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Abstract. We show that for any bounded function f : [a, b] → R and ε > 0 there is a partition P of

[a, b] with respect to which the Riemann sum of f using right endpoints is within ε of the upper Darboux

sum of f . This leads to an elementary proof of the theorem of Gillespie [G] showing that Cauchy’s and

Riemann’s definitions of integrability coincide.

1. Introduction

A natural reaction to Riemann’s definition of integrability is to wonder how far it can be simplified,

and many of the resulting questions can reasonably be asked of undergraduates in a first course on real

analysis. For instance, it is relatively easy to show that altering his definition by allowing only regular

partitions or by allowing only endpoints as sample points does not enlarge the class of integrable functions,

but that making both restrictions at once does. On the other hand it appears to be less widely known,

and to be somewhat trickier to show using elementary methods, that for bounded functions allowing only

left endpoints as sample points does not enlarge the class of integrable functions. This was first shown in

1915 by Gillespie [G] using oscillation and measure, and was later reproved by Kristensen, Poulsen, and

Reich [KPR] with a more elementary argument that could be presented to undergraduates or assigned

to them as independent study. In this note we give another elementary proof of Gillespie’s result using

a lemma that may be of independent interest. Our proof avoids measure theory and requires only basic

facts about the Darboux integral.

What we call left-endpoint Riemann integrability below is in fact the definition of integrability that

Cauchy [C] originally gave for (continuous) functions in 1823. The papers [G] and [KPR] use left end-

points, following Cauchy, but here we use right endpoints instead; since f(x) could always be replaced

by f(−x), the difference is inconsequential.

2. Notation

Let f be a real-valued function on the interval [a, b]. We write

R(f, P, {x∗k}) :=

n∑
k=1

f(x∗k)(xk − xk−1)

for the Riemann sum of f on [a, b] using the partition P = {xk}nk=0 of [a, b] and sample points x∗k ∈
[xk−1, xk]. We write R(f, P, r.e.) for the Riemann sum that uses right endpoints x∗k = xk as sample points

in each subinterval. The function f is Riemann integrable on [a, b] if there is L ∈ R such that for every

ε > 0 there is δ > 0 such that for all partitions P = {xk}nk=0 of [a, b] with mesh ‖P‖ := max{xk − xk−1 :

1 ≤ k ≤ n} < δ and for all choices {x∗k} of sample points relative to P , |R(f, P, {x∗k}) − L| < ε. We say

that f is right-endpoint Riemann integrable if the same holds when restricting to right-endpoint Riemann

sums, and define left-endpoint Riemann integrability analogously.
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If f is bounded, we write

U(f, P ) :=

n∑
k=1

(sup(f, [xk−1, xk])) · (xk − xk−1),

L(f, P ) :=

n∑
k=1

(inf(f, [xk−1, xk])) · (xk − xk−1)

for the upper and lower Darboux sums of f on [a, b] relative to the partition P , and

U(f) := inf{U(f, P ) : P is a partition of [a, b]},
L(f) := sup{L(f, P ) : P is a partition of [a, b]}

for the upper and lower Darboux integrals of f on [a, b]. The function f is Darboux integrable if

U(f) = L(f) by definition, and Riemann integrable if and only if Darboux integrable by the well-known

correspondence.

3. The Proof

Lemma 1. If f : [a, b] → R is bounded, then for every ε > 0 there is a partition Q of [a, b] such that

U(f,Q)−R(f,Q, r.e.) < ε.

Proof. Fix B such that sup(f, [a, b]) − inf(f, [a, b]) ≤ B, and let ε > 0. Define g : [a, b] → R by

g(x) = sup(f, [x, b]), so that g is decreasing, and hence Riemann integrable, on [a, b], say with value

L =
∫ b
a
g. Fix δ1 > 0 such that for any partition P of [a, b] with ‖P‖ < δ1 and for any choice x∗k of sample

points relative to P , |R(g, P, {x∗k})− L| < ε. Let δ2 = ε
B , and set δ = min{δ1, δ2}. Let P = {xk}nk=0 be

a partition of [a, b] with ‖P‖ < δ
2 . We will use P in order to obtain the desired partition Q. Let

C = {1 ≤ k ≤ n : g(xk−1) = g(xk)};
D = {1 ≤ k ≤ n : g(xk−1) > g(xk)};
D′ = {k ∈ D \ {n} : k + 1 6∈ D}.

For each k ∈ D′ let zk = inf{x ∈ [xk−1, xk] : g(x) = g(xk)}. Let

D′0 = {k ∈ D′ : g(zk) = g(xk)};
D′1 = {k ∈ D′ : g(zk) > g(xk)}.

For each k ∈ D, choose yk ∈ [xk−1, xk) such that |f(yk)− g(xk−1)| < ε
b−a , where additionally if k ∈ D′0

then yk < zk, and if k ∈ D′1 then yk ≤ zk. Also for each k ∈ D′ choose an additional point in [xk−1, xk]

as follows. If k ∈ D′0, choose uk ∈ (yk, zk) such that |uk − zk| < ε
B|D′| and |f(uk) − g(uk)| < ε

b−a ; if

k ∈ D′1, choose vk ∈ (zk, xk) such that |vk − zk| < ε
B|D′| . Now let

Q0 = {a, b};
Q1 = {yk : k ∈ D ∧ k − 1 6∈ D};
Q2 = {zk : k ∈ D′0} ∪ {vk : k ∈ D′1};
Q3 = {zk : k ∈ D′1 ∧ zk 6= yk} ∪ {uk : k ∈ D′0} ∪ {yk : k, k − 1 ∈ D};
Q = Q0 ∪Q1 ∪Q2 ∪Q3.

We show that U(f,Q)−R(f,Q, r.e.) < 6ε.

For each q ∈ Q, let q′ = q if q = a and otherwise let q′ be the largest element of Q strictly less than q.

For q ∈ Q write

Eq :=
(

sup(f, [q′, q])− f(q)
)
(q − q′),
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so that

U(f,Q)−R(f,Q, r.e.) =
∑
q∈Q

Eq ≤
3∑
i=0

∑
q∈Qi

Eq

 .

We now bound the sums
∑
q∈Qi

Eq for each i ≤ 3.

First note that if g(xn−1) = g(xn) then sup(f, [b′, b]) = f(b) and hence Eb = 0. On the other hand if

g(xn−1) > g(xn) then n ∈ D, so b′ ∈ [xn−1, b) and hence Eb <
Bδ
2 . Since Ea = 0, we get∑

q∈Q0

Eq <
Bδ

2
< ε.

Next notice that if q ∈ Q1 then q′ = a or q′ ∈ Q2. In either case sup(f, [q′, q])−f(q) < ε
b−a , and therefore∑

q∈Q1

Eq < ε.

If q ∈ Q2 then q − q′ < ε
B|D′| , and since |Q2| ≤ |D′| this implies∑

q∈Q2

Eq < B|D′| · ε

B|D′|
= ε.

Finally, suppose q ∈ Q3. If q = zk 6= yk where k ∈ D′1, then g(q) = f(q) and q′ = yk so q − q′ < δ
2 . If

q = uk where k ∈ D′0, then |f(q)− g(q)| < ε
b−a and q′ = yk so again q − q′ < δ

2 . Finally if q = yk where

k, k − 1 ∈ D, then

g(xk−1)− ε

b− a
≤ f(q) ≤ g(q) ≤ g(xk−1)

and q′ = yk−1 so q− q′ < δ. Thus in all cases q− q′ < δ ≤ δ1 and |f(q)− g(q)| < ε
b−a . Let now Q′ be any

partition of [a, b] that extends Q3 ∪ {q′ : q ∈ Q3}, satisfies ‖Q′‖ < δ1, and has no points in the intervals

(q′, q) for q ∈ Q3. Then∑
q∈Q3

Eq =
∑
q∈Q3

(
sup(f, [q′, q])− f(q)

)
(q − q′)

≤
∑
q∈Q3

(
g(q′)− f(q)

)
(q − q′)

< ε+
∑
q∈Q3

(
g(q′)− g(q)

)
(q − q′)

≤ ε+
∑
q∈Q′

(
g(q′)− g(q)

)
(q − q′)

= ε+
∑
q∈Q′

g(q′)(q − q′)−
∑
q∈Q′

g(q)(q − q′) < 3ε.

Combining these estimates we have

U(f,Q)−R(f,Q, r.e.) =
∑
q∈Q

Eq < 6ε,

and since ε was arbitrary this completes the proof. �

Corollary 2. If f : [a, b] → R is bounded, then for every ε > 0 there is a partition Q of [a, b] such that

R(f,Q, r.e.)− L(f,Q) < ε.

Proof. Apply Lemma 1 to −f . �
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Theorem 3 ([G],[D],[KPR]). Let f : [a, b] → R be a bounded function. If f is right-endpoint Riemann

integrable on [a, b], then f is Riemann integrable on [a, b].

Proof. Let L be the limiting value of the right-endpoint Riemann sums of f on [a, b]. Let ε > 0 be

arbitrary, and fix δ > 0 such that for all partitions P of [a, b] with ‖P‖ < δ, |R(f, P, r.e.) − L| < ε. Let

P = {xk}nk=0 be a partition of [a, b] with ‖P‖ < δ. Using Lemma 1 and Corollary 2, for each 1 ≤ k ≤ n

choose partitions QUk and QLk of [xk−1, xk] such that on [xk−1, xk],

U(f,QUk )−R(f,QUk , r.e.) <
ε

n
and R(f,QLk , r.e.)− L(f,QLk ) <

ε

n
.

Let QU = ∪kQUk and QL = ∪kQLk . Then

U(f,QU )−R(f,QU , r.e.) < ε and R(f,QL, r.e.)− L(f,QL) < ε.

Since ‖QU‖, ‖QL‖ < δ, we have

|R(f,QU , r.e.)− L| < ε and |R(f,QL, r.e.)− L| < ε.

Thus

U(f,QU )− L(f,QL) < 4ε,

which implies U(f)− L(f) < 4ε. Since ε was arbitrary, it follows that f is Darboux integrable on [a, b],

and therefore Riemann integrable on [a, b]. �

Remark 1. The assumption of boundedness in Proposition 3 is necessary, but in a benign way. For

instance, one easily checks that the function

f(x) =

x−1/2 if x > 0;

0 if x = 0

is right-endpoint Riemann integrable on [0, 1] even though it is unbounded. However, it is easy to show

that if f : [a, b]→ R is right-endpoint Riemann integrable with limit L, then f is Riemann integrable (in

particular, bounded) on [c, b] for any a < c < b, and

lim
c→a+

∫ b

c

f(x) dx = L.

Remark 2. Dantoni [D] and the authors of [KPR] independently proved stronger results using oscillation

and measure. Let f be a bounded function on [a, b] and ψ a function with domain {(x, y) : a ≤ x ≤ y ≤ b}
such that x ≤ ψ(x, y) ≤ y for all x, y. Call f ψ-integrable if the Riemann sums

∑
f(ψ(xk−1, xk))(xk −

xk−1) converge to a common limit. In [KPR] the authors establish sufficient conditions on ψ, and in [D]

Dantoni establishes necessary and sufficient conditions on ψ, for every bounded function f on [a, b] to be

ψ-integrable; in particular both papers show that continuity of ψ suffices, generalizing Gillespie’s result.
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