Spec A is called an affine hyperelliptic curve of degree e. The
sheaf of differentials Ω1

X/C is a free A-module of rank 1 and the algebraic de Rham cohomology is

H0
dR(X/C) ' C and H1

dR(X/C) ' Ce−1.
A priori, the module of Kähler differentials is

Ω1
A/C =

A · dx+A · dy
(2ydy − q′(x)dx)

.

As q(x) has no double roots, q′(x) and q(x) are coprime, so there are polynomials a(x), b(x) ∈ C[x] so
that 1 = a(x)q(x) + b(x)q′(x). Let ω := a(x)ydx + 2b(x)dy, then we claim that Ω1

A/C = A · ω. To see

this, notice that
dx = a(x)q(x)dx+ b(x)q′(x)dx = a(x)y2dx+ 2b(x)ydy = yω

and

dy = a(x)q(x)dy + b(x)q′(x)dy = a(x)y2dx+ b(x)q′(x)dy =
1

2
a(x)yq′(x)dx+ b(x)q′(x)dy =

q′(x)

2
ω.

In this case, the algebraic de Rham complex is just A
d→ Ω1

A/C = Aω. The kernel of d is precisely

the constants C ⊂ A and the cokernel is the C-span of {ω, xω, . . . , xe−2ω}. Therefore, the algebraic de
Rham cohomology of X is

H∗dR(X/C) =

{
C, ∗ = 0

Ce−1, ∗ = 1.

If we are instead concerned with smooth projective schemes over C, we could compactify X to its
projective closure in P2(C) (by adding 1 or 2 points depending on the degree e) and then use excision to
compute the algebraic de Rham cohomology of the projective closure. (Alternatively, one could cover
the projective closure by open affines compute the algebraic de Rham cohomology in a Čech-style.)
Either way, we see that the algebraic de Rham cohomology of the projective closure also coincides with
the singular cohomology of its analytification, which is a closed Riemann surface of genus e−1

2 or e−2
2 ,

depending on the parity of the degree e.

2The algebraic de Rham complex is a complex of sheaves of abelian groups, where the morphisms are induced by the
derivation d : A → Ω1

A/C. Even though all of the terms of the complex are themselves coherent OX -modules, this is not

necessarily a complex of coherent OX -modules. See [Gil, Example 1] for a counterexample.
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3. Hypercohomology and Algebraic de Rham Cohomology

Let Shv(X) be the Grothendieck abelian category of sheaves of abelian groups on a locally ringed
space X. Denote by Shv(X)• the category of cochain complexes over Shv(X).

Definition 4. For F• ∈ Shv(X)•, the k-th cohomology sheaf of the complex F• is

H k(F•) := ker(Fk → Fk+1)/im(Fk−1 → Fk),

viewed as quotient of sheaves. That is, H k(F•) is the sheafification of the presheaf

U 7→ ker(Fk(U)→ Fk+1(U))

im(Fk−1(U)→ Fk(U))
.

Moreover, a map of complexes F• → G• is a quasi-isomorphism if the induced map on cohomology
sheaves H k(F•)→H k(G•) is an isomorphsim for all k.

Below we define the hypercohomology of a complex in a rather non-constructive manner and refer
the reader to [Wei94, Section 5.7] for its usual description as a collection of derived functors.

Definition 5. The k-th hypercohomology is a functor Hk(X,−) : Shv(X)• → Ab satisfying the follow-
ing two conditions:

(1) If f• : F• → G• is a quasi-isomorphism of complexes, then Hk(X, f•) is an isomorphism.
(2) If I• is a complex of injectives, then Hk(X, I•) = Hk(Γ(X, I•)).

As every complex of sheaves admits a quasi-isomorphism to a complex of injective sheaves, it follows
from the definition that the hypercohomology of any complex can be computed in terms of these
injectives. Indeed, if A• ∈ Shv(X)• and A• → I• is a quasi-isomorphism into some complex of
injectives I•, then

Hk(A•) ' Hk(I•) = Hk(Γ(X, I•)).
To compute hypercohomology, we can of course use the long exact sequence in cohomology associated

to a short exact sequence of complexes. However, it will often be more helpful to build a spectral
sequence abutting to the desired cohomology group. There are 2 natural such spectral sequences, and
at the moment we are concerned with just one of them.

Proposition 1. For any F• ∈ Shv(X)•, there are convergent spectral sequences

Ep,q1 = Hp(X,Fq)⇒ Hp+q(X,F•)

and

Ep,q2 = Hp(X,H q(F•))⇒ Hp+q(X,F•).

Proof. This is explained for a general abelian category in [Wei94, Section 5.7]. �

Definition 6. Let Ω•X be the algebraic de Rham complex on a smooth scheme X over C. The
algebraic de Rham cohomology H∗dR(X/C) is defined to be the hypercohomology of the algebraic de
Rham complex. That is,

Hk
dR(X/C) := Hk(X,Ω•X).

In this context, the E1-spectral sequence of Proposition 1 is called the Hodge-to-de Rham spectral
sequence, and it takes the form

E1
p,q = Hp(X,ΩqX)⇒ Hp+q(X,Ω•X).

When the scheme X is sufficiently nice, this spectral sequence will degenerate at the E1-page (i.e.
the differentials dr on the Er-page are zero for all r ≥ 1).

Theorem 6. (Hodge-to-de Rham degeneration) Let X be a smooth, proper scheme over C. Then, the
Hodge-to-de Rham spectral sequence degenerates at the E1-page.

Proof. See [Ill96, Theorem 6.9]. �
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In particular, when X is affine, the degeneration of the Hodge-to-de Rham spectral sequence implies
that HkΓ(X,Ω•X) = Hk(X,Ω•X). Indeed, the bottom row (i.e. p = 0 row) on the E1-page consists of
the groups H0(X,Ωk) and the differentials are horizontal. The degeneration at the E1-page means that
the only terms on the E2-page are the groups Hk(Γ(X,Ω•)) and the differentials are zero. It follows
that these terms are isomorphic to those of the E∞-page, i.e.

Hk(Γ(X,Ω•)) ' Hk(X,Ω•).

Therefore, in the affine case, the algebraic de Rham cohomology H∗dR(X/C) can be thought of as very
much the direct analogue of the usual de Rham cohomology, which is to say global closed forms module
global exact forms.

The degeneration of the Hodge-to-de Rham spectral sequence, combined with Theorem 5, is enough
to show that the algebraic and analytic de Rham cohomologies coincide when X is also assumed to be
projective (in fact, the projective assumption can be weakened to proper; see [sga71] for details).

Theorem 7. Let X be a smooth projective scheme over C, then H∗(X,Ω•X) ' H∗(Xan,Ω•Xan). In
particular, the algebraic de Rham cohomology H∗dR(X/C) is isomorphic to the singular cohomology
H∗(Xan,C) with C-coefficients.

Proof. As in Proposition 1, there are the canonical E1-spectral sequences Ep,q1 = Hp(X,ΩqX) and
Ep,q1,an = Hp(Xan,ΩqXan) abutting to Hp+q(X,Ω•X) and Hp+q(Xan,Ω•Xan), respectively. Theorem 5

asserts that there are natural termwise-isomorphisms Hp(X,ΩqX) ' Hp(Xan,ΩqXan) for all p, q, as X is
assumed to be projective. This collection of isomorphisms yields an isomorphism of spectral sequences

{Ep,q1 }
'−→ {Ep,q1,an}. In particular, there are isomorphisms of the abutments

H∗(X,Ω•X) ' H∗(Xan,Ω•Xan). (3)

In Section 1, we remarked that the holomorphic Poincaré lemma implies that the augmentation map
C•Xan → Ω•Xan is a quasi-isomorphism, where C•Xan denotes the trivial complex 0 → CXan → 0. In
particular, there are isomorphisms H∗(Xan,C) ' H∗(Xan,C•Xan) ' H∗(Xan,Ω•Xan). Composing these
with Eq. (3) produces the isomorphism H∗(Xan,C) ' H∗dR(X/C). �

4. Grothendieck’s Theorem

Let X be a smooth scheme over C, then the analytification functor of Section 2 defines a map
φ : Xan → X, which by Theorem 5 gives maps on the cohomologies Hp(X,ΩqX) → Hp(Xan,ΩqXan).
Hence we get an induced map on hypercohomology

H∗(X,Ω•X)→ H∗(Xan,Ω•Xan). (4)

In [Gro66], Grothendieck asserted moreover that the morphism of Eq. (4) is an isomorphism, which
shows that the algebraic de Rham cohomology and the analytic de Rham cohomology both capture the
same information about the scheme X and its analytification Xan. This theorem is our goal in this
section; we follow the proof in [EC14, Chapter 2].

Theorem 8. (Grothendieck) Let X be a smooth scheme over C. The natural map H∗(X,Ω•X) →
H∗(Xan,Ω•Xan) is an isomorphism.

Recall that the holomorphic Poincaré lemma says that the augmentation map CXan → Ω•Xan gives
a quasi-isomorphism between the trivial complex C•Xan : 0→ CXan → 0 and the holomorphic de Rham
complex Ω•Xan . Consequently, we get a chain of isomorphisms

H∗(Xan,CXan) ' H∗(Xan,C•Xan) ' H∗(Xan,Ω•Xan).

Therefore, an immediate corollary of Theorem 8 is that the algebraic de Rham cohomology H∗dR(X/C)
coincides with the singular cohomology H∗(Xan,C) with C-coefficients. This is the “algebraic” de
Rham theorem from Section 1.
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4.1. Reduction to the affine case. Let us assume that Theorem 8 holds for affine schemes, and use
this to prove the general case. Let U = {Ui}i∈I be an open affine cover of X, and for any list of indices
i0, . . . , iN ∈ I, let Ui0,...,iN := Ui0 ∩ . . .∩UiN . For a sheaf F of abelian groups on X and for each p ≥ 0,
let

Čp(U ,F) :=
∏

i0,...,ip∈I
i0<...<ip

F(Ui0,...,ip).

There are maps δ : Čp(U ,F)→ Čp+1(U ,F) so that Č•(U ,F) forms a complex of abelian groups called
the Čech complex of F (these are the usual maps of the Čech complex; see [Har77, Chapter III.4] for
the conventions).

For each q ≥ 0, the above gives the Čech complex Č(U ,ΩqX) associated to ΩqX ; these can be assembled

into a double complex so that the differentials d : ΩqX → Ωq+1
X induce maps Čp(U ,ΩqX)→ Čp(U ,Ωq+1

X )

satisfying δd = dδ. If Kp,q := Čp(U ,ΩpX), then the double complex K•,• is of the form

...
...

...

Č2(U ,OX)
d //

δ

OO

Č2(U ,Ω1
X)

d //

δ

OO

Č2(U ,Ω2
X)

d //

δ

OO

. . .

Č1(U ,OX)
d //

δ

OO

Č1(U ,Ω1
X)

d //

δ

OO

Č1(U ,Ω2
X)

d //

δ

OO

. . .

Č0(U ,OX)

δ

OO

d // Č0(U ,Ω1
X)

d //

δ

OO

Č0(U ,Ω2
X)

d //

δ

OO

. . .

where all of the squares commute.

Definition 7. The k-th Čech cohomology Ȟk(U ,Ω•X) (with respect to the open cover U) of the de
Rham complex Ω•X is the k-th cohomology of the totalization Tot(K•,•). Recall that the totalization
of K•,• is the complex of abelian groups whose terms are

Tot(K•,•)k :=
⊕
p+q=k

Čp(U ,ΩqX)

and the differentials are given by δ+ (−1)pd. We can also define the Čech cohomology for any complex
of sheaves of abelian groups in the same manner. See [EC14, Section 2.8] for further details.

Similar to how Čech cohomology of a quasi-coherent sheaf F computes the sheaf cohomology of F
precisely because the cohomology of F on any piece of the affine cover is trivial, the Čech cohomology of
the algebraic de Rham complex Ω•X will compute the hypercohomology because the sheaf cohomology
of ΩqX is trivial on any piece of the affine cover, for all q > 0.

Theorem 9. For all k ≥ 0, there is an isomorphism Ȟk(U ,Ω•X) ' Hk(X,Ω•X).

Proof. See [EC14, Theorem 2.8.1]. �

Now, since Ȟ∗(U ,Ω•X) is realized as the cohomology of the totalization of a double complex, there

is a natural E1-spectral sequence converging to Ȟ∗(U ,Ω•X), whose terms are given by

Ep,q1 = Hq
(
Čp(U ,Ω•X)

)
=

∏
i0,...,ip∈I
i0<...<ip

Hq
(
Γ(Ui0,...,ip ,Ω

•
X)
)
.

However, since Ui0,...,ip is affine, there are by assumption isomorphisms

Hq
(
Γ(Ui0,...,ip ,Ω

•
X)
)
' Hq

(
Γ
(
(Ui0,...,ip)an,Ω•Xan

))
. (5)
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Why is this helpful? Well, the same argument can be repeated in the analytic case! The analytifica-
tions Uan := {(Ui)an}i∈I form an open cover of the analytic space Xan by analytic varieties, and there
are isomorphisms Ȟ∗(Uan,Ω•Xan) ' H∗(Xan,Ω•Xan) between the Čech cohomology and the analytic de

Rham cohomology. The E1-spectral sequence in this setting converges to Ȟ∗(Uan,Ω•Xan) and its terms
are given by

Ep,q1,an = Hq
(
Čp(Uan,Ω•Xan)

)
=

∏
i0,...,ip∈I
i0<...<ip

Hq
(
Γ
(
(Ui0,...,ip)an,Ω•Xan

))
.

By our previous considerations, the two spectral sequences {Ep,q1 } and {Ep,q1,an} are isomorphic because

of the termwise isomorphisms of Eq. (5) (and the differentials clearly commute). In particular, their
E∞-pages are isomorphic, so for any k ≥ 0,

Hk(X,Ω•X) ' Ȟk(U ,Ω•X) ' Ȟk(Uan,Ω•Xan) ' Hk(Xan,ΩXan)

There is a slight problem with this reduction as stated, namely that the intersection of the open
affines Ui0,...,iN ’s are not necessarily themselves affine because we have not made the assumption that
X is separated. To get around this, we should first repeat the above argument for separated schemes
X, and then the general case follows by repeating the argument once more since the Ui0,...,iN ’s will
certainly be separated, if not affine.

Therefore, we have shown that it suffices to prove Grothendieck’s theorem (our Theorem 8) for a
smooth affine scheme over C. This is done in the subsequent subsection.

4.2. The affine case. In the previous subsection, we reduced the proof of Theorem 8 to the case of
an affine scheme. In this setting, the analytic de Rham theorem allows us to reformulate Theorem 8 to
the folllowing statement.

Theorem 10. Let X be a smooth affine scheme over C, then for any k ≥ 0, there are isomorphisms

Hk(X,Ω•X) ' Hk(Xan,C). (6)

It will be helpful to realize X as living inside some smooth projective scheme; to do so, we will
need to apply (a form of) Hironaka’s theorem on resolution of singularities. Hironaka’s theorem asserts
that there exists a smooth projective scheme Y over C and an open embedding i : X ↪→ Y so that the
complement U := Y −X, a closed subset of Y , is a normal crossing divisor in Y . See [Hir64] for the
proof of this result, and see [Har77, Chapter V.3, Remark 3.8.1] for a discussion of normal crossing
divisors.

Analytifying all of the above spaces, there is an embedding i : Xan ↪→ Y an. Originally, we were
concerned with holomorphic forms on Xan, but it is advantageous to “push forward the problem to
Y an” by considering a sheaf of forms on Y an instead. With this in mind, we define ΩkY an(∗Uan) to be
the subsheaf of meromorphic k-forms on the complex analytic space Y an which restrict to holomorphic
k-forms on Xan. Said differently, ΩkY an(∗Uan) is the subsheaf of meromorphic k-forms on Y an that
can only have poles on the complement Uan = Y an − Xan of Xan. In order to say something intel-
ligent about the hypercohomology of the complex Ω•Y an(∗Uan), we can realize the terms ΩkY an(∗Uan)
as subsheaves of ostensibly simpler sheaves in such a way that the inclusion of complexes is a quasi-
isomorphism.

Let ΩkC∞,Xan be the sheaf of smooth C-valued k-forms on the analytic space Xan, then ΩkY an(∗Uan)

is clearly a subsheaf of i∗
(
ΩkC∞,Xan

)
, since sections of ΩkY an(∗Uan) are holomorphic (in particular,

smooth) k-forms when restricted to Xan. The inclusions ΩkY an(∗Uan) ↪→ i∗
(
ΩkC∞,Xan

)
of sheaves on

Y an induce an inclusion of complexes Ω•Y an(∗Uan) ↪→ i∗
(
Ω•C∞,Xan

)
of sheaves on Y an.

Theorem 11. (Atiyah-Hodge) The inclusion Ω•Y an(∗Uan) ↪→ i∗
(
Ω•C∞,Xan

)
is a quasi-isomorphism.
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Proof. See [HA55, Section 3]. �

Theorem 11 is sometimes called the Fundamental Lemma of Atiyah & Hodge, or the (analytic)
Atiyah-Hodge Lemma. The upshot of Theorem 11 is that there is an isomorphism in hypercohomology

H∗(Y an,Ω•Y an(∗Uan)) ' H∗(Y an, i∗
(
Ω•C∞,Xan

)
). (7)

Our goal is to first construct an isomorphism H∗(Y an,Ω•Y an(∗Uan)) ' H∗(Γ(X,Ω•X)) and then build an
isomorphism H∗(Y an, i∗

(
Ω•C∞,Xan

)
) ' H∗(Xan,C). These combine with Eq. (7) to prove Theorem 10.

For a non-negative integer n, let ΩkY (nU) and ΩkY an(nUan) be the subsheaves of ΩkY (∗U) and
ΩkY an(∗Uan) with poles of order less than or equal to n on U and Uan, respectively. It follows that we
can write ΩkY (∗U) = lim−→n

ΩkY (nU) and ΩkY an(∗Uan) = lim−→n
ΩkY an(nUan). This descriptions of Ω∗Y (∗U)

and Ω∗Y an(∗Uan) as filtered colimits of coherent sheaves is a crucial ingredient in the proof of the next
two propositions.

Proposition 2. There are isomorphisms H∗(Y,Ω•Y (∗U)) ' H∗(Y an,Ω•Y an(∗Uan)).

Proof. As Y is smooth and projective, Theorem 5 says that Hp(Y,ΩqY (nU)) ' Hp(Y an,ΩqY an(nUan))
for any n ≥ 0. Moreover, cohomology commutes with filtered colimits (at least in this case, since Y an

is compact and Y is a noetherian space), there are isomorphisms

Hp(Y,ΩqY (∗U)) = Hp(Y, lim−→
n

ΩqY (nU)) = lim−→
n

Hp(Y,ΩqY (nU))

' lim−→
n

Hp(Y an,ΩqY an(nUan))

= Hp(Y an, lim−→
n

ΩqY an(nUan)) = Hp(Y an,ΩqY an(∗Uan)).

However, Hp(Y,ΩqY (∗U)) and Hp(Y an,ΩqY an(∗Uan)) are the (p, q)-terms of the E1-page of the first
quadrant spectral sequences associated to (and converging to) the hypercohomologies Hp+q(Y,Ω•Y (∗U))
and Hp+q(Y an,Ω•Y an(∗Uan)), respectively. As before, the termwise isomorphism of the spectral se-
quences gives an isomorphism on the E∞-pages, i.e we have the desired isomorphisms

H∗(Y,Ω•Y (∗U)) ' H∗(Y an,Ω•Y an(∗Uan)).

�

Proposition 3. There are isomorphisms H∗(Y,Ω•Y (∗U)) ' H∗(X,Ω•X).

Proof. The plan is to build the Čech complexes for H∗(Y,Ω•Y (∗U)) and H∗(X,Ω•X), respectively, as in
Definition 7 and show that all of the terms of the two complexes are isomorphic. To ensure that the
cohomology of the totalization of the Čech double complex does yield the correct hypercohomology, we
need to first check that the sheaf Ω∗Y (∗U) is acyclic on an affine open subset of Y (we already checked
this for Ω∗X on X). Indeed, let V ⊂ Y be an affine open, then applying the fact that cohomology
commutes with filtered colimits once again we find that for all n, q

Hp(V,ΩqY (∗U)) = Hp(V, lim−→
n

ΩqY (nU)) ' lim−→
n

Hp(V,ΩqY (nU)) = 0,

where Hp(V,ΩqY (nU)) = 0 because ΩqY (nU) is coherent. Therefore, we can take any open affine cover

U = {Ui}i∈I of Y and the Čech cohomology with respect to U computes the hypercohomology, i.e.

H∗(Y,Ω•Y (∗U)) ' Ȟ∗(U ,Ω•Y (∗U)).

As the pushforward i∗Ω
•
X coincides with Ω•Y (∗D), the terms of the Čech double complex associated to

Ω•Y (∗U) with respect to U can be written as

Čp(U ,ΩqY (∗U)) = Čp(U , i∗ΩqX) =
∏

i0,...,ip∈I
i0<...<ip

Γ(Ui0,...,ip ∩X,Ω
q
X). (8)
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Furthermore, let U|X := {Ui∩X}i∈I be the restriction of the cover U to X, then the terms of the Čech
double complex associated to Ω•X with respect to U|X can be written as

Čp(U|X ,ΩqX) =
∏

i0,...,ip∈I
i0<...<ip

Γ(Ui0,...,ip ∩X,Ω
q
X). (9)

However, the terms of the Čech double complexes Eq. (8) and Eq. (9) are identical, so there is an
equality between the Čech cohomologies, i.e. Ȟ∗(U ,Ω•Y (∗U)) = Ȟ∗(U|X ,Ω•X). In particular, there is
the desired isomorphism

H∗(X,Ω•X) ' Ȟ∗(U|X ,Ω•X) = Ȟ∗(U ,Ω∗Y (∗U)) ' H∗(Y,Ω•Y (∗U)).

�

Theorem 11, Proposition 3, and Proposition 2 combine to give the string of isomorphisms

H∗(X,Ω•X) ' H∗(Y,Ω•Y (∗U)) ' H∗(Y an,Ω•Y an) ' H∗(Y an, i∗
(
Ω•C∞,Xan

)
).

Therefore, to prove Theorem 10, it suffices to show that H∗(Y an, i∗Ω•C∞,Xan) ' H∗(Xan,C), where the
latter term is the singular cohomology of the analytic space Xan with C-coefficients. This is precisely
the assertion of our final proposition.

Proposition 4. There are isomorphisms H∗(Y an, i∗
(
Ω•C∞,Xan

)
) ' H∗(Xan,C).

Proof. Pointwise multiplication gives a natural OC∞,Y an-module structure to the sheaf i∗
(
Ω•C∞,Xan

)
,

which indicates that i∗
(
Ω•C∞,Xan

)
is acyclic (indeed, the OC∞,Y an-module structure allows us to use

partitions of unity). Consequently, the hypercohomology is nothing more than

Hk(Y an, i∗Ω
•
C∞,Xan) ' Hk(Γ(Y an, i∗

(
Ω•C∞,Xan

)
)) ' Hk(Γ(Xan,Ω•C∞,Xan)) ' Hk(Xan,C),

where the last isomorphism is the classical de Rham theorem. �
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